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Abstract 

Computing least common subsumers (Ics) and most 
specific concepts (msc) are inference tasks that can 
support the bottom-up construction of knowledge 
bases in description logics. In description logics 
with existential restrictions, the most specific con
cept need not exist if one restricts the attention to 
concept descriptions or acyclic TBoxes. In this pa
per, we extend the notions les and msc to cyclic 
TBoxes. For the description logic EC (which al
lows for conjunctions, existential restrictions, and 
the top-concept), we show that the les and msc al
ways exist and can be computed in polynomial time 
if we interpret cyclic definitions with greatest fix-
point semantics. 

1 Introduction 
Computing the most specific concept of an individual and 
the least common subsumer of concepts can be used in the 
bottom-up construction of description logic (DL) knowledge 
bases. Instead of defining the relevant concepts of an ap
plication domain from scratch, this methodology allows the 
user to give typical examples of individuals belonging to the 
concept to be defined. These individuals are then general
ized to a concept by first computing the most specific concept 
of each individual (i.e., the least concept description in the 
available description language that has this individual as an 
instance), and then computing the least common subsumer of 
these concepts (i.e., the least concept description in the avail
able description language that subsumes all these concepts). 
The knowledge engineer can then use the computed concept 
as a starting point for the concept definition. 

The least common subsumer (les) in DLs with existential 
restrictions was investigated in [Baader et a/., 1999]. In par
ticular, it was shown there that the les in the small DL EC 
(which allows for conjunctions, existential restrictions, and 
the top-concept) always exists, and that the binary les can be 
computed in polynomial time. Unfortunately, the most spe
cific concept (msc) of a given ABox individual need not exist 
in languages allowing for existential restrictions or number 
restrictions. As a possible solution to this problem, Kiisters 
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and Molitor [2001] show how the most specific concept can 
be approximated in EC and some of its extensions. Here, we 
follow an alternative approach: we extend the language by 
cyclic terminologies with greatest fixpoint (gfp) semantics, 
and show that the msc always exists in this setting. Of course, 
then one must also be able to compute the les w.r.t. cyclic ter
minologies with gfp-semantics. For the DL ACM (which al
lows for conjunctions, value restrictions, and number restric
tions) it was shown in [Baader and Kusters, 1998] that the 
most specific concept always exists if one adds cyclic con
cept definitions with gfp-semantics. One reason for Kusters 
and Molitor to choose an approximation approach rather than 
an exact characterization of the most specific concept using 
cyclic definitions was that the impact of cyclic definitions in 
description logics with existential restrictions was largely un
explored. 

The paper [Baader, 2003a] is a first step toward overcom
ing this deficit. It considers cyclic terminologies in EC w.r.t. 
the three types of semantics (greatest fixpoint, least fixpoint, 
and descriptive semantics) introduced by Nebel [1991], and 
shows that the subsumption problem can be decided in poly
nomial time in all three cases. This is in stark contrast to the 
case of DLs with value restrictions. Even for the small DL 
F Lo (which allows conjunctions and value restrictions only), 
adding cyclic terminologies increases the complexity of the 
subsumption problem from polynomial (for concept descrip
tions) to PSPACE. The main tool in the investigation of cyclic 
definitions in EC is a characterization of subsumption through 
the existence of so-called simulation relations on the graph 
associated with an EL-terminology, which can be computed 
in polynomial time [Henzinger et al, 1995]. 

This characterization of subsumption can be used to char
acterize the les w.r.t. gfp-semantics via the product of this 
graph with itself (Section 4). This shows that, w.r.t. gfp se
mantics, the les always exists, and that the binary les can be 
computed in polynomial time. (The n-ary les may grow ex
ponentially even in EC without cyclic terminologies [Baader 
et al. , 1999].) 

The characterization of subsumption w.r.t. gfp-semantics 
can be extended to the instance problem in EC. This allows 
us to show that the msc in EC with cyclic terminologies inter
preted with gfp semantics always exists, and can be computed 
in polynomial time (Section 5). 

In the next section, we introduce E L with cyclic terminolo-
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gics as well as the lcs and the msc. Then we recall the impor
tant definitions and results from [Baader, 2003a]. Section 4 
formulates and proves the new results for the lcs, and Sec
tion 5 does the same for the msc. 

