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Abstract

Almost all approaches to model-based diagnosis
presume that the system being diagnosed behaves
non-intermittently and analyze behavior over a
small number (often only one) of time instants.
In this paper we show how existing approaches to
model-based diagnosis can be extended to diagnose
intermittent failures as they manifest themselves
over time. In addition, we show where to insert
probe points to best distinguish among the intermit-
tent faults those that best explain the symptoms and
isolate the fault in minimum expected cost.

1 Introduction

Experience with diagnosis of automotive systems and repro-
graphic machines [Fromherz er al., 2003] shows that inter-
mittent faults are among the most common and the most chal-
lenging kinds of faults to isolate. The notion of intermittency
is a hard-to-define concept, so we first describe it intuitively
before defining it more formally. A system consists of a set
of components. A faulty component is one which is physi-
cally degraded such that it will not always function correctly.
For example, a faulted resistor may no longer conduct the ex-
pected current when a non-zero voltage is applied across it. A
worn roller in a printer may no longer grip the paper consis-
tently thereby causing intermittent paper jams. In the case of a
worn roller, it usually operates correctly but will infrequently
slip and cause a paper jam. We therefore associate two proba-
bilities with each potentially intermittent component: (1) the
probability that the actual component deviates from its design
such that it may exhibit a malfunction, and (2) the probabil-
ity that the faulted component functions correctly when ob-
served. For example, the probability that a roller being worn
might be 10~° while the probability of a worn roller actually
malfunctioning might be 0.01.

We do not model the continuous behavior of a system over
the time. Instead, the system is viewed over a sequence of
observation events. For example, a piece of paper is fed into
a printer and it may be observed to jam. A test-vector is ap-
plied to a combinational digital circuit and its output signals
subsequently observed.

Intermittency can arise from at least two sources. If the sys-
tem can be modeled at a more detailed (i.e., less abstract)
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level, apparent intermittency can disappear. For example, two
wires may be shorted, making it appear as if a gate is inter-
mittent, when in fact there is an unmodeled and unwanted
bridge connection. The second type of intermittency arises
from some stochastic physical process which is intermittent
at any level of detail. This paper focuses on this second type
of intermittency.

In this paper we show how to troubleshoot devices contain-
ing any combination of intermittent or persistent faults. Priors
are assumed for all faults. The device may contain any num-
ber of faults. The approach both computes the posterior prob-
abilities after observations are made as well as the additional
probes needed to efficiently isolate the fault(s) in the device.
Reprographic and automotive systems raise many modeling
complexities, SO we present our approach to isolating inter-
mittent faults in the context of logic systems. See [de Kleer
et al., 2008] for the application of these concepts to repro-
graphic engines. For benchmarks, we draw on the circuits in
the widely available ISCAS85 benchmarks.

Diagnosis of intermittent faults is a broad challenge. In
this paper we make the following presuppositions: (1) One
observed variable per time instant, (2) All inputs are always
known, but change over time, (3) Diagnosis starts with an ob-
servation in which a faulty output is observed, (4) No memory
or energy storage components, (5)No measurement error, (6)
Making measurements does not change the system, (7) Com-
ponents fail independently (dependent failures may lead to
misdiagnosis), (8) Underlying stochastic process is station-
ary. None of these limitations present a fundamental obsta-
cle to our model-based approach, but are topics for future re-
search.

2 GDE probability framework

We presume the consistency based framework as described in
[de Kleer and Williams, 1987; de Kleer et al., 1992]. For most
of this paper we assume ‘weak’ fault models; or the IAB (ig-
norance of abnormal behavior) assumption. No fault models
are presumed. Later in the paper we show how this assump-
tion can be relaxed. Time is expressed easily in this formal-
ism. The model of an inverter can be written as:

INVERTER(z) —
-AB(z) — [in(z,t) = 0 = out(z,1)



When ambiguous this paper represents the value v of variable
x at time ¢ as T'(x = v, t). Time is a sequence of instants ¢,
t1, ... The probability of X at time ¢ is represented as p;(X).
2.1 Updating diagnosis probabilities

