
Abstract
We consider the problem of tactical assault plan-
ning in real-time strategy games where a team of
friendly agents must launch an assault on an ene-
my. This problem offers many challenges including
a highly dynamic and uncertain environment, mul-
tiple agents, durative actions, numeric attributes,
and different optimization objectives. While the
dynamics of this problem are quite complex, it is
often possible to provide or learn a coarse simula-
tion-based model of a tactical domain, which
makes Monte-Carlo planning an attractive ap-
proach. In this paper, we investigate the use of
UCT, a recent Monte-Carlo planning algorithm for
this problem. UCT has recently shown impressive
successes in the area of games, particularly Go, but
has not yet been considered in the context of multi-
agent tactical planning. We discuss the challenges
of adapting UCT to our domain and an implemen-
tation which allows for the optimization of user
specified objective functions. We present an evalu-
ation of our approach on a range of tactical assault
problems with different objectives in the RTS
game Wargus. The results indicate that our planner
is able to generate superior plans compared to sev-
eral baselines and a human player.

1 Introduction
Real-time strategy (RTS) games involve multiple teams
acting in a real-time environment with the goal of gaining
military or territorial superiority over one another. To
achieve this goal, a player typically must address two key
RTS sub-problems, resource production and tactical plan-
ning. In resource production, the player must produce (or
gather) various raw materials, buildings, civilian and mili-
tary units, to improve their economic and military power. In
tactical planning, a player uses military units to gain territo-
ry and defeat enemy units. A game usually involves an ini-
tial period where players rapidly build their economy via
resource production, followed by a period where those re-
sources are exploited for offensive military assaults and
defense. Thus, one of the keys to overall success is to form

effective tactical assault plans, in order to most effectively
exploit limited resources to optimize a battle objective.
 In this paper, we focus on automated planning for the
RTS tactical assault problem. In particular, the goal is to
develop an action selection mechanism that can control
groups of military units to conduct effective offensive as-
saults on a specified set of enemy forces. This type of as-
sault is common after a player has built up forces and ga-
thered information about where enemy troops are located.
Here the effectiveness of an assault is measured by an ob-
jective function, perhaps specified by a user, which might
ask the planner to minimize the time required to defeat the
enemy or to destroy the enemy while maximizing the re-
maining health of friendly units at the end of the battle.
Such a mechanism would be useful as a component for
computer RTS opponents and as an interface option to hu-
man players, where a player need only specify the tactical
assault objective rather than figure out how to best achieve
it and then manually orchestrate the many low-level actions.
 In addition to the practical utility of such a mechanism,
RTS tactical assault problems are interesting from an AI
planning perspective as they encompass a number of chal-
lenging issues. First, our tactical battle formulation involves
temporal actions with numeric effects. Second, the problems
typically involve the concurrent control of multiple military
units. Third, performing well requires some amount of spa-
tial-temporal reasoning. Fourth, due to the highly dynamic
environment and inaccurate action models, partly due to the
unpredictable enemy response, an online planning mechan-
ism is required that can quickly respond to changing goals
and unexpected situations. Finally, an effective planner
should be able to deal with a variety of objective functions
that measure the goodness of an assault.
 The combination of the above challenges makes most
state-of-the-art planners inapplicable to RTS tactical assault
problems. Furthermore, there has been little work on specia-
lized model-based planning mechanisms for this problem,
with most games utilizing static script-based mechanisms.
One exception, which has shown considerable promise, is
the use of Monte-Carlo planning for tactical problem
[Chung et al., 2005; Sailer et al., 2007]. While these ap-
proaches can be more flexible and successful than scripting,
they are still constrained by the fact that they rely on do-
main-specific human knowledge, either in the form of a set

