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Abstract 

Disjunctive Logic Programming (DLP) is a very 
expressive formalism: it allows to express every 
property of finite structures that is decidable in the 
complexity class E^ (NPN H ) . Despite the high ex
pressiveness of DLP, there are some simple proper
ties, often arising in real-world applications, which 
cannot be encoded in a simple and natural manner. 
Among these, properties requiring to apply some 
arithmetic operators (like sum, times, count) on a 
set of elements satisfying some conditions, can
not be naturally expressed in DLP. To overcome 
this deficiency, in this paper we extend DLP by 
aggregate functions. We formally define the se
mantics of the new language, named DLP-4. We 
show the usefulness of the new constructs on rel
evant knowledge-based problems. We analyze the 
computational complexity of DLP"4, showing that 
the addition of aggregates does not bring a higher 
cost in that respect. We provide an implementation 
of the DLP-4 language in D L V - the state-of-the-
art DLP system - and report on experiments which 
confirm the usefulness of the proposed extension 
also for the efficiency of the computation. 

1 Introduction 

Expressiveness of DLP. Disjunctive Logic Programs (DLP) 
are logic programs where (nonmonotonic) negation may oc
cur in the bodies, and disjunction may occur in the heads of 
rules. This language is very expressive in a precise math
ematical sense: it allows to express every property of fi
nite structures that is decidable in the complexity class Ep

2 

(NPN P ) . Therefore, under widely believed assumptions, 

*This work was supported by the European Commission under 
projects IST-2002-33570 INFOMIX, IST-2001-32429 ICONS, and 
FET-2001-37004WASP. 

DLP is strictly more expressive than normal (disjunction-
free) logic programming, whose expressiveness is limited to 
properties decidable in NP. DLP can thus express problems 
which cannot be translated to Satisfiability of CNF formu
las in polynomial time. Importantly, besides enlarging the 
class of applications which can be encoded in the language, 
disjunction often allows for representing problems of lower 
complexity in a simpler and more natural fashion (see [Eiter 
et al., 2000]). 

The problem. Despite this high expressiveness, there are 
some simple properties, often arising in real-world applica
tions, which cannot be encoded in DLP in a simple and nat
ural manner. Among these are properties requiring to apply 
some arithmetic operator (e.g., sum, times, count) on a set of 
elements satisfying some conditions. Suppose, for instance, 
that you want to know if the sum of the salaries of the em
ployees working in a team exceeds a given budget (see Team 
Building, in Section 3). To this end, you should first order 
the employees defining a successor relation. You should then 
define a sum predicate, in a recursive way, which computes 
the sum of all salaries, and compare its result with the given 
budget. This approach has two drawbacks: (1) It is bad from 
the KR perspective, as the encoding is not natural at all; (2) it 
is inefficient, as the (instantiation of the) program is quadratic 
(in the cardinality of the input set of employees). Thus, there 
is a clear need to enrich DLP with suitable constructs for the 
natural representation and to provide means for an efficient 
evaluation of such properties. 

Contribution. We overcome the above deficiency of DLP. 
Instead of inventing new constructs from scratch, we extend 
the language with a sort of aggregate functions, first studied 
in the context of deductive databases, and implement them 
in DLV [Eiter el al.f 2000] - the state-of-the-art Disjunctive 
Logic Programming system. The main contributions of this 
paper are the following. 
• We extend Disjunctive Logic Programming by aggregate 
functions and formally define the semantics of the resulting 
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language, named DLP*4. 
• We address knowledge representation issues, showing the 
impact of the new constructs on relevant problems. 
• We analyze the computational complexity of DLP*4. Im
portantly, it turns out that the addition of aggregates does 
not increase the computational complexity, which remains the 
same as for reasoning on DLP programs. 
• We provide an implementation of DLP*4 in the DLV sys
tem, deriving new algorithms and optimization techniques for 
the efficient evaluation. 
• We report on experimentation, evaluating the impact of the 
proposed language extension on efficiency. The experiments 
confirm that, besides providing relevant advantages from the 
knowledge representation point of view, aggregate functions 
can bring significant computational gains. 
• We compare DLP*4 with related work. 
We present the most relevant aspects of DLP*4 and of its im
plementation here, referring the interested reader to a techni
cal report with all details [Del lArmi et al, 2003]. 