Components are assumed to fail independently. Therefore,
the prior probability a particular diagnosis D(C'p, Cn) is cor-

rect is:
(D)= ] pe) ] (0 = p(c)),

ceCyp ceCyp

ey

where p(c) is the prior probability that component ¢ is faulted.
The posterior probability of a diagnosis D after an obser-
vation that x has value v at time ¢ is given by Bayes’ Rule:

pi(D]x = v) = api(x = v|D)pi—1(D). (2)

pi—1(D) is determined by the preceding measurements and
prior probabilities of failure. « is a normalizing term that is
identical for all p(D) and thus need not be computed directly.
The only term remaining to be evaluated in the equation is the
observation function p;(x = v|D) :

pi(x =v|D) = 0if D, SD,OBS, T(x = v,t) are inconsistent,

else,
pi(x =v|D) = 1if T(x = v,t) follows from D,SD,0OBS

If neither holds, p;(x; = vg|D) = €. Various e-policies
are possible [de Kleer, 2006] and a different € can be chosen
for each variable z; and value vy. Typically, €;, = % This
corresponds to the intuition that if  ranges over m possible
values, then each possible value is equally likely. In digital
circuits m = 2 and thus € = 0.5.

In the conventional framework, observations that differ
with predictions yield conflicts, which are then used to com-
pute diagnoses. Consider the full adder digital circuit of Fig-
ure 1. Suppose all the inputs to the circuit are 0, and ¢, is
measured to be 1. This yields one minimal conflict:

AB(A1) v AB(A2) v AB(OLl).

The single fault diagnoses are: [O1], [Al] and [A2] (for
brevity sake we represent the diagnosis D({ f1, f2, ...}, Cn)
by the faulty components: [f1, f2, . . .]).

Figure 1: Full adder. This circuit computes the binary sum of
¢; (carry in), a and b; q is the least significant bit of the result
and c, (carry out) the high order bit.

734

3 Extensions for support intermittent faults

In the conventional framework, p(c) is the prior probability
that component c is faulted. In the new framework, two prob-
abilities are associated with each component: (1) p(c) repre-
sents the prior probability that a component is intermittently
faulted, and (2) g(c) represents the conditional probability
that component c is behaving correctly when it is faulted.

In the intermittent case, the same sequential diagnosis
model and Bayes’ rule update applies. However, a more so-
phisticated e-policy is needed. Note that an e-policy applies
only when a particular diagnosis neither predicts x; = vy,
nor is inconsistent with it. Consider the case where there is
only a single fault. As we assume all inputs are given, the
only reason that a diagnosis could not predict a value for z;
is if the faulted component causally affects x;. Consider the
single fault diagnosis [c]. If ¢ is faulted, then g(c) is the proba-
bility that it is producing a correct output. There are only two
possible cases: (1) c is outputting a correct value with proba-
bility g(c), (2) ¢ is producing a faulty value with probability
1 — g(c). Therefore, if z; = vy, follows from [|, SD,OBS
and ignoring conflicts:

pe(@i = vil[c]) = g(c).
Otherwise,
pe(wi = vgl[e]) =1 = g(c).
These two € equations are equivalent to (no need to ignore

conflicts): pi(z; = vg|D) =

i@
1 —g(e)if[c],0(c),OBS,SD F T(x; = vy, t)

if [J,OBS,SD + T(x; = v, t)

0(c) the incorrect (output negated) model for c.

Returning to the full adder example, if all com-
ponents are equally likely to fail a priori, then
p((A1)), p([A2)),p([01]) = L. Suppose y = 0 is ob-
served next. In the conventional framework this has no
consequence, as the observation is the same as the prediction.
However, in the intermittent case, such ‘good’ observations
provide significant diagnostic information. Table 1 illustrates
the results if ¢, is first observed to be faulty, g(c) = 0.9
for all components, Ol is the actual fault, and y is observed
continuously. As sampling continues, p([A1]) will continue
to drop. An intelligent probing strategy would switch to
observing x at time 4. As y is insensitive to any error at [O1],
no erroneous value would ever be observed.