UCT for Tactical Assault Planning in Real-Time Strategy Games

Radha-Krishna Balla and Alan Fern
School of EECS, Oregon State University

Corvallis, OR, 97331, USA
{balla, afern}@eecs.oregonstate.edu

40

of human provided plans or a state evaluation function. It is
often difficult to provide this knowledge, particularly when
the set of run-time goals can change dynamically.
 In this work, we take a step toward planning more flexi-
ble behavior, where the designer need not specify a set of
plans or an evaluation function. Rather, we need only to
provide the system with a set of simple abstract actions (e.g.
join unit groups, group attack, etc.) which can be composed
together to arrive at an exponentially large set of potential
assault plans. In order to deal with this increased flexibility
we draw on a recent Monte-Carlo planning technique, UCT
[Kocsis and Szepesvari, 2006], which has shown impressive
success in a variety of domains, most notably the game of
Go [Gelly and Wang, 2006; Gelly and Silver, 2007]. UCT’s
ability to deal with the large state-space of Go and implicitly
carry out the necessary spatial reasoning, makes it an inter-
esting possibility for RTS tactical planning. However, there
are a number of fundamental differences between the RTS
and Go domains, which makes its applicability unclear. The
main contribution of this paper is to describe an abstract
problem formulation of tactical assault planning for which
UCT is shown to be very effective compared to a number of
baselines across a range of tactical assault scenarios. This is
a significant step toward arriving at a full model-based
planning solution to the RTS tactical problem.

2 The RTS Tactical Assault Domain
In general, the tactical part of RTS games involves both
planning about defensive and offensive troop movements
and positioning. The ultimate goal is generally to complete-
ly destroy all enemy troops, which is typically achieved via
a series of well timed assaults while maintaining an ade-
quate defensive posture. In this paper, we focus exclusively
on solving RTS tactical assault problems, where the input is
a set of friendly and enemy units along with an optimization
objective. The planner must then control the friendly troops
in order to best optimize the objective. The troops may be
spread over multiple locations on the map and are often or-
ganized into groups. Typical assault objectives might be to
destroy the selected enemy troops as quickly as possible or
to destroy the enemy while losing as little health as possible.
Note that our focus on the assault problem ignores other
aspects of the full RTS tactical problem such as developing
a strong defensive stance and selecting the best sequence of
assaults to launch. Thus, we view our planner as just one
component to be called by a human or high-level planner.
 Successful tactical assault planning involves reasoning
about the best order of attacks on the enemy groups and the
size of the friendly groups with which to launch each of the
attacks, considering the attrition and time taken for each of
the individual battles. This presents an interesting and chal-
lenging planning problem where we need to deal with a
large state space involving durative actions that must be
executed concurrently. To help manage this complexity, we
focus on an abstract version of the tactical assault problem,
where we reason about proximity-based groups of units in-
stead of individual units. This abstraction is very much in
line with how typical assaults are fought in RTS games,

where tactics are controlled at a group level. Thus, the ab-
stract state space used by our planner is in terms of proper-
ties of the sets of enemy and friendly groups, such as health
and location. The primary abstract actions we consider are
joining of groups and attacking an enemy group. The micro-
management of individual agents in the groups under each
abstract action is left to the default AI of the game engine.

3 Related Work
Monte Carlo sampling techniques have been used suc-

cessfully to produce action strategies in board games like
bridge, poker, Scrabble and Go. The main difference be-
tween these games and our domain is that all these games
are turn-based with instantaneous effects, whereas actions in
the RTS domain are simultaneous and durative. [Chung et
al., 2005] used a form of Monte Carlo simulation for RTS
tactical planning with considerable success. At each plan-
ning epoch the approach performed limited look-ahead to
select an action by Monte Carlo simulation of random action
sequences followed by the application of an evaluation
function. Unfortunately this is highly reliant on the availa-
bility of a quality evaluation function, which makes the ap-
proach more challenging to bring to a new domain and less
adaptable to new goal conditions.

Another Monte Carlo approach for RTS tactical problems
[Sailer et al., 2007] assume a fixed set of strategies, and at
each step use simulation to estimate the values of various
combinations of enemy and friendly strategies. These results
are used to compute a Nash-policy in order to select a strat-
egy for execution. A weakness of this approach is its restric-
tion to only consider strategies in the predefined set, which
would need to be constructed on a per-domain basis. Com-
parably, our approach does not require either a strategy set
or an evaluation function, but rather only that a set of ab-
stract actions are provided along with the ability to simulate
their effects. However, unlike their approach, our planner
assumes that the enemy is purely reactive to our assault,
whereas their approach reasons about the offensive capacity
of the enemy, though restricted to the provided set of strate-
gies. This is not a fundamental restriction for our planner as
it can easily incorporate offensive actions of the enemy into
the Monte Carlo process, likely at a computation cost.

Recent work has also focused on model-based planning
for the resource-production aspect of RTS games [Chan et
al., 2007]. While that work provides mechanisms for real-
time planning with temporal, concurrent actions and numer-
ic state properties, it is quite specialized to resource produc-
tion and it is not clear how to apply it to tactical problems.
Recent work, has also applied reinforcement learning to the
problem of controlling individual agents in tactical battles
between two groups of units [Wilson et al., 2008], which
could be leveraged by our method in place of the default AI.

