
Abstract 

In this paper we present a novel method that 
fuses the ensemble meta-techniques of Stack-
ing and Dynamic Integration (DI) for regres-
sion problems, without adding any major 
computational overhead. The intention of the 
technique is to benefit from the varying per-
formance of Stacking and DI for different 
data sets, in order to provide a more robust 
technique. We detail an empirical analysis of 
the technique referred to as weighted Meta –
Combiner (wMetaComb) and compare its per-
formance to Stacking and the DI technique of 
Dynamic Weighting with Selection. The em-
pirical analysis consisted of four sets of ex-
periments where each experiment recorded 
the cross-fold evaluation of each technique for 
a large number of diverse data sets, where 
each base model is created using random fea-
ture selection and the same base learning al-
gorithm. Each experiment differed in terms of 
the latter base learning algorithm used. We 
demonstrate that for each evaluation, wMeta-
Comb was able to outperform DI and Stack-
ing for each experiment and as such fuses the 
two underlying mechanisms successfully. 

 

1 Introduction 
The objective of ensemble learning is to integrate a number 
of base learning models in an ensemble so that the generali-
zation performance of the ensemble is better than any of the 
individual base learning models. If the base learning models 
are created using the same learning algorithm, the ensemble 
learning schema is homogeneous otherwise it is heterogene-
ous. Clearly in the former case, it is important that the base 
learning models are not identical, and theoretically it has 
been shown that for such an ensemble to be effective, it is 

important that the base learning models are sufficiently ac-
curate and diverse in their predictions [Krogh & Vedelsby, 
1995], where diversity in terms of regression is usually 
measured by the ambiguity or variance in their predictions. 
To achieve this in terms of homogeneous learning, methods 
exist that either manipulate, for each model, the training 
data through instance or feature sampling methods or ma-
nipulate the learning parameters of the learning algorithm. 
Brown et al.[2004] provide a recent survey of such ensem-
ble generation methods. 
Having generated an appropriate set of diverse and suffi-
ciently accurate models, an ensemble integration method is 
required to create a successful ensemble. One well–known 
approach to ensemble integration is to combine the models 
using a learning model itself. This process, referred to as 
Stacking [Wolpert, 1992], forms a meta-model created from 
a meta-data set. The meta-data set is formed from the pre-
dictions of the base models and the output variable of each 
training instance. As a consequence, for each training in-
stance ,I x y=< >  belonging to training set D , meta-
instance 1̂

ˆ( ),.. ( ),NMI f x f x y=< > is formed, where ˆ ( )if x is 
the prediction of base model , 1..i i N= where N is the size of 
the ensemble. To ensure that the predictions are unbiased, 
the training data is divided by a J -fold cross-validation 
process into J subsets, so that for each iteration of a cross-
validation process, one of the subsets is removed from the 
training data and the models are re-trained on the remaining 
data. Predictions are then made by each base model on the 
held out sub-set.  The meta-model is trained on the accumu-
lated meta-data after the completion of the cross validation 
process and each of the base models is trained on the whole 
training data. Breiman[1996b] showed the successful appli-
cation of this method for regression problems using a linear 
regression method for the meta-model where the coeffi-
cients of the linear regression model were constrained to be 
non-negative. However there is no specific requirement to 
use linear regression as the meta-model [Hastie et al., 2001] 
and other linear algorithms have been used particularly in 
the area of classification [Seewald, 2002, Džeroski, & 
Ženko, 2004]. 
A technique which appears at first very similar in scope to 
Stacking (and can be seen as a variant thereof) is that pro-
posed by Tsymbal et al.[2003] referred to as Dynamic Inte-
gration. This technique also runs a J-fold cross validation 
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process for each base model, however the process by which 
it creates and uses meta-data is different. Each meta-
instance consists of the following format 