2 The DLP A Language 
In this section, we provide a formal definition of the syntax 
and semantics of the DLP*4 language - an extension of DLP 
by set-oriented functions (also called aggregate functions). 
We assume that the reader is familiar with standard DLP; we 
refer to atoms, literals, rules, and programs of DLP, as stan
dard atoms, standard literals, standard rules, and standard 
programs, respectively. For further background, see [Gelfond 
and Lifschitz, 1991; Eiter etal, 2000]. 

2.1 Syntax 
A (DLP*4) set is either a symbolic set or a ground set. A 
symbolic set is a pair , where Vars is a list 
of variables and Coiij is a conjunction of standard literals.1 

A ground set is a set of pairs of the form , where 
l is a list of constants and Conj is a ground (variable free) 
conjunction of standard literals. An aggregate function is of 
the form , where 5 is a set, and / is a function name 
among An aggre
gate atom is ~ ~ where f(S) is an aggregate 
function, , and Lg and Rg (called 
left guard, and right guard, respectively) are terms. One of 

can be omitted. An atom is cither a 
standard (DLP) atom or an aggregate atom. A literal L is an 
atom A or an atom A preceded by the default negation symbol 
not; if A is an aggregate atom, L is an aggregate literal, 

rule r is a construct 

where a \, • • •, an are standard atoms, b1, • • •, bm are atoms, 
and The disjunction a.\  

is the head of r, while the conjunction 
bu...,bk, not is the body of r. A (DLP*4; 
program is a set of DLP*4 rules. 
Syntactic Restrictions and Notation 

'intuitively, a symbolic set stands 
for the set of A'-values making true, i.e., 

. Note that also negative liter
als may occur in the conjunction Conj of a symbolic set. 

For simplicity, and without loss of generality, we assume 
that the body of each rule contains at most one aggregate 
atom. A global variable of a rule r is a variable appearing 
in some standard atom of r; a local variable of r is a variable 
appearing solely in an aggregate function in r. 

Safety. A rule r is safe if the following conditions hold: (i) 
each global variable of r appears in a positive standard literal 
in the body of r; (ii) each local variable of r' appearing in a 
symbolic set , also appears in a positive literal 
in Conj\ (iii) each guard of an aggregate atom of r* is either 
a constant or a global variable. A program is safe if all of its 
rules are safe. 
Example 1 Consider the following rules: 

The first rule is safe, while the second is not, since both local 
variables Z and S violate condition (ii). The third rule is not 
safe cither, since the guard T is not a global variable, violating 
condition (iii). 

Stratification. A DLP*4 program V is aggregate-stratified 
if there exists a function , called level mapping, from the 
set of (standard) predicates of V to ordinals, such that for each 
pair a and b of (standard) predicates of , and for each rule 

appears in the head of r, and 6 appears in an 
aggregate atom in the body of r, then , and (ii) if 
a appears in the head of r, and b occurs in a standard atom in 
the body of r, then  
Example 2 Consider the program consisting of a set of facts 
for predicates a and b, plus the following two rules: 

The program is aggregate-stratified, as the level mapping 
satisfies the required 

conditions. If we add the rule b(X):-p(X), then no legal 
level-mapping exists and the program becomes aggregate-
unstratificd. 

Intuitively, aggregate-stratification forbids recursion 
through aggregates, which could cause an unclear se
mantics in some cases. Consider, for instance, the 
(aggregate-unstratified) program consisting only of rule 

. Neither p(a) nor is 
an intuitive meaning for the program. We should probably 
assert that the above program does not have any answer set 
(defining a notion of "stability" for aggregates), but then 
positive programs would not always have an answer set if 
there is no integrity constraint. In the following we assume 
that DLP*4 programs are safe and aggregate-stratified. 

2.2 Semantics 
Given a DLP*4 program denote the set of constants 
appearing in the set of the natural numbers oc
curring in Up and B-p the set of standard atoms constructive 
from the (standard) predicates of V with constants in Up. 
Furthermore, given a set denotes the set of all multi
sets over elements from X. Let us now describe the domains 
and the meanings of the aggregate functions we consider: 

count: defined over , the number of elements in the set. 
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sum: defined over , the sum of the numbers in the set. 

t imes: over the product of the numbers in the set.2 

min, max: defined over the mini
mum/maximum element in the set; if the set contains also 
strings, the lexicographic ordering is considered.3 

If the argument of an aggregate function does not belong to its 
domain, the aggregate evaluates to false, denoted as J_ (and 
our implementation issues a warning in this case). 