4 UCT for Tactical Assault Planning
In this section, we describe our overall planning architec-
ture, the UCT algorithm, and our application of UCT to tac-

41

tical assault planning by detailing our search space formula-
tion.
 Planning Architecture. RTS games are highly dynamic
due to the stochastic aspects of the game environment, along
with the unpredictability of the opponent’s actions and in-
coming goals. For this reason, we utilize an online planning
approach rather than computing an offline plan and then
attempting to follow it. As explained earlier, in order to re-
duce complexity, our planner reasons at an abstract level
about groups of units, rather than about individuals. In our
current implementation, we compute these groups at each
decision epoch based on unit proximity via simple agglo-
merative clustering. However, it is straightforward to incor-
porate any other grouping scheme, e.g. as computed by a
higher level planner.
 Given a set of unit groups at the current decision epoch,
our planner then utilizes the Monte Carlo planning algo-
rithm UCT, described in the next section, to assign abstract
group actions to all of the groups, which are then executed
in the game until the next decision epoch is triggered. In our
current implementation a decision epoch is triggered when-
ever any of the groups becomes idle after completing the
currently assigned action. It is straightforward to incorporate
additional trigger conditions for decision epochs into our
approach, e.g. when an unexpected enemy group is encoun-
tered. The online planning loop repeats until reaching an
end state, which for tactical assault problems is when either
all of the friendly or enemy units have been destroyed.

We have instrumented our RTS engine Stratagus to sup-
port two types of abstract group actions, which the planner
can select among. First, the action Join(G), where G is a set
of groups, causes all of the groups in G to move toward
their centroid location and to form into a larger joint group.
This action is useful for the common situation where we
want to explicitly join groups before launching a joint attack
so that the units among these groups arrive at the enemy at
the same time. Such joint attacks can be much more effec-
tive than having the individual groups attack independently,
which generally results in groups reaching the enemy at
different times. The second abstract action, Attack(f,e),
where f is a friendly group and e is an enemy group, causes f
to move toward and attack e. Currently the actions of indi-
vidual friendly agents during an attack are controlled by the
default Stratagus AI, though in concept it is straightforward
to utilize more advanced controllers, e.g. controllers learned
via reinforcement learning [Wilson et al., 2008].
 The UCT Algorithm. UCT is a Monte Carlo planning
algorithm first proposed by [Kocsis and Szepesvari, 2006],
which extends recent algorithms for bandit problems to se-
quential decision problems while retaining the strong theo-
retical performance guarantees. At each decision epoch, we
use UCT to build a sparse tree over the state-space with the
current state as the root, edges corresponding to actions, and
leaf nodes corresponding to terminal states. Each node in
the resulting tree stores value estimates for each of the
available actions, which are used to select the next action to
be executed. UCT is distinct in the way that it constructs the
tree and estimates action values. Unlike standard mini-max

search or sparse sampling [Kearns et al., 2001], which typi-
cally build depth bounded trees and apply evaluation func-
tions at the leaves, UCT does not impose a depth bound and
does not require an evaluation function. Rather, UCT in-
crementally constructs a tree and updates action values by
carrying out a sequence of Monte Carlo rollouts of entire
game sequences starting from the root to a terminal state.
The key idea behind UCT is to intelligently bias the rollout
trajectories toward ones that appear more promising based
on previous trajectories, while maintaining sufficient explo-
ration. In this way, the most promising parts of the tree are
grown first, while still guaranteeing that an optimal decision
will be made given enough rollouts.
 It remains to describe how UCT conducts each rollout
trajectory given the current tree (initially just the root node)
and how the tree is updated in response. Each node s in the
tree stores the number of times the node has been visited in
previous rollouts n(s), the number of times each action a has
been explored in s in previous rollouts n(s,a), and a current
action value estimate for each action Q(s,a). Each rollout
begins at the root and actions are selected via the following
process. If the current state contains actions that have not
yet been explored in previous rollouts, then a random unex-
plored action is selected. Otherwise if all actions in the cur-
rent node s have been explored previously then we select the
action that maximizes the upper confidence bound given by,

where c is a domain dependent constant. After selecting an
action, it is simulated and the resulting state is added to the
tree if it is not already present. This action selection me-
chanism is based on the UCB bandit algorithm [Auer et al.,
2002] and attempts to balance exploration and exploitation.
The first term rewards actions whose action values are cur-
rently promising, while the second term adds an exploration
reward to actions that have not been explored much and
goes to zero as an action is explored more frequently.
 In practice the value of the constant c has a large impact
on performance. In our application, this is particularly true
since unlike the case of board games such as Go where the
action values are always in the range of [0,1], in our applica-