1, ( ),.., ( ),Nx Err x Err x y< >  where ( )iErr x  is the predic-
tion error made by each base model for each training in-
stance ,x y< > . Rather than forming a meta-model based 
on the derived meta-data, Dynamic Integration uses a k-
nearest neighbour (k-NN) lazy model to find the nearest 
neighbours based on the original instance feature space 
(which is a subspace in the meta-data) for a given test in-
stance. It then determines the total training error of the base 
models recorded for this meta-nearest neighbour set. The 
level of error is used to allow the dynamic selection of one 
of the base models or an appropriate weighted combination 
of all or a select number of base models to make a predic-
tion for the given test instance. Tsymbal et al. [2003] de-
scribes three Dynamic Integration techniques for classifica-
tion which have been adapted for regression problems 
[Rooney et al., 2004]. In this paper we consider one variant 
of these techniques referred to as Dynamic Weighting with 
Selection (DWS) which applies a weighting combination to 
the base models based on their localized error, to make a 
prediction, but excludes first those base models that are 
deemed too inaccurate to be added to the weighted combina-
tion. 
A method of injecting diversity into a homogeneous ensem-
ble is to use random subspacing [Ho, 1998a, 1998b]. Ran-
dom subspacing is based on the process whereby each base 
model is built with data with randomly subspaced features. 
Tsymbal et al. [2003] revised this mechanism so that a vari-
able length of features are randomly subspaced. They shown 
this method to be effective in creating ensembles that were 
integrated using DI methods for classification. 
It has been shown empirically that Stacking and Dynamic 
Integration based on integrating models, generated using 
random subspacing, are sufficiently different from each 
other in that they can give varying generalization perform-
ance on the same data sets [Rooney et al., 2004]. The main 
computational requirement in both Stacking and Dynamic 
Integration, is the use of cross-validation of the base models 
to form meta-data. It requires very little additional computa-
tional overhead to propose an ensemble meta-learner that 
does both in one cross validation of the ensemble base mod-
els and as a consequence, is able to create both a Stacking 
meta-model and a Dynamic Integration meta-model, with 
the required knowledge for the ensemble meta-learner to use 
both models to form predictions for test instances. The focus 
of this paper is on the formulation and evaluation of such an 
ensemble meta-learner, referred to as weighted Meta-
Combiner (wMetaComb). We investigated whether wMeta-
Comb will on average outperform both Stacking for regres-
sion (SR) and DWS for a range of data sets and a range of 
base learning algorithms used to generate homogeneous 
randomly subspaced models. 

2 Methodology 
In this section, we describe in detail the process of wMeta-
Comb. The training phase of wMetaComb is shown in Fig-
ure 1..  

Algorithm : wMetaComb: Training Phase
Input: D
Output: ˆ SRf , ˆ DIf , , 1..î i Nf =

(* step 1 *) 
partition D  into J–fold partitions 1..i JD =

initialise meta-data set SRMD = ∅
initialise meta-data set DIMD = ∅
For i = 1..J-2 

\train i

test i

D D D
D D

=
=

 build N learning models , 1..î i Nf =  using trainD

For each instance , y< >x in testD

  Form meta-instance SRMI : 1̂
ˆ( ),.., ( ),Nf f y< >x x

  Form meta-instance DIMI : 1, ( ),.., ( ),NErr Err y< >x x x

  Add SRMI to SRMD
  Add DIMI to DIMD

 EndFor
Endfor
Build SR meta-model ˆ SRf using the meta-data set SRMD

Build  DI meta-model ˆ DIf using the meta-data set DIMD
(* step 2 *) 
i=J 

test iD D=
Determine SRTotalErr and DITotalErr using testD
(* step 3 *) 
i = J-1 

\train i

test i

D D D
D D

=
=

 build N learning models , 1..î i Nf =  using trainD
For each instance , y< >x in testD