Failing components closer to the input are easier to iso-
late as there are fewer confounding effects of intermediate
components through which the signals must propagate before
reaching a suspect component. Table 2 presents a sequence of
probes which isolates a fault in O1. Although O1 can never be
identified as failing with probability 1, the table shows that re-
peated observations drive O1’s probability asymptotically to
1.

It is important to note that the single fault assumption does
not require an additional inference rule. The Bayes’ rule up-
date equation does all the necessary work. For example, when
¢, = 1 is observed, the single fault diagnoses [X1] and [X2]



both predict ¢, = 0 and thus are both eliminated from consid-
eration by the update equation. As an implementation detail,
single faults can be computed efficiently as the intersection of
all conflicts found in all the samples.

Table 1: Probabilities of component failure over time. Row
0 are the prior probabilities of the components intermittently
failing, row 1 are the probabilities conditioned on knowing
the system has a fault, and row 2 are the probabilities condi-
tioned on ¢, = 1 and so on.

C 7] AT | A2 | o1 | XT | X2 | obs |
0107 T 107 [T 107 [ 10779 T 10717
1 I I I I I
5 5 5 5 5
2 = = = 0 0 [ co=1
3 | 0310 | 0.345 | 0.345 0 0 y=0
4] 0288 | 0356 | 0.356 0 0] v=
5 | 0267 | 0.366 | 0.366 0 0 y=0
6 | 0.247 | 0.376 | 0.376 0 0 y=0
7 | 0228 | 0.386 | 0.386 0 0| y=0
8 [ 0209 | 039 | 0.39% 0 0 y=0
9 | 0.192 | 0.403 | 0.403 0 0 yv=
10 | 0177 | 0411 | 0411 0 0 y=0
11 | 0.162 | 0419 | 0.419 0 0| y=0
12 | 0.148 | 0426 | 0.426 0 0 y=0

4 Probing strategy

Consider again the example of Figure 1 and Table 1. Repeat-
edly measuring y = 0 will monotonically drive down the pos-
terior probability of A1l being faulted. Choosing probes which
drive down the posterior probability of component faults is at
the heart of effective isolation of intermittent faults.

A probing strategy better for isolating some faults, might
perform worse on others. To fairly compare proposed strate-
gies we compare them by their expected diagnostic cost [de
Kleer et al., 1991]:

DC(D,A) = Zp(s)c(D, s, A),

seS

where S is the set of diagnostic situations, p(s) is the prob-
ability of a particular diagnostic situation, D is the device,
A is the algorithm used to select probes, and c¢(D, s, A) is
the cost of diagnosing device D in diagnostic context s with
algorithm A. In limited cases DC can be exactly calculated.
Generally DC must be estimated by sampling, for example,
with S consisting of pairs (f, v) where f is the fault and v is
a set of device input-output pairs which cause D to manifest
the symptom.

To successfully isolate the faulty intermittent component,
the diagnoser must propose probes. In conventional model-
based diagnosis, (following the myopic strategy) the best
probe to make next is the one which minimizes,

S p(D)logp(D).

DeEDIAGNOSES

H=- 3)

Even though the definition of p(c) is different than in con-
ventional model-based diagnosis, we still want to probe those
variables which maximize the likelihood of distinguishing
among the possible intermittent faults. The goal is the same
— to lower the posterior probability of failure for all but one
of the components.
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Table 2: Probes required to isolate the failing O1.

[ i Al ] A2 | Ol [ XI [ X2 ] obs | H |

2 0.345 0.310 0.345 0 0 z =0 1.58

3 0.321 0.321 0.357 0 0 y=0 1.58

4 0.332 0.299 0.369 0 0 x =0 1.58

5 0.309 0.309 0.382 0 0 y=0 1.58

6 0.319 0.287 0.394 0 0 z =0 1.57

7 0.297 0.297 0.407 0 0 y=0 1.57

8 0.306 0.275 0.419 0 0 x =0 1.56

9 0.284 0.284 0.432 0 0 y=0 1.55
10 0.292 0.263 0.445 0 0 z =0 1.55
20 0.223 0.201 0.576 0 0 x =0 1.41
40 0.107 0.097 0.796 0 0 z =0 0.93
55 0.052 0.052 0.896 0 0 y=0 0.59
56 0.052 0.047 0.901 0 0 x =0 0.57
80 0.016 0.014 0.970 0 0 x =0 0.23
90 0.010 0.009 0.982 0 0 z =0 0.15
100 0.006 0.005 0.989 0 0 z =0 0.10
120 0.002 0.002 0.996 0 0 x =0 0.04
127 0.001 0.001 0.997 0 0 y=0 0.03
128 0.001 0.001 0.998 0 0 z =0 0.03

