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Abstract-In this paper, we investigate the coverage path 
planning (CPP) scheme for autonomous underwater vehicles 
(AUVs) cooperative environment detection in integrated under­
water acoustic communication and detection networks (UCDNs), 
where multiple AUVs detect unexplored oceanic environments 
and avoid obstacles. Firstly, we present the detection range 
prediction model related to oceanic environmental parameters 
and propose the detection and communication scheme in UCDNs. 
Secondly, to conduct the cooperative environment detection 
mission, we formulate the CPP problem as a mixed combinatorial 
and sequential quadratic optimization problem to maximize the 
coverage ratio and minimize the path length of AUVs. To solve 
this problem, we investigate the multi-agent proximal policy 
optimization (MAPPO)-based CPP scheme. In specific, the CPP 
problem is modeled as a partially observable Markov decision 
process (POMDP). Since the path planning of the AUVs is not 
only related to the local information but also the other AUVs' 
information, the information should be shared among AUVs 
based on the UCDNs. Furthermore, we introduce the MAPPO­
based algorithm under the centralized training with decentralized 
execution (CTDE) architecture. Extensive simulations are carried 
out to demonstrate the strength of the proposed scheme. 

I. INTRODUCTION 

With the great prosperity of marine science and technology, 
autonomous underwater vehicles (AUVs) have become more 
and more sophisticated, and multiple AUVs are expected to 
collaboratively accomplish complex and larger-scale missions. 
AUVs cooperative complete coverage path planning (CPP) 
mission has wide application prospects, such as subsea ex­
ploration, underwater search, and submarine survey [1], [2]. 
In general, the CPP task requires multiple AUV s to detect the 
interest of area while avoiding collision with unforeseen ob­
stacles. Therefore, communication and detection are two indis­
pensable functions to enable information sharing among AUV s 
and environment detection. Recently, integrated underwater 
acoustic detection and communication networks (UCDNs) 
have been developed and envisioned as a promising network 
for providing both communication and detection services for 
underwater applications [3], [4]. Empowered with UCDNs, 
AUVs can implement CPP tasks flexibly and lightweightly. 
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However, AUVs cooperative CPP tasks are challenged by 
limited communication resources, complex marine physics, 
and unforeseen obstacles. Firstly, the obtained detection in­
formation should be shared among multiple AUV s promptly. 
Secondly, to complete the area coverage detection, the detec­
tion ability of AUV s is affected by marine physics due to the 
characteristic of underwater acoustic propagation. Thirdly, the 
path planning of the AUV is expected to avoid unforeseen 
obstacles online and adaptively. 

Several existing works are proposed to design the CPP 
scheme for AUVs, which can be divided into two aspects, 
static global offline algorithms and dynamic local online 
algorithms. Regarding offline algorithms, they require accurate 
modeling of the entire underwater environment before cover­
age path planning is initiated [5]. On the other hand, online 
algorithms can independently determine path planning based 
on limited observed environmental information. Efforts to 
enhance the efficiency of multi-ADV cooperative CPP schemes 
mainly fall into two categories: centralized and decentralized 
cooperative CPP methods. For centralized cooperative CPP 
algorithms, a center AUV will carry out the task allocation 
scheme and divide the large task region into several subtasks 
for coverage [6]. However, due to environmental uncertainties, 
this approach may lead to unfair distribution and encounter 
limitations in communication range. To address fairness con­
cerns, a K-means based dynamic cooperative partition strategy 
is introduced to minimize detection range overlap and ensure 
equal workload [7]. Furthermore, the task is allocated based 
on the dot-spreading-based mission assignment scheme and 
AUV plans path based on the virtual attraction-based CPP in 
[8]. In terms of the decentralized coverage planning scheme, 
each AUV independently makes decisions based on limited 
environmental information. To achieve fully decentralized col­
laborative exploration, a decentralized reinforcement learning 
framework with dual guidance (DODGE) is proposed to 
integrate multiple agents' information into the observation 
environment [9]. In existing works, two aspects are not simul­
taneously considered, i.e., the impact of dynamically changing 
ocean environments on AUV detection performance and the 
robustness of algorithms adapting to variable underwater en-
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vironments. 
In this paper, we propose a CPP scheme for AUVs coop­