 Form meta-instance SRMI : 1̂
ˆ( ),.., ( ),Nf f y< >x x

 Form meta-instance DIMI : 1, ( ),.., ( ),NErr Err y< >x x x

 Add SRMI to SRMD
 Add DIMI to DIMD

EndFor
Retrain the , 1..î i Nf =  on D

Build SR meta-model ˆ SRf using the meta-data set SRMD

Build DI meta-model ˆ DIf using the meta-data set DIMD

Figure 1. Training Phase of wMetaComb 

The first step in the training phase of wMetaComb consists 
of building SR and DI meta-models on J-1 folds of the 
training data (step 1). The second step involves testing the 
meta-models using the remaining training fold, as an indica-
tor of their potential generalization performance.  It is im-
portant to do this as even though models are not created 
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using the complete meta-data, they are tested using data that 
they are not trained on, in order to give a reliable estimate of 
their test performance. The performance of the meta-models 
is recorded by their total absolute error, SRTotalError and 

DITotalError within step 2. The meta-models are then re-
built using the entire meta-data completed by step 3. The 
computational overhead of wMetaComb in comparison to 
SR by itself centres only on the cost of training the addi-
tional meta-model. However as the additional meta-model is 
based on a lazy nearest neighbour learner, this cost is trivial. 
The prediction made by wMetaComb is made by a simple 
weighted combination of its meta-models based on their 
total error performance determined in step 2. Denote 

,SR DITotalErr TotalError TotalError=< > . The individual 
weight for each meta-model is determined by finding the 
normalized error for each meta-model: 
 

1..2
/i i i

i
normerror TotalError TotalError

=

=   
 

A normalized weighting  for each meta-model is given by: 
 

inormerror
T

imw e
−

=  (1) 
 

 

_ i
i

i
i

mw
norm mw

mw
=  (2) 

 
Equation 1 is influenced by a weighting mechanism that 
Wolpert & Macready [1996] proposed for combining base 
models generated by stochastic process such as used in 
Bagging  [Breiman,1996a]. 
The weighting parameter T determines how much relative 
influence to give to each meta-model based on their normal-
ized error e.g. suppose 1 0.4normError = and 

2 0.6normError = , then Table 1 gives the normalized 
weight values for different values of T . This indicates that a 
low value of T  will give large imbalance to the weighting, 
whereas a high value of T  almost equally weights the meta-
learners regardless of their difference in normalized errors. 
 

T 1_norm mw  2_norm mw  
0.1 0.88 0.12 
1.0 0.55 0.45 
10.0 0.505 0.495 

 
Table 1. The effect of the weighting parameter 
 
Based on these considerations, we applied the following 
heuristic function for the setting of T , which increases the 
imbalance in the weighting dependent on how great the 
normalized errors differ. 

1 2| |
0.01

normError normErrorT −=  (3) 

 
wMetaComb forms a prediction for a test instance x by the 
following combination of the predictions made by the meta-
models: 
 
 

1 2
ˆ ˆ_ * ( ) _ . ( )SR DInorm mw f x norm mw f x+

 

3 Experimental Evaluation and Analysis 
In these experiments, we investigated the performance of 
wMetaComb in comparison to SR and DWS. The work was 
carried out based on appropriate extensions to the WEKA 
environment, such as the implementation of DWS. The en-
semble sets consisted of 25 base homogeneous models 
where the data for each base model was randomly sub-
spaced [Tsymbal et al., 2003]. Note that random subspacing 
was a pseudo-random process so that a feature sub-set gen-
erated for each model i in an ensemble set is the same for all 
ensemble sets created using different base learning algo-
rithms and the same data set. The meta-learner for SR and 
the Stacking component within wMetaComb was based on 
the model tree M5 [Quinlan, 1992], as this has a larger hy-
pothesis space than Linear Regression. The number of near-
est neighbours for DWS k-NN meta-learner was set to 15. 
The performance of DWS can be affected by the size of 
k for particular data sets, but for this particular choice of 
data sets, previous empirical analysis had shown that the 
value of 15, gave overall a relatively strong performance. 
The value of J during the training phase of each meta-
technique was set to 10. 
In order to evaluate the performance of the different ensem-
ble techniques, we chose 30 data sets available from the 
WEKA environment [Witten & Frank, 1999]. These data 
sets represent a number of synthetic and real-world prob-
lems from a variety of different domains, have a varying 
range in their attribute sizes and many contain a mixture of 
both discrete and continuous attributes. Data sets which had 
more than 500 instances, were sampled without replacement 
to reduce the size of the data set to a maximum of 500 in-
stances, in order to make the evaluation computationally 
tractable. Any missing values in the data set were replaced 
using a mean or modal technique. The characteristics of data 
sets are shown in Table 2. 
We carried out a set of four experiments, where each ex-
periment differed purely in the base learning algorithm de-
ployed to generate base models in the ensemble. Each ex-
periment calculated the relative root mean squared error 
(RRMSE) [Setiono et al., 2002] of each ensemble technique 
for each data set based on a 10 fold cross validation meas-
ure. 
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Number of  
input 
Attributes 