2 Cyclic terminologies, least common 
subsumers, and most specific concepts 

Concept descriptions arc inductively defined with the help 
of a set of constructors, starting with a set of concept 
names and a set NR of role names. The constructors deter
mine the expressive power of the DL. In this paper, wc restrict 
the attention to the whose concept descriptions arc 
formed using the constructors top-concept (T), conjunction 

, and existential restriction . The semantics of 
E L-concept descriptions is defined in terms of an interpreta
tion . The d o m a i n i s a non-empty set 
of individuals and the interpretation function I maps each 
concept name to a subset and each role 

to a binary relation on . The extension of 
to arbitrary concept descriptions is inductively defined, as 

shown in the third column of Table 1. 
A terminology (or TBox for short) is a finite set of con

cept definitions of the form where A is a concept 
name and D a concept description. In addition, we require 
that TBoxcs do not contain multiple definitions, i.e., there 
cannot be two distinct concept descriptions such 
that both belongs to the TBox. Con
cept names occurring on the left-hand side of a definition are 
called defined concepts. Al l other concept names occurring 
in the TBox are called primitive concepts. Note that we al
low for cyclic dependencies between the defined concepts, 
i.e., the definition of A may refer (directly or indirectly) to 
A itself. An interpretation I is a model of the TBox T iff 
it satisfies all its concept definitions, i.e., for all 
definitions in T. 

An ABox is a finite set of assertions of the form A(a) and 
r(a,b), where A is a concept name, r is a role name, and 
a, b are individual names from a set . Interpretations of 
ABoxes must additionally map each individual name 
to an element . An interpretation I is a model of the 
ABox A i f f it satisfies all its a s s e r t i o n s , f o r all 
concept assertions A(a) in A and x for all role 
assertions in A. The interpretation I is a model of the 
A Box A together with the if f it is a model of both T 
and A. 

The semantics of (possibly cyclic) we have de
fined above is called descriptive semantic by Nebel [1991]. 
For some applications, it is more appropriate to interpret 
cyclic concept definitions with the help of a fixpoint seman
tics. 

Example 1 To illustrate this, let us recall an example from 
LBaader, 2003a]: 

Here the intended interpretations arc graphs where we have 
nodes (elements of the concept Node) and edges (represented 
by the role edge), and we want to define the concept I node 
of all nodes lying on an infinite (possibly cyclic) path of the 
graph. In order to capture this intuition, the above definition 
must be interpreted with greatest fixpoint semantics. 

Before we can define greatest fixpoint semantics (gfp-
semantics), we must introduce some notation. Let T be an 
E L-TBox containing the r o l e s t h e primitive concepts 

and the defined concepts . A 
primitive interpretations J for T is given by a domain , 
an interpretation of the roles r Nrole by binary relations 

and an interpretation of the primitive concepts 
by subsets Obviously, a primitive 

interpretation differs from an interpretation in that it does not 
interpret the defined concepts in . We say that the in
terpretation X is based on the primitive interpretation J iff 
it has the same domain as J and coincides with J on Nrole 

and Nprim. For a fixed primitive interpretation J, the inter
pretations X based on it are uniquely determined by the tuple 

of the interpretations of the defined concepts in 
We define 

is an interpretation based on 

Interpretations based on J can be compared by the following 
ordering, which realizes a pairwise inclusion test between the 
respective interpretations of the defined concepts: if 
Int(J), then 

It is easy to see that induces a complete lattice on Int (J), 
i.e., every subset of Jnt(J) has a least upper bound (lub) and 
a greatest lower bound (gib). Using Tarski's fixpoint theorem 
LTarski, 1955] for complete lattices, it is not hard to show 
LNebel, 1991] that, for a given primitive interpretation J, 
there always is a greatest model of T based on J. 
We call this models the greatest fixpoint model (gfp-model) 
of T. Greatest fixpoint semantics considers only gfp-models 
as admissible models. 

Definition 2 Let T be an let 
A, B be defined concepts occurring in T> and a an individual 
name occurring in A. Then, 

• A is subsumed by B w.r.t. gfp-semantics 
if f holds for all gfp-models 

•a is an instance of A w.r.t. gfp-semantics 
holds for all models X of A that are 

gfp-models of T. 
On the level of concept descriptions, the least common sub-

sumer of two concept descriptions C, D is the least concept 
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Proposition 5 Let T\ be an £l-TBox containing the defined 
concepts A, B. Assume that T2 and T2 are conservative ex
tensions of T1 such that 

• the defined concept E in T2 is a gfp-lcs of A, B in T\; 

• the defined concept E' in T2 is a gfp-lcs of A, B in T\; 

• the sets of newly defined concepts in respectively T2 and 
T2 are disjoint. 

The notion "most specific concept" can be extended in a 
similar way from concept descriptions to concepts defined in 
a TBox. 

Uniqueness up to equivalence of the most specific concept 
can be formulated and shown like uniqueness of the least 
common subsumer. 

3 Characterizing subsumption 
In this section, we recall the characterizations of subsump
tion w.r.t. gfp-semantics developed in [.Baader, 2003a]. To 
this purpose, we must represent TBoxes and primitive inter
pretations by description graphs, and introduce the notion of 
a simulation on description graphs. 