A substitution is a mapping from a set of variables to the 
set Up of the constants appearing in the program V. A sub
stitution from the set of global variables of a rule r (to U-p) 
is a global substitution for r; a substitution from the set of 
local variables of a symbolic set 5 (to Up) is a local substi
tution/or 5. Given a symbolic set without global variables 
5 = { Vars : Conj}, the instantiation of set 5 is the follow
ing ground set of pairs inst(S): 

A ground instance of a rule r is obtained in two steps: (1) 
a global substitution a for r is first applied over r; (2) ev
ery symbolic set S in o(r) is replaced by its instantiation 
inst(S). The instantiation Ground(V) of a program V is 
the set of all possible instances of the rules of V. 

Example 3 Consider the following program V\: 

The instantiation Ground(V\) is the following: 

An interpretation for a DLP*4 program V is a set of stan
dard ground atoms . The truth valuation I {A), where 
A is a standard ground literal or a standard ground conjunc
tion, is defined in the usual way. Besides assigning truth val
ues to the standard ground literals, an interpretation provides 
the meaning also to (ground) sets, aggregate functions and ag
gregate literals; the meaning of a set, an aggregate function, 
and an aggregate atom under an interpretation, is a multiset, 
a value, and a truth-value, respectively. Let f(S) be a an ag
gregate function. The valuation I(S) of set 5 w.r.t. / is the 
multiset of the first constant of the first components of the ele
ments in S whose conjunction is true w.r.t. J. More precisely, 
let Conj is true 
w.r.t. I } , then I(S) is the multiset 
The valuation I(f(S)) of an aggregate function f(S) w.r.t. / 
is the result of the application of the function / on 7(5). (If 
the multiset 7(5) is not in the domain o f / ,  

An aggregate atom . is true 
w.r.t. I if: and, (ii) the relationships 

hold whenever they 
are present; otherwise, A is false. 

Using the above notion of truth valuation for aggregate 
atoms, the truth valuations of aggregate literals and rules, as 

sum and times applied over an empty set return 0 and 1, 
respectively. 

3The latter is not yet supported in our f\ rst implementation. 
4Given a substitution a and a DLP*4 object Obj (rule, conjunc

tion, set, etc.), with a little abuse of notation, we denote by a (Obj) 
the object obtained by replacing each variable X in Obj by (X). 

well as the notion of model, minimal model, and answer set 
for DLP*4 are an immediate extension of the corresponding 
notions in DLP [Gelfond and Lifschitz, 1991], 

Example 4 Consider the aggregate atom A — #sum{( l : 
p(2 , l ) ) , (2 : p(2,2))} > 1 from Example 3. Let 5 be 
the ground set appearing in A. For interpretation I = 
{r/(2),/;(2,2),t(2)j , I(S) = [2], the application of #sum 
over [2] yields 2, and A is therefore true w.r.t. 7, since 2 > 1. 
I is an answer set of the program of Example 3. 

3 Knowledge Representation in DLP*4 

In this section, we show how aggregate functions can be used 
to encode relevant problems. 

Team Building. A project team has to be built from a set of 
employees according to the following specifications: 
(pi) The team consists of a certain number of employees. 
(p2) At least a given number of different skills must be 
present in the team. 
(p3) The sum of the salaries of the employees working in the 
team must not exceed the given budget. 
(p/i) The salary of each individual employee is within a spec
ified limit. 
(pr}) The number of women working in the team has to reach 
at least a given number. 
Suppose that our employees are provided by a number of facts 
of the form emp(EmpId,Sex,Skill,Salary); the size of the team, 
the minimum number of different skills, the budget, the max
imum salary, and the minimum number of women are speci
fied by the facts nEmp(N), nSkill(N), budget(B), maxSal(M), 
and women(W). We then encode each property pj above by an 
aggregate atom A^ and enforce it by an integrity constraint 
containing not At. 

Intuitively, the disjunctive rule "guesses" whether an em
ployee is included in the team or not, while the five con
straints correspond one-to-one to the five requirements p i -
P5. Thanks to the aggregates the translation of the specifi
cations is surprisingly straightforward. The example high
lights the usefulness of representing both sets and multi
sets in our language (a multiset can be obtained by spec
ifying more than one variable in Vans of a symbolic set 
{Vars : Conj}). For instance, the encoding of p2 re
quires a set, as we want to count different skills; two em
ployees in the team having the same skill, should count 
once w.r.t. p-2- On the contrary, p3 requires to sum the ele
ments of a multiset; if two employees have the same salary, 
both salaries should be summed up for p3. This is ob
tained by adding the variable I to Vars. The valuation 
of {5a, 7 : c?7?p(7,5x,5fc, 5a) , in(1) } yields the set 5 = 
{ (5a, 7) : Sa is the salary of employee I in the team}. 
Then, the sum function is applied on the multiset of the first 
components Sa of the tuples (5a, 7) in 5 (see Section 2.2). 