Data set Original  
Data set 
size 

Data set 
size in  
experi-
ments Con-

tinuous 
Dis-
crete 

Total 

abalone 4177  500 8 0 8 
autohorse 205 205 15 10 25 
autoMpg 398 398 5 3 8 
autoprice 159 159 15 10 25 
auto93 93 93 16 5 21 
bank8FM 8192 500 8 0 8 
bank32nh 8192 500 32 0 32 
bodyfat 252 252 14 0 14 
breastTumor 286 286 1 8 9 
cal_housing 20640 500 8 0 8 
cloud 108 108 4 2 6 
cpu 209 209 6 1 7 
cpu_act 8192 500 21 0 21 
cpu_small 8192  500 12 0 12 
echomonths 130 130 6 3 9 
elevators 16559 500 18 0 18 
fishcatch 158 158 5 2 7 
friedman1 40768  500 10 0 10 
housing 506 500 13 0 13 
house_8L 22784 500 8 0 8 
house_16H 22784  500 16 0 16 
lowbwt 189 189 7 2 9 
ma-
chine_cpu 

209 209 6 0 6 

pollution 60 60 15 0 15 
pyrim 74 74 27 0 27 
sensory 576  500 0 11 11 
servo 167 167 4 0 4 
sleep 62 62 7 0 7 
strike 625 500 5 1 6 
veteran 137 137 7 0 7 

Table 2. The data sets’ characteristics 

The RRMSE is a percentage measure. By way of compari-
son of the ensemble approaches in general, we also deter-
mined the RRMSE for a single model built on the whole 
unsampled data, using the same learning algorithm as used 
in the ensemble base models. We repeated this evaluation 
four times, each time using a different learning algorithm to 
generate base models. The choice of learning algorithms 
was based on a choice of simple and efficient methods in 
order to make the study computationally tractable, but also 
to have representative range of methods with different learn-
ing hypothesis spaces in order to determine whether 
wMetaComb was a robust method independent of the base 
learning algorithm deployed.  The base learning algorithms 
used for the four experiments were 5 nearest neighbours (5-
NN), Linear Regression (LR), Locally weighted regression 
[Atkeson et al., 1997] and the model tree learner M5. 
The results of the evaluation were assessed by performing a 
2 tailed paired t test (p=0.05) on the cross fold RRMSE for 
each technique in comparison to each other for each data 
set. The results of the comparison between one technique A 
and another B were then summarised in the form 
wins:losses:ties (ASD)  where wins is a count of the number 