Figure 1. Screenshot of a typical Wargus game scenario

42

tions the action values can be quite large and have a wide
variance across different tactical scenarios. Thus, we found
it difficult to find a single constant that provided robust per-
formance. For this reason, we use a variation of UCT where
we let c = Q(s,a), to ensure that the exploration term is on
the same scale as the action values. While the theoretical
implications of this choice are not clear, the practical im-
provement in our experience is significant.
 Finally, after the trajectory reaches a terminal state the
reward for that trajectory is calculated based on the cur-
rent objective function. The reward is used to update the
action value function of each state along the generated tra-
jectory. In particular, for any state action pair (s, a) on the
trajectories we perform the following updates,

 Search Space Formulation. UCT is most naturally ap-
plied to domains that involve sequential, non-durative ac-
tions, as in most board games. However, in our domain,
actions have variable durations and must be executed con-
currently. We now describe a search space that allows for
UCT to search over these aspects of our domain.
 Each abstract state in our search space is described by: 1)
the current set of friendly and enemy groups and their prop-
erties including group hit points (i.e. health) and mean loca-
tion, 2) the current action being taken by each friendly
group, and 3) the current game cycle/time. Following
[Chung et al., 2005] the hit points HP(G) of a group G is a
measure of the overall health of a group and is recalculated
each time new groups are formed based on the hit points of
the joining groups using the formula ,
where HPi is the hit points for the i’th joining group. This
formula better reflects the effective hit point power of a
group compared to summing the hit points of joining
groups. For example, a group of 2 units with 50 hit points
each is more useful in battle than 1 unit with 100 hit points.
 Given these search nodes, we must now describe the arcs
of our search space. At each search node with at least one
idle friendly group (i.e. no assigned action), the available
arcs correspond to assigning a single idle group an action,
which can be either to attack a specified enemy group, or to
join another friendly group in the current search node. Note
that in the case of join, if the group being joined to is cur-
rently assigned to join yet another group, then the join ac-
tion is applied to all of the groups. From this we see that a
search node with idle friendly groups and enemy
groups has possible successors, each cor-
responding to an action assignment to an idle group.

It is important to note that these “assignment search arcs”
do not increment the game cycle of the next search node and
do not change the properties of any groups. Rather they
should be viewed as book keeping search steps that modify
the “internal state” of the groups to keep track of the action
that they have been assigned. The game cycles are incre-
mented and actions are simulated only from search states

with no idle groups, where the only choice is to move to a
search node that results from simulating the game according
to the current action selections until one of the groups be-
comes idle. The resulting successor state will reflect the
updated position and hit points of the groups.
 Note that under this search space multiple search steps
are required to assign activities to multiple idle groups. An
alternative formulation would have been to allow for single
search steps to jointly assign actions to all idle groups in a
node. This would exponentially increase the number of arcs
out of the nodes, but decreased the depth required to reach a
final state since multiple search steps would no longer be
necessary to assign joint actions. We chose to use the former
search space since it appears to be better matched to the
UCT approach. Intuitively, this is because our search space
contains many search nodes on route to a joint action as-
signment, each representing a partial assignment, which
allows UCT to collect quality statistics about each of the
encountered partial assignments. Accordingly the rollouts
can be biased toward partial assignments that appear more
promising. Rather, the later search space that has an arc for
each joint action is unable to gather any such statistics and
UCT will be forced to try each one independently. Thus our
search space allows for UCT to much more effectively ex-
ploit previous rollouts when searching for joint actions.
 Monte Carlo Simulation. A key component of our ap-
proach is to simulate the effect of abstract group actions on
the abstract state in order to generate UCT’s rollout trajecto-
ries. This involves estimating the times for actions to com-
plete and how they alter the positions and hit points of exist-
ing friendly and enemy groups. Full details of the simulation
process are in the full report [Balla, 2009] and are omitted
here due to space constraints. In concept the simulation
process is straightforward, but involves careful book keep of
the concurrent activity going on. For example, to simulate
multiple groups attacking another group one must keep
track of the arrival times of each attacking group and ac-
count for the additional offensive power that becomes avail-
able. For predicting the rate of hit point reductions during
encounters and the movement times, we utilized simple nu-
meric models, which were hand-tuned based on examples of
game play. In general, it would be beneficial to incorporate
machine learning techniques to continually monitor and
improve the accuracy of such models.