erative environment detection in UCDNs. We first introduce 
the communication and detection model to coordinate the 
detection and information sharing among AUVs in UCDNs. 
Specifically, a physical environment-based underwater de­
tection model is proposed to predict the detection range. 
Secondly, we formulate the CPP problem as a mixed com­
binatorial and sequential quadratic optimization problem to 
maximize the coverage ratio and minimize the path length of 
AUVs. Furthermore, to plan the adaptive and flexible path, we 
model the CPP problem as the partially observable Markov 
decision process (POMDP) and investigate the multi-agent 
proximal policy optimization (MAPPO)-based CPP algorithm 
to solve the problem. Simulations are carried out to evaluate 
the performance of the proposed algorithm. 

The contributions of this paper are summarized as follows: 

1) The underwater acoustic communication and detection 
model in dynamically changing oceanic environments 
for UCDNs is presented. 

2) We formulate the CPP problem and investigate the 
MAPPO-based CPP algorithm, which enables the AUV 
to achieve the large coverage ratio and short path length 
adaptive to various oceanic environments. 

The remainder of this paper is organized as follows. Section 
II presents the system model. In Section III, we formulate the 
problem. Following this, the proposed scheme is illustrated in 
Section IV. Section V evaluates the performance of the pro­
posed scheme. Finally, Section VI summarizes the conclusions 
of this paper. 

II. SYSTEM MODEL 

A. Network Model 

In this paper, we consider the scenario in which multiple 
AUV s collaborate to plan coverage paths to explore unknown 
underwater environments as well as detect the surrounding 
environment to avoid any obstacle collision, as illustrated in 

Fig. 1. The network consists of the coverage target area and 
K AUVs, denoted by K, = {A1 , A2 , ···,AK}-

• Coverage Target Area: The coverage target area is a two­
dimensional marine space divided into an L x W grid 
map. Before detection, the physical oceanic environment 
parameters sampled by the ocean scientific instruments 
have been obtained. Based on the detection range pre­
diction model illustrated afterward in Section II. B, all 
AUV s initially possess the detection ability information 
M at each position. During the travel, AUV s at the 
position Pi = (1%, wt) at time twill explore the area PZ,t 

"th" h • d • d t • pd t w1 m t e maximum etect10n range rk' , 1.e., k' = 
{ d,t d,t d,t } h 11 d,t t 11 < d,t H Pk1>Pk2,···,pkN wen Pkn-Pk 2_rk • ere, 

d t' ' : • d. ' (ld t d t ) A h pk'n represents pos1t10n coor mate k'n, wk'n . s sue , 
th~ detection ability information of th~ area M for AUV 
Ak will be updated by M(pt) = M(l%, wt) = Pt•t. 

• AUVs: All AUVs are equipped with the same integrated 
underwater acoustic communication and detection de­
vices. Nevertheless, since the underwater acoustic propa­
gation characteristic is highly related to the environment, 
the communication and detection capacities of AUVs 
will change with the ocean environment parameters, such 
as temperature, salinity, and depth. In UCDNs, AUVs 
send the integrated underwater acoustic communication 
and detection signal (UCD) to detect the environment 
and share information among AUVs. Then AUVs receive 
the echo signal to detect the environment. Specifically, 
for the CPP tasks in UCDNs, the detection scheme and 
communication scheme will be presented as follows. 

B. Detection Scheme in UCDNs 

1) Detection Range Prediction Model: For the active de­
tection using UCD signals, the detection range is related to 
the transmission loss (TL) of the sound waves denoted by 
TL(r, env), which can be calculated by the sound tool, for 
example, range-dependent acoustic modeling (RAM) [10]. The 
env is determined by the sound-speed profile (SSP) and other 
environmental parameters. To calculate the max detection 
range r% in a position of AUV Ak, the threshold of the 
transmission loss should be calculated, which is defined as the 
figure of merit (FoM), i.e., TL(r%, env) = FoMA. Furthermore, 
the FoM can be calculated by the active sonar equation as 
follows [11] 

1 
FoMA = 2(SL + TS- (NLs - DI) - DTs), (1) 

where SL is the source level of the transmitted UCD signal, TS 
is the target strength, NLs is the ambient noise level related 
to the noise of turbulence, shipping, and waves, DI is the 
directivity index, and DTs is the detection signal-to-noise ratio 
(SNR) threshold of received echo signal [12]. 