of data sets where technique A outperformed technique B 
significantly, losses is a count of the number of data sets 
where technique B outperformed technique A significantly 
and ties a count where there was no significant difference. 
The significance gain is the difference in the number of 
wins and the number of losses. If this zero or less, no gain 
was shown. If the gain is less than 3 this is indicative of 
only a slight improvement. 
We determined the average significance difference (ASD)
between the RRMSE of the two techniques, averaged over 
wins losses+ data sets only where a significant difference 
was shown. If technique A outperformed B as shown by the 
significance ratio, the ASD gave us a percentage measure of 
the degree by which A outperformed B (if technique A was 
outperformed by B, then the ASD value is negative). The 
ASD by itself of course has no direct indication of the per-
formance of the techniques and is only a supplementary 
measure. A large ASD does not indicate that technique A 
performed considerably better than B if the difference in the 
number of wins to losses was small. Conversely even if the 
number of wins was much larger than the number of losses 
but the ASD was small, this reduces the impact of the result 
considerably. This section is divided into a discussion of the 
summary of results for each individual base learning algo-
rithm then a discussion of the overall results.  

3.1 Base Learner: k-NN 

Table 3 shows a summary of the results for the evaluation 
when the base learning algorithm was 5-NN. Clearly all the 
ensemble techniques strongly outperformed single 5-NN 
whereby in terms of significance alone, wMetaComb shown 
the largest improvement with a gain of 22. Although SR 
showed fewer data sets with significant improvement, it had 
a greater ASD than wMetaComb. wMetaComb outper-
formed DWS with a gain of 7, and showed a small im-
provement over SR, with a gain of 3. SR showed a signifi-
cance gain of only 1 over DWS. 

Technique 5-NN SR DWS wMetaComb 

5-NN  0:11:19  
(-16.07) 

0:20:10  
(-12.28)  

0:22:8 
 (-14.47) 

SR 11:0:19 
 (16.07) 

 3:2:25 
 (3.82) 

0:3:27  
(-6.8) 

DWS 20:0:10 
 (12.28) 

2:3:25 
 (-3.82) 

 1:8:21  
(-5.28) 

wMetaComb 22:0:8  
(14.47) 

3:0:27  
(6.8) 

8:1:21 
 (5.28) 

Table 3. Comparison of methods when base learning algorithm 
was 5-NN 
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3.2 Base Learner: LR
Table 4 shows that all ensembles techniques outperformed 
single LR, with wMetaComb showing the largest 
improvement with a gain of 13 and an ASD of 11.99. 
wMetaComb outperformed SR and DWS with a larger 
improvement shown in comparison to DWS than to SR both 
in terms of significance and ASD. SR outperformed DWS 
with a significance gain of 7 and ASD of 5.1. 

Technique LR SR DWS wMetaComb 

LR  2:10:18 
(-11.38) 

1:11:18  
(-5.56) 

0:13:17 
 (-11.99) 

SR 10:2:18  
(11.38) 

 11:4:15  
(5.1) 

0:5:25  
(-5.58) 

DWS 11:1:18  
(5.56) 

4:11:15  
(-5.1) 

 3:13:14  
(-6.02) 

wMetaComb 13:0:17  
(11.99) 

5:0:25  
(5.58) 

13:3:14  
(6.02) 

Table 4. Comparison of methods when base learning algorithm 
was LR 

3.3 Base Learner: LWR 
Table 5 shows that all ensembles techniques outperformed 
single LWR, with wMetaComb showing the largest 
improvement with a significance gain of 16. wMetaComb 
outperformed SR and DWS with a larger improvement 
shown over DWS than SR in terms of significance and 
ASD.  SR outperformed DWS with a significance gain of 4 
and  an ASD of 6.24. 

Technique LWR SR DWS wMetaComb 

LWR  1:9:20 
(-13.81) 

0:16:14 
(-12.28) 

0:16:14 
(-12.28) 

SR 9:1:20 
 (13.81) 

 6:2:22  
(6.24) 

0:5:25 
(-10.48) 

DWS 16:0:14 
 (12.28) 

2:6:22  
(-6.24) 

 0:9:21 
 (-8.28) 

wMetaComb 16:0:14 
 (15.91) 

5:0:25  
(10.48) 

9:0:21 
 (8.28) 

Table 5. Comparison of methods when base learning algorithm 
was LWR 

Table 5 shows that all ensembles techniques outperformed 
single LWR, with wMetaComb showing the largest 
improvement with a significance gain of 16. wMetaComb 
outperformed SR and DWS with a larger improvement 
shown over DWS than SR in terms of significance and 
ASD.  SR outperformed DWS with a significance gain of 4 
and ASD of 6.24. 