5 Experiments and Results
We present experiments in the game of Wargus, which is
run on top of the open-source Stratagus RTS engine.
 Experimental Setup. We created 12 game scenarios for
evaluation that differ in the number of enemy and friendly
units, their groupings, and the placement of the groups
across the 128x128 tile map. Figure 1 shows a screen shot
of the action during one of these scenarios. The upper-left
corner depicts an abstract view of the full map showing the
locations of 2 friendly and 4 enemy groups. The main part
of the figure shows a zoomed in area of the map where an
encounter between enemy and friendly groups is about to
take place. In order to simplify the simulation of actions in

43

Figure-2: Time results for UCT(t) and baselines. Figure-3: Hit point results for UCT(t) and baselines.

Figure-4: Time results for UCT(hp) and baselines. Figure-5: Hit point results for UCT(hp) and baselines.

this initial investigation, we have restricted all of the scena-
rios to utilize a single type of unit known as a footman. All
of our scenarios are designed so that there is a winning
strategy, though the level of intelligence required to win
varies across the scenarios. The scenarios vary the number
of enemy and friendly units from 10 to 20 per side and the
number of initial groups from 2 to 5. Details of the scenarios
are available in the full report [Balla, 2009].
 Planners. Our experiments consider two version of UCT:
1) UCT(t), which attempts to minimize the time, as meas-
ured by number of game cycles, to destroy the enemy, and
2) UCT(hp), which attempts to maximize the effective hit
points of the friendly units remaining after defeating the
enemy. The only difference between these two versions of
UCT is the value of the reward returned at each terminal
node at the end of each rollout, which is equal to the objec-
tive under consideration. Unless otherwise noted, we used
5000 rollout trajectories for UCT.
 We compare against 5 baselines: 1) Random, which se-
lects random join and attack actions for idle groups, 2) At-
tack-Closest, which causes any idle group to attack the clos-
est enemy, 3) Attack-Weakest, which causes an idle group
to attack the weakest enemy group and in the case of ties to
select the closest of those, 4) Stratagus-AI, which controls
the friendly units with the default Stratagus AI, and 5) the
performance achieved by an experienced human player.

Results. We ran the planners on all benchmarks and
measured the time (game cycles) to defeat the enemy and
the hit points of the friendly forces at the end of the game.
For the Random baseline and UCT the results are averaged
over 5 runs. Figures 2 and 3 give the results for UCT(t) and
the baselines for the time and hit point metrics respectively.
The x-axis labels give a description of the scenarios in terms
of the number of enemy and friendly groups. For example,
4vs2_1 is the first scenario that involves 4 friendly groups
and 2 enemy groups on the initial map. When a planner does
not win a game, the hit points are recorded as 0 and no point
plotted for the time metric in Figure 2.

Figure-6: Time results for UCT(t) with varying rollouts.

44

 We notice first that UCT(t) is the only planner besides the
human to win all of the scenarios. By utilizing a model-
based approach our planner is able to avoid many of the
fatal mistakes of the other planners. Furthermore, Figure 2
shows that UCT(t) is always among the top performers as
measured by completion time, which is the objective being
optimized by UCT(t). In Figure 3, we see that UCT(t) is
also often among the top performers in terms of effective hit
points, though in some cases it is significantly outperformed
by one or more of the baselines, which should be expected
since UCT(t) is not trying optimize hit points. The human
player has great difficulty trying to optimize this objective.
The primary reason for this is the difficulty in quickly con-
trolling the units using the Stratagus user interface.
 Figures 4 and 5 are similar to the previous two figures but
plot results for UCT(hp) rather than UCT(t). We see from
Figure 5, that UCT(hp) outperforms all other planners in
terms of effective hit points in all but one of the scenarios
and again it is the only planner besides the human that wins
all of the scenarios. From Figure 3, we further see that
UCT(t), which did not attempt to optimize hit points, did not
perform nearly as well in terms of hit points. This indicates
that our UCT planner is clearly sensitive to the optimization
objective given to it. UCT(hp) performs poorly in terms of
completion time, which should be expected since the best
way to optimize hit points is to take time to initially form a
large group and then to attack the enemy groups sequential-
ly. However, we see that UCT(hp) is still able to significant-
ly improve on the completion time compared to the human
player. Overall, for both metrics our planner has advantages
compared to the other baselines and the human.
 We now compare the performance of UCT with respect
to the number of rollout trajectories. We ran variations of
the UCT(t) planner on all scenarios where we increased the
number of rollouts from 1000 through 5000 in steps of
1000. Figure 6 shows the results for the time metric. It can
be observed that limiting to only 1000 rollouts per decision
results in significantly worse performance in most of the
scenarios. Increasing the number of rollouts improves the
performance and reaches that with 5000 rollouts in all but
the few scenarios. Increasing the number of rollouts beyond
5000 for UCT(t) did not produce significant improvements.
 Our current prototype is not yet fast enough for true real-
time performance in the larger scenarios when using 5000
rollouts per decision epoch. The most expensive decision
epoch is the first one, since the number of groups is maxim-
al resulting in long rollout trajectories and more complex
simulations. However, later decisions are typically much
faster since the number of groups decreases as the assault
proceeds. In the worst case for our most complex scenario,
the first decision took approximately 20 seconds for 5000
rollouts, while the later stages took a maximum of 9
seconds, but usually much faster on average. Our current
implementation has not yet been optimized for computation
time and there are significant engineering opportunities that
we believe will yield real-time performance. This is the case
in Go, for example, where the difference between a highly
optimized UCT and a prototype can be orders of magnitude.