Seating. We have to generate a sitting arrangement for 
a number of guests, with ra tables and n chairs per table. 
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Guests who like each other should sit at the same table; guests 
who dislike each other should not sit at the same table. 

Suppose that the number of chairs per table is specified 
by nChairs(X) and that person(P) and table(T) represent 
the guests and the available tables, respectively. Then, we can 
generate a seating arrangement by the following program: 

% Guess whether person P sits at tabic T or not. 
at(P, T) V not.at(P, T).-person(P), table(T). 
% The persons sitting at a table cannot exceed the chairs. 
:-table{T)rnChairs(C),not count{P : at(P,T)} C. 
% A person is seated at precisely one table; equivalent 
% to :-person(P),at(P9T),at{P, U),T U. 
:-peraon(P),not count{T : at(P,T)} = 1. 
% People who like each other should sit at the same table... 
:-like(Pl,P2),at(Pl1T)inotat(P2,T). 
% ...while people who dislike each other should not. 
:-dislikc(Ph P2),at(Pl,T),at(P2,T). 

4 Computational Complexity of DLP*4 

As for the classical nonmonotonic formalisms [Marek and 
Truszczyhski, 1991], two important decision problems, cor
responding to two different reasoning tasks, arise in DLP-4: 

(Brave Reasoning) Given a D L P 4 program V and a 
ground literal L, is L true in some answer set of p? 

(Cautious Reasoning) Given a DLP*4 program V and a 
ground literal L, is L true in all answer sets of V? 

The following theorems report on the complexity of the 
above reasoning tasks for propositional (i.e., variable-free) 
DLP*4 programs that respect the syntactic restrictions im
posed in Section 2 (safety and aggregate-stratification). Im-
portantly, it turns out that reasoning in DLP -4 does not bring 
an increase in computational complexity, which remains ex
actly the same as for standard DLP. (See [Dell'Armi et al., 
2003] for the proofs.) 

Theorem 5 Brave Reasoning on ground DLP*4 programs is 
-complete. 

Theorem 6 Cautious Reasoning on ground DLP-4 programs 
is -complete. 

5 Implementation Issues 
The implementation of DLP*4 required changes to all mod
ules of DLV. Apart from a preliminary standardization phase, 
most of the effort concentrated on the Intelligent Grounding 
and Model Generator modules. 

Standardization. After parsing, each aggregate A is trans
formed such that both guards are present and both and 

are set to . The conjunction Conj of the symbolic 
set of A is replaced by a single, new atom Aux and a rule 
Aux:-Conj is added to the program (the arguments of Aux 
being the distinct variables of Conj). 

Instantiation. The goal of the instantiator is to generate 
a ground program which has precisely the same answer sets 
as the theoretical instantiation Ground(V)f but is sensibly 
smaller. The instantiation proceeds bottom-up following the 
dependencies induced by the rules, and, in particular, respect
ing the ordering imposed by the aggregate-stratification. Let 
"H:—B,aggr" be a rule, where H is the head of the rule, 
B is the conjunction of the standard body literals, and aggr 

is an aggregate literal over a symbolic set 
First we compute an instantiation for the literals in B; 
this binds the global variables appearing in Aux. The (par
tially bound) atom is then matched against its exten
sion (since the bottom-up instantiation respects the stratifica
tion, the extension of is already available), all match
ing facts are computed, and a set of pairs  

is generated, where 
is a substitution for the local variables in such 

that is an admissible instance of (recall that 
DLV's instantiator produces only those instances of a predi
cate which can potentially become true [Faber et al, 1999a; 
Leone et al., . Also, we only store those elements of 
the symbolic set whose truth value cannot be determined yet 
and process the others dynamically, (partially) evaluating the 
aggregate already during instantiation. The same process is 
then repeated for all further instantiations of the literals in B. 