3.4 Base Learner: M5 

Technique M5 SR DWS wMetaComb 

M5  3:1:26 
 (4.4) 

1:6:23  
(-3.45) 

0:8:22  
(-4.51) 

SR 1:3:26 
 (-4.4) 

 2:6:22 
 (-2.62) 

0:11:19 
 (-4.48) 

DWS 6:1:23 
 (3.45) 

6:2:22 
 (2.62) 

 0:6:24  
(-3.53) 

wMetaComb 8:0:22 
 (4.51) 

11:0:19 
 (4.48) 

6:0:24 
 (3.53) 

Table 6. Comparison of methods when base learning algorithm 
was M5 

Table 6 shows a much reduced performance for the ensem-
bles in comparison to the single model, when the base learn-
ing algorithm was M5. In fact, SR showed no improvement 
over M5, and wMetaComb and DWS although they im-
proved on M5 in terms of significance did not show an ASD 
as large as for the previous learning algorithms. The reduced 
performance with M5 is indicative that in the case of certain 
learning algorithms, random subspacing by itself is not able 
to generate sufficiently accurate base models, and needs to 
be enhanced using search approaches that improve the qual-
ity of ensemble members such as considered in [Tsymbal et 
al., 2005].  wMetaComb showed improvements over SR 
and to a lesser degree both in terms of significance and ASD 
values. 
Overall, it can be seen that wMetaComb gave the strongest 
performance of the ensembles for  3 out of 4 base learning 
algorithms (5-NN, LR, M5) in comparison to the single 
model, in terms of its significance gain, and tied in compari-
son to DWS for LWR. For 3 out of the 4 learning algo-
rithms (LR, LWR, M5), wMetaComb also had the highest 
ASD compared to the single model. wMetaComb outper-
formed SR for all learning algorithms. The largest signifi-
cant improvement over SR was recorded with M5 with a 
significance gain of 11, and the largest ASD in comparison 
to SR was recorded with LWR of 10.48. The lowest signifi-
cant improvement over SR was recorded with 5-NN, LR, 
and LWR with a significant gain of 5, and lowest ASD of 
4.48 with M5. 
wMetaComb outperformed DWS for all four base learning 
algorithms. The degree of improvement was larger in com-
parison to DWS than SR. The largest significant improve-
ment over DWS was shown with LR with a significance 
gain of 10 and the largest ASD of 8.28 with LWR. The low-
est improvement was shown with M5 both in terms of gain 
and ASD which were 6 and 3.53 respectively. In effect, 
wMetaComb was able to fuse effectively the overlapping 
expertise of the two meta-techniques. This was seen to be 
case independent of the learning algorithm employed. In 
addition, wMetaComb provided benefit whether overall for 
a given experiment, SR was stronger than DWS or not (as 
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was the case with LR and LWR, but not M5), indicating the 
general robustness of the technique. 

4 Conclusions 
We have presented a technique called wMetaComb that 
merges the technique of Stacking for regression and Dy-
namic integration for regression, and showed that it was 
successfully able to benefit from the individual meta-
techniques’ often complementary expertise for different data 
sets. This was demonstrated based on 4 sets of experiments 
each using different base learning algorithms to generate 
homogeneous ensemble sets. It was shown that for each 
experiment, wMetaComb outperformed Stacking and the 
Dynamic Integration technique of Dynamic Weighting with 
Selection. In future, we intend to generalize the technique so 
as to allow the combination of more than two meta-
ensemble techniques.  In this, we may consider combina-
tions of Stacking using different learning algorithms or 
other Dynamic integration combination methods.
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