2) Target Detection Scheme: To detect the environment, the 
joint mono-static and multi-static active detection scheme is 
applied. As illustrated in Fig. 2, each AUV s send the UCD 
signal periodically and receive the echo signal. Based on the 
echo signal, not only the unknown underwater environments 
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Fig. 2: Timeline of communication and detection mechanism. 
can be explored but also the existence and locations of 
obstacles within the detection range can be obtained. 

C. Communication Scheme in UCDNs 

Multiple AUVs cooperatively complete the coverage task 
and make the decision on their path planning. To prevent them 
from redundantly covering areas already covered by other 
AUV s, the effective information-sharing scheme should be 
maintained. As shown in Fig. 2, the AUVs send the UCD 
signal containing the information about their locations and 
their action a%, other AUVs will receive the UCD signal and 
obtain the information. When AUV Ak receives the UCD 
signal broadcast by cooperating AUV Ak' containing a%,, 
it will update the detected map information based on the 
detection ability information M /!. 

Ill. PROBLEM FORMULATION 

To complete the area coverage mission, the objective of the 
proposed cooperative CPP scheme is to maximize the coverage 
efficiency Rt, which is defined as the coverage ratio Et divided 
by the coverage path length dt, i.e., Rt= Et/dt. 

At each time unit, AUV s move a grid length l:!..d. Then the 
coverage path length of all AUV s in period time Tl can be 
calculated as follows: 

T/;,-1 K 

dt = L LL:!..dJ(xk+l - x%)2 + (Yk+l - yk) 2 • (2) 
t=l k=l 

The coverage ratio is defined as the percentage of the 
explored target area accounting for the whole target area, 
which is the sum of the coverage ratio of change Lle% in each 
time unit during the AUV Ak trajectory period time Tl, which 
can be expressed as 

T/;,-1 K 

Et= L Llle%- (3) 
t=l k=l 

Here, Lle% is related to the detection range of positions along 
the AUVs' path and can be expressed by 

l:!.. t _ 11°%110 -11°t-1 llo (4) 
ek - L x W ' 

Here, 0% is a two-dimensional L x W matrix representing the 
observation of the target area for AUV Ak at time t, in which 
the element O%(l, w) is denoted by 

{ 

t d t' 0.3 , detected when (l, w) E Ut'=l Pk' , 

at (l w) = 0.6 , position of AUVs when (l, w) = Pk, 
k ' 1 , obstacles, 

0 , undetected, otherwise. 
(5) 

When AUVs move along the travel trajectory at the position 
Pk = (x%, yk), the area Pt,t within the detection range 
will be detected. Then the observation of the target area 
OW,w), \Ip%'~= (l,w) E Pt,t will be updated. As the 
AUV moves, a' new batch of grids will be detected, and the 
area of the undetected region in the status matrix 0% becomes 
smaller, eventually completely covering the target area. 

To complete the CPP tasks, the following constraints must 
be satisfied. 

1) All the target areas should be detected when the CPP 
tasks end within period time T, i.e., 

T-1 K 

E= LLL:!..e% = 1. (6) 
t=l k=l 

2) The trajectories of AUVs should avoid all obstacles, i.e., 

Ok(Pk)-=/- 1, \fpk = (x%, y%) E (Xk, Yk), t ET, k EK, 

where (Xk, Yk) represent the trajectories of AUV Af) 
3) All AUVs need to travel within the target area, i.e., 

1 ~ x% ~ W, 1 ~ Yk ~ L, \f(x%, y%) E (Xk, Yk)- (8) 
4) AUV can only move to four directions at each step, i.e., 

Ix% - xt- 1 I + IYk - Yk- 1 1 = 1, 0 < t ~ T, \ik E K. 

5) AUV s start and stop the CPP task simultaneously, i.~~) 

Tk = T, \fk E K. 