Example 7 Consider the following rule r: 

The standardization rewrites r to: 

Suppose that the instantiation of the rule for aux gener
ates 3 potentially true facts for aux: aux(l,a), aux(l,b), and 
aux(2,c). If the potentially true facts for q are </(l) and q(2), 
the following ground instances are generated:6 

Duplicate Sets Recognition. To optimize the evaluation, 
we have designed a hashing technique which recognizes mul
tiple occurrences of the same set in the program, even in dif
ferent rules, and stores them only once. This saves memory 
(sets may be very large), and also implies a significant per
formance gain, especially in the model generation where sets 
are frequently manipulated during the backtracking process. 
Example 8 Consider the following two constraints: 

Our technique recognizes that the two sets are equal, and 
generates only one instance which is shared by c1 and c2-

Now assume that both constraints additionally contain a 
standard literal p(X). In this case, c\ and c-2 have n instances 
each, where n is the number of facts for p(X). By means 
of our technique, each pair of instances of c1 and c2 shares a 
common set, reducing the number of instantiated sets by half. 

Model Generation. We have designed an extension of 
the Deterministic Consequences operator of the DLV system 
[Faber et al., 1999b] for DLP*4 programs. The new opera
tor makes both forward and backward inferences on aggre
gate atoms, resulting in an effective pruning of the search 
space. We have then extended the Dowling and Gallier al
gorithm [Dowling and Gallier, 1984] to compute a fixpoint of 

5 A ground atom A can potentially become true only if we have 
generated a ground instance with A in the head. 

6Note that a ground set contains only those aux atoms which are 
potentially true. 
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this operator in linear time using a multi-linked data struc
ture of pointers. Given a ground set T9 say,  

, this structure allows us to 
access T in O(1) whenever some Aux1 changes its truth 
value (supporting fast forward propagation); on the other 
hand, it provides direct access from T to each Aux1 atom 
(supporting fast backward propagation). 

6 Experiments and Benchmarks 
To assess the usefulness of the proposed DLP extension and 
evaluate its implementation, we compare the following two 
methods for solving a given problem: 
• DLV-4. Encode the problem in DLP-4 and solve it by using 
our extension of DLV with aggregates. 
• DLV. Encode the problem in standard DLP and solve it by 
using standard DLV. 

To generate DLP encodings from DLP-4 encodings, suit
able logic definitions of the aggregate functions are employed 
(which are recursive for count, sum, and times). 

We compare these methods on two benchmark problems: 
Time Tabling is a classical planning problem. In partic

ular, we consider the problem of planning the timetable of 
lectures which some groups of students have to take. We 
consider a number of real-world instances at our University, 
where instance k deals with k groups. 

Seating is the problem described in Section 3. We con
sider 4 (for small instances) or 5 (for larger instances) seats 
per table, with increasing numbers of tables and persons (with 
numPersons — numSeats * numTables). For each prob
lem size (i.e., seats/tables configuration), we consider classes 
with different numbers of like resp. dislike constraints, where 
the percentages are relative to the maximum number of like 
resp. dislike constraints such that the problem is not over-
constrained7. In particular, we consider the following classes: 
-) no like/dislike constraints at all; -) 25% like constraints; 
-) 25% like and 25% dislike constraints; -) 50% like con
straints; -) 50% like and 50% dislike constraints. For each 
problem size, we have randomly generated 10 instances for 
each class above. 

For Seating we use the DLP-4 encoding reported in Sec
tion 3; all encodings and benchmark data are also avail
able on the web at h t t p : / / w w w . d l v s y s t e m . c o m / 
e x a m p l e s / i j c a i 0 3 . z i p . 

Figure 1: Experimental Results for Timetabling 

7Beyond these maxima there is trivially no solution. 

Figure 2: Experimental Results for Seating 

We ran the benchmarks on AMD Athlon 1.2 machines with 
512MB of memory, using FreeBSD 4.7 and GCC 2.95. We 
have allowed a maximum running time of 1800 seconds per 
instance and a maximum memory usage of 256MB. Cumu
lated results are provided in Figures 1 and 2. In particular, for 
Timetabling we report the execution time and the size of the 
residual ground instantiation (the total number of atoms oc
curring in the instantiation, where multiple occurrences of the 
same atom are counted).8 For Seating, the execution time is 
the average running time over the instances of the same size. 
A "-" symbol in the tables indicates that the corresponding 
instance (some of the instances of that size, for Seating) was 
not solved within the allowed time and memory limits. 

On both problems, DLV-4 clearly outperforms DLV. On 
Timetabling, the execution time of DLV-4 is one order of 
magnitude lower than that of DLV on all problem instances, 
and DLV could not solve the last instances within the allowed 
memory and time limits. On Seating, the difference becomes 
even more significant. DLV could solve only the instances 
of small size (up to 16 persons - 4 tables, 4 seats); while 
DLV-4 could solve significantly larger instances in a reason
able time. The information about the instantiation sizes pro
vides an explanation for such a big difference between the 
execution times of DLV and DLV*4. Thanks to the aggre
gates, the DL?A encodings of Timetabling and Seating are 
more succinct than the corresponding encodings in standard 
DLP; this succinctness is also reflected in the ground instan
tiations of the programs. Since the evaluation algorithms are 
then exponential (in the worst case) in the size of the instan
tiation, the execution times of DLV-4 turn out to be much 
shorter than the execution times of DLV. 