As shown in [Baader, 2003a], one can (without loss of gen
erality) restrict the attention to normalized TBox. In the fol
lowing, we thus assume that all TBoxes are normalized. Nor
malized £L-TBoxes can be viewed as graphs whose nodes 
are the defined concepts, which are labeled by sets of prim
itive concepts, and whose edges are given by the existential 
restrictions. For the rest of this section, we fix a normalized 

TBoxes, this uniqueness property also holds (though its for
mulation is more complicated). 

In the case of concept descriptions, the les is unique up 

The intended interpretation is similar to the one in Example 1, 
with the only difference that now nodes may have colors, 
and we are interested in blue (red) nodes lying on an infi
nite path consisting of blue (red) nodes. Intuitively, the les 
of Bluelnode and Redlnode describes nodes lying on an in
finite path (without any restriction on their color), i.e., the 
concept I node from Example 1 should be a definition of this 
les. However, this cannot be expressed by a simple concept 
description. It requires a new cyclic definition. 

description E that subsumes both C and D. An extensions 
of this definition to the level of (possibly cyclic) TBoxes is 
not completely trivial. In fact, assume that A1,A2 are con
cepts defined in the TBox T. It should be obvious that taking 



Conversely, every £L-description graph can be viewed as 
representing either an £C-T Box or a primitive interpretation. 

Simulations are binary relations between nodes of two £L-
description graphs that respect labels and edges in the sense 
defined below. 

It is easy to see that the set of all simulations from G\ to G2 
is closed under arbitrary unions. Consequently, there always 
exists a greatest simulation from G1 to G2- If G1, G2 are finite, 
then this greatest simulation can be computed in polynomial 
time [Henzinger et al, 1995]. As an easy consequence of this 
fact, the following proposition is proved in [Baader, 2003a]. 

Proposition 9 Let G1, G2 be two finite EL-description 
graphs, v1 a node of G\ and V2 a node of G2- Then we 
can decide in polynomial time whether there is a simulation 

Subsumption w.r.t. gfp-semantics corresponds to the exis
tence of a simulation relation such that the subsumee simu
lates the subsumer: 

5 Instance and most specific concepts 
One motivation for considering cyclic terminologies in £L is 
the fact that the most specific concept of an ABox individ
ual need not exist in £C (without cyclic terminologies). An 
example is the simple cyclic ABox A := { r (b,b)} , where 
b has no most specific concept, i.e., there is no least £L-
concept description D such that b is an instance of D w.r.t. 
A [Kiisters and Molitor, 2001]. However, if one allows for 
cyclic TBoxes with gfp-semantics, then the defined concept 
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2. There is a simulation Z: Gr ~ GT such that (B , A) £ 
Z. 

The theorem together with Proposition 9 shows that sub-
sumption w.r.t. gfp-semantics in £C is tractable. The proof 
of the theorem given in [Baader, 2003a] depends on a charac
terization of when an individual of a gfp-model belongs to a 
defined concept in this model. 

This proposition is also important in the proof of correct
ness of our characterization of the instance problem (Theo
rem 17). 

4 Computing the Ics 
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6 Conclusion 
In [Baader, 2003a] we have shown that subsumption in re
mains polynomial if one allows for cyclic terminologies with 
greatest fixpoint (gfp) semantics. In Section 5.1 of this pa
per we have complemented this result by showing that the 
instance problem in with cyclic terminologies interpreted 
with gfp-semantics is also polynomial. Thus, all the standard 
inferences in remain polynomial if one allows for cyclic 
terminologies with gfp-semantics. Our main motivation for 
considering cyclic terminologies with gfp-semantics in 
was that the most specific concept of an ABox-individual then 
always exists. In fact, we have shown in this paper that both 
the least common subsumer (les) and the most specific con
cept (msc) can be computed in polynomial time in with 
cyclic terminologies interpreted with gfp-semantics. Thus, 
also two of the most important non-standard inferences in 
DLs [Kusters, 2001] remain polynomial in this context. 

It should be noted that there are indeed applications where 
the expressive power of the small DL appears to be suf
ficient. In fact, SNOMED, the Systematized Nomenclature 
of Medicine [Cote et al, 1993] uses [Spackman, 2000; 
2001]. 

Subsumption [Baader, 2003a] and the instance problem 
[Baader, 2003b] are also polynomial w.r.t. descriptive se
mantics. For the les, descriptive semantics is not that well-
behaved: in [Baader, 2003] we have shown that w.r.t. de
scriptive semantics the les need not exist in with cyclic 
terminologies. In addition, we could only give a sufficient 
condition for the existence of the les. If this condition ap
plies, then the les can be computed in polynomial time. In 
[Baader, 2003b] similar results are shown for the msc w.r.t. 
descriptive semantics. 

One problem left for future research is the question of how 
to obtain a decidable characterization of the cases in which 
the les (msc) exists w.r.t. descriptive semantics, and to deter
mine whether in these cases it can always be computed in 
polynomial time. 
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