To achieve the most efficient coverage process and ulti­
mately achieve full coverage of the target area, the optimiza­
tion problem can be formulated as follows: 

max 
xl EXk ,Yk EYk 

T-1 K 

°"'T/;,-1 °"'K A t 
L..,t=l L..,k=l D.ek 

dt 

s.t. L Llle% = 1, 
t=l k=l 

(lla) 

(llb) 

Ok(Pk)-=/- 1, \fpk E (Xk, Yk), t ET, k EK, (llc) 

1 ~ x% ~ W, 1 ~ Yk ~ L, \f(xk, Yk) E (Xk, Yk), (lld) 

Ix% - Xk- 1 1 + IYk - Yk- 1 1 = 1, \ft ET, k EK, (lle) 

Tk = T, \fk E K. (llf) 

In the problem, the objective (l la) maximizes the coverage 
efficiency of each step during the path planning of all AUVs. 
This problem can be regarded as a mixed combinatorial and 
sequential quadratic optimization problem. To solve this prob­
lem adaptively and online, we investigate the CPP problem 
through multiagent reinforcement learning (MARL) algorithm. 

IV. PROPOSED MAP PO-BASED CPP ALGORITHM 

In the multi-agent system, each AUV is an independent 
agent that observes the local state and makes the path plan­
ning decision based on its own policy to maximize a local 
reward. Therefore, we formulate the CPP problem as a multi­
agent partially observable Markov decision process (POMDP), 
which consists of state, action, observation, and reward, i.e., 



Communication channelCommunication channel

5,45,45,4

6,46,46,4

CNN CNN CNN

CNN

FC FC

Actor Critic

2,12,12,1

1,11,11,1 1,21,21,2 1,31,31,3 1,41,41,4 1,51,51,5 1,61,61,6

2,32,32,3 2,52,52,5 2,62,62,6

3,63,63,6

4,64,64,6

5,65,65,6

3,23,23,2

6,66,66,66,56,56,5

5,55,55,5

6,46,46,4

2,12,12,1

1,11,11,1 1,21,21,2 1,31,31,3 1,41,41,4 1,51,51,5 1,61,61,6

2,32,32,3 2,52,52,5 2,62,62,6

3,63,63,6

4,64,64,6

5,65,65,6

3,23,23,2

6,66,66,66,56,56,5

5,55,55,5

3,13,13,1 3,33,33,3

4,24,24,2

3,53,53,5

update

++

+

2,22,22,2 2,22,22,2

Detection environment at  

MARL algorithm

Detection environment at  t+l 

Fig. 3: MAPPO training architecture. 

( { SkhEK, { akhEK, { OkhEK, {JkhE,c). We will illustrate 
the definitions of each element in MARL for an agent. 

State: The state set S! is a two-dimensional L x W matrix 
representing the partially observable detection status of the 
target area for AUV Ak at position p%, in which the element 
s%(pk) is denoted by 

8 t ( t ) = { 0 , undetected, 
k Pk 1 , detected. (12) 

Action: The action set of AUV Ak is ak 
{ aL a~, ... 'an, where the action a% is the path planning 
action at time t to visit the grid with four actions, i.e., left, 
right, top, and bottom. 

Observation: The matrix 0% is the observations for the 
partially observable state St according to the definition of Ot 
in (5) in Section III. 

Reward: The reward of each agent should be designed to 
achieve the objective of the formulated CPP problem. Firstly, 
to complete the CPP problem, the large constant reward j0 

is set for an agent to complete the area coverage ( constraint 
(l lb)). Secondly, to avoid obstacles and travel within the target 
area (constraints (l lc)and (l ld)), the penalty Po is set. Thirdly, 
to complete the task with a large coverage ratio and short path 
length (objective (1la)), the coverage ratio is rewarded and the 
path length is punished with coefficient j 1 and p 1 , respectively. 
Therefore, the reward J(Sk, a%) E Jk is associated with the 
transition from St to sf+I under action a% with observation 
ot, i.e., 

"'T-1 "'K A t l 
Dt=l Dk=l D.ek = , 

Ok(l,w) = 1, 
otherwise. 

(13) 

Since the MDP of an AUV is influenced not only by the 
policy of detection ability in the map but also by the maps 
explored by its neighboring AUV s, the training processes of 
multiple agents are not entirely independent. We propose a 
MARL algorithm named MAPPO to optimize the CPP scheme 
by extending PPO based on centralized training with decen­
tralized execution (CTDE) in the multiagent environment, in 
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which each AUV determines the action based on local state, 
observation, and rewards but shares the action with each other 
cooperatively to train the centralized critic network [13]. 