7 Related Works 
Aggregate functions in logic programming languages ap
peared already in the 80s, when their need emerged in de
ductive databases like LDL [Chimenti et al, 1990] and were 
studied in detail, cf. [Ross and Sagiv, 1997; Kemp and Ra-
mamohanarao, 1998]. However, the first implementation in 
Answer Set Programming, based on the Smodels system, is 
recent [Simons et ai, 2002]. 

Comparing DLP-4 to the language of Smodels, we observe 
a strong similarity between cardinality constraints there and 

count. Also sum and weight constraints in Smodels are 
8 Note that also atoms occurring in the sets of the aggregates are 

counted for the instantiation size. 
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similar in spirit. Indeed, the DLpA encodings of both Team 
Building and Seating can be easily translated to Smodels' lan-
guage. However, there are some relevant differences. For 
instance, in DLP*4 aggregate atoms can be negated, while 
cardinality and weight constraint literals in Smodels cannot. 
Smodels, on the other hand, allows for weight constraints in 
the heads of rules, while DLP"4 aggregates cannot occur in 
heads. (The presence of weight constraints in heads is a pow
erful KR feature; however, it causes the loss of some seman
tic property of nonmonotonic languages [Marek and Rem-
mel, 2002].) Observe also that DLP*4 aggregates like min, 

max, and t imes do not have a counterpart in Smodels. 
Moreover, DLP-4 provides a general framework where fur
ther aggregates can be easily accommodated (e.g., any and 

avg are already under development). Furthermore, note 
that symbolic sets of DLP*4 directly represent pure (math
ematical) sets, and can also represent multisets rather nat
urally (see the discussion on Team Building in Section 3). 
Smodels weight constraints, instead, work on multisets, and 
additional rules are needed to encode pure sets; for instance. 
Condition p>2 of Team Building cannot be encoded directly 
in a constraint, but needs the definition of an extra predicate. 
A positive aspect of Smodels is that, thanks to stricter safety 
conditions (all variables are to be restricted by domain pred
icates), it is able to deal with recursion through aggregates, 
which is forbidden in DLP^ . Finally, note that DLP-4 deals 
with sets of terms, while Smodels deals with sets of atoms. 
As far as the implementation is concerned, also Smodels is 
endowed with advanced pruning operators for weight con
straints, which are efficiently implemented; we are not aware, 
though, of techniques for the automatic recognition of dupli
cate sets in Smodels. 

DLP-4 also seems to be very similar to a special case of the 
semantics for aggregates discussed in [Gelfond, 2002], which 
we are currently investigating. 

Another interesting research line uses 4-valued logics and 
approximating operators to define the semantics of aggregate 
functions in logic-based languages [Denecker et aL, 2001; 
2002; Pelov, 2002]. These approaches are founded on very 
solid theoretical grounds, and appear very promising, as they 
could provide a clean formalization of a very general frame-
work for arbitrary aggregates in logic programming and non
monotonic reasoning, where aggregate atoms can also "pro
duce" new values (currently, in both DLP-4 and Smodels the 
guards of the aggregates need to be bound to some value). 
However, these approaches sometimes amount to a higher 
computational complexity [Pelov, 2002], and there is no im
plementation available so far. 

8 Conclusion 
We have proposed DLP-4, an extension of DLP by aggregate 
functions, and have implemented DLP*4 in the DLV system. 
On the one hand, we have demonstrated that the aggregate 
functions increase the knowledge modeling power of DLP, 
supporting a more natural and concise knowledge represen
tation. On the other hand, we have shown that aggregate 
functions do not increase the complexity of the main rea
soning tasks. Moreover, the experiments have confirmed that 

the succinctness of the encodings employing aggregates has 
a strong positive impact on the efficiency of the computation. 

Future work wil l concern the introduction of further aggre
gate operators, the relaxation of the syntactic restrictions of 
DLP A , and the design of further optimization techniques and 
heuristics to improve the efficiency of the computation. 

We thank the anonymous reviewers for their thoughtful 
comments and suggestions for improvements of this paper. 
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