6 Summary and Future Work
To the best of our knowledge there is no domain-
independent planner that can handle all of the features of
tactical planning. Furthermore, prior Monte Carlo methods
required significant human knowledge. Our main contribu-
tion is to show that UCT, which requires no such human
knowledge, is a promising approach for assault planning.
Across a set of 12 scenarios in the game of Wargus, our
planner is a top performer compared to a variety of base-
lines and a human player. Furthermore it was the only plan-
ner to find winning strategies in all of the scenarios. In the
future, we plan to optimize our implementation to arrive at
truly real-time performance. We also plan to integrate ma-
chine learning techniques to learn improved simulation
models, making it easier to evaluate our planner in more
complex scenarios involving multiple unit types and more
sophisticated adversaries. Finally, we plan to integrate our
planner into an overall architecture for full RTS game play.

Acknowledgements
This work was supported by NSF grant IIS-0546867 and
DARPA contract FA8750-05-2-0249.

References
[Auer et al., 2002] P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time

Analysis of the Multiarmed Bandit Problem, Machine Learning, 2002
[Balla, 2009] Radha-Krishna Balla. UCT for Tactical Assault Battles in

Real-Time Strategy Games. M.S. Thesis, Oregon State Univ., 2009
[Buro and Furtak, 2004] Michael Buro, Timothy M. Furtak. RTS Games

and Real-Time AI Research. Proc. Behavior Representation in
Modeling and Simulation, 2004

[Chan et al., 2007] Hei Chan, Alan Fern, Soumya Ray, Nick Wilson and
Chris Ventura. Online Planning for Resource Production in Real-Time
Strategy Games. ICAPS, 2007

[Chung et al., 2005] Michael Chung, Michael Buro, Jonathan Schaeffer.
Monte Carlo Planning in RTS Games. IEEE Symposium on
Computational Intelligence and Games, 2005

[Gelly and Silver, 2007] Sylvian Gelly, David Silver. Combining Online
and Offline Knowledge in UCT. ICML, 2007.

[Gelly and Wang, 2006] Sylvian Gelly, Yizao Wang. Exploration
exploitation in Go: UCT for Monte-Carlo Go. NIPS, 2006.

[Kocsis and Szepesvari, 2006] Levente Kocsis, Csaba Szepesvari. Bandit
Based Monte-Carlo Planning. ECML, 2006.

[Kovarsky and Buro, 2005] Alexander Kovarsky, Michael Buro. Heuristic
Search Applied to Abstract Combat Games. Proc. Canadian
Conference on Artificial Intelligence, 2005

[Kearns et al., 2001] Michael Kearns, Y. Mansour, and A. Ng. A Sparse
Sampling Algorithm for Near-Optimal Planning in Large Markov
Decision Processes. Machine Learning, 49 (2-3).

[Sailer et al., 2007] Frantisek Sailer, Michael Buro, and Marc Lanctot.
Adversarial Planning Through Strategy Simulation. Proc. IEEE
Symposium on Computational Intelligence and Games, 2007

[Wilson et al., 2008] Aaron Wilson, Alan Fern, Soumya Ray and Prasad
Tadepalli. Learning and Transferring Roles in Multi-Agent
Reinforcement Learning. Proc. AAAI-08 Workshop on Transfer
Learning for Complex Tasks, 2008

45