The architecture of the MAPPO-based CPP scheme is 
shown in the Fig. 3. In the local actor-network, at time t, 
based on the partial observation 0%, the AUV can obtain the 
local reward as Jt = J(Sk, a%, Ok). Then the AUV Ak would 
perform an action a%- Note that the action is shared with other 
AUV s via communication links. The virtual center AUV will 
update the observation and state based on the joint action 
at of all AUVs with the state transition probability function 
P(St+1 I st, at) and observation function (5). In the centralized 
critic network, the policy of each AUV is improved through 
gradient ascent in MAPPO algorithm based on the joint local 
state and observation. More specifically, the local reward J! of 
each AUV Ak and discount factor ry E [O, 1) get the discounted 
return G~ = I:~o ry1rf+l. Then it can used to estimate the 
value of each AUV Ak as the centralized value functions 
V{ (St) = lEt [G% I St] and the corresponding action-value 
functions Qk (Sk, at) = lEt [G% I Sk, at]. Then the advantage 
functions are given by Ak(Sk, at) = Qk (Sk, at) - V{ (Sk). 
Finally, the policy gradient of AUV Ak can be expressed as 

gk = ]Et [v0 logn:k (a% I oo Ak (St)]. (14) 

Here, the joint policy gradient then would be used in 
MAPPO algorithm to improve and update the joint policy 
1r0 (at I ot) = nkEK nt (a% I Ot) with 0 = {0khEK" 

V. PERFORMANCE EVALUATION 

Simulations are carried out to demonstrate the performance 
of the proposed MAPPO scheme in terms of the total path 
length, complete coverage time, and coverage ratio with differ­
ent numbers of AUVs. Two non-learning-based CPP schemes 
are compared. In the cost-based CPP scheme, AUVs choose 
an action based on the travelling cost from the nearest frontier 
cell [14]. In the utility-based CPP scheme, the AUV takes 
action based on the updated global distance utility function 
satisfy all the criteria [15]. 

A. Simulation Setup 

In this simulation, to adapt to the ocean parameters, the 
SSP and other marine parameters obtained from marine exper­
iments are imported into MATLAB Acoustics Toolbox RAM 
function to simulate the transmission loss. Then the detection 
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range is calculated and shown in Fig. 4. The coverage task REFERENCES 

area is obtained from Fig. 4 with range 8.4 km x 8.4 km and 
divided into grids with range 200 m. All AUVs maintain a 
speed of 10 mis. The number of AUVs varies from 1 to 4. In 
the Monte-Carlo simulations, the distribution of obstacles in 
the map changes with each cycle of execution. 

B. Simulation Results 

Fig. 5(a) displays an example of CPP results based on the 
proposed MAPPO-based CPP scheme. It shows that AUV s 
can accomplish CPP with obstacle avoidance. The heatmap 
represents the number of times that the area has been detected. 

As depicted in Fig. 5(b ), the coverage ratio changes with 
the total path length of AUV s and the number of AUV s is 
compared. Results show that with the increase of the total path 
length of AUV s, the coverage ratio of the proposed MAPPO­
based CPP scheme changes larger and faster than that of 
the other two schemes. In addition, with the increase of the 
number of AUVs, the coverage ratio will increase stably in 
the MAPPO-based scheme while unstable in the two other 
schemes. 

In terms of the path length and task time, the influence of 
the number of AUVs is shown in Fig. 5(c). Results show that 
with the increase of the number of AUV s, the path length 
is reduced slightly and the complete coverage time is greatly 
reduced. In addition, the path length and complete coverage 
of the proposed MAPPO-based CPP scheme is shorter than 
the other two methods. 

VI. CONCLUSION 

In this paper, we have presented a cooperative CPP scheme 
to detect unexplored oceanic environments while avoiding 
obstacles in UCDNs. Furthermore, we have formulated the 
CPP problem to maximize the coverage ratio and minimize 
the path length of AUVs and proposed the MAPPO-based 
CPP scheme to solve it. Extensive simulations have shown 
the advantage of the performance of the proposed scheme. 
For the future work, we will study the joint optimization of 
AUV s' path and the detection performance. 
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