Table 1 suggests a very simple probing strategy from which
we can compute an upper bound on optimal DC. The simplest
strategy is to pick the lowest posterior probability component
and repeatedly measure its output until either a fault is ob-
served or its posterior probability drops below some desired
threshold.

The number of samples needed depends on the acceptable
misdiagnosis threshold e. Diagnosis stops when one diagno-
sis has been found with posterior probability p > 1 — e. To
compute the upper bound on DC: (1) we take no advantage of
the internal structure of the circuit; (2) we presume that ev-
ery measurement can exonerate only one component; (3) we
are maximally unlucky and never witness another incorrect
output.

Let n be the number of components ¢; and o; the number
of samples of the output of ¢;. p1([¢;]) is derived from the
priors. The Bayes’ update is:

pe([ei]) = api(z = vl[ei])pe-1([ei])-
Notice that p;(x = v|[¢;]) = g(c¢;) when the output of com-
ponent c¢; is observed. After ¢ samples:
pe([es]) = ag(ei)* pa([edl),
where, Yo; = t, and,
1
Zig(ei)pa([eil)

Splitting the misdiagnosis threshold evenly across all compo-
nents, we want to pick o; such that:

o =

€
4 i ) < —.
agle:)pilei) <
We need to solve for o; in:
glci)pr(lei]) _ e
Q TL.

If o; is sufficiently large, then &~ 1 —p([¢;]) so we can solve

for o;:

_ loge —logn —logpi([ci]) +log(1 — pi([ei]))
log g(c:)

05



In the case of the full adder example all priors are equal,
g = 0.9, and e = 0.1. So based on the preceding equation,
o; = 28.1. Hence, a worst case strategy is to measure each
point 29 times. There are only 4 informative probe points. If
we utilize a strategy of sequentially probing each such probe
point 29 times this would yield an upper bound of 126. How-
ever, the last probe point need not be measured since the strat-
egy would have failed to identify a fault earlier, and hence
because the device has a fault, the probing at the final point
is at the fault. There is no need to measure the non-symptom
output because that cannot provide information on any sin-
gle fault. Therefore, the upper bound is 58. This worst case is
corroborated in Table 2 where it takes 56 probes to isolate O1
to with probability about 0.9. Faults in A1 and A2 would be
detected with far fewer probes.

Rarely can we compute a bound on a particular diagnos-
tic algorithm so neatly. In most cases the diagnostic cost of a
particular algorithm can only be evaluated empirically. Com-
puting DC using the minimum entropy criterion (equation 3)
on a randomly chosen set of vectors, and assuming all faults
are equally likely, g = 0.9, e = 0.1, results in an expected
cost of DC = 22.2 with observed error 0.05. This DC is far
smaller than the 58 bound calculated earlier, because faults
in Al and A2 evaluated in far fewer probes and DC is an
average. As the manifestation of intermittent faults is inher-
ently random, there will always be a chance of misdiagnosis.
The observed error of 0.05 is better than our desired 0.1. In
general, the observed error will be close to the theoretical er-
ror, but it will vary because of specific characteristics of the
circuit being analyzed and the sequence of random numbers
generated in the simulation.

5 Statistical nature of probing strategy

Fault isolation in the intermittent case is more subtle than in
the deterministic case. It will always make mistakes. As an
example, consider the very simple two buffer sequence of
Figure 2. Assume A and B are equally likely to fault and
g = 0.9. As we assume the inputis given, and that a faulty ob-

I A B D

o—>—>—o0

Figure 2: Two buffers in sequence. One is intermittent.

servation was observed, there is only one measurement point,
the output of A that can provide any useful information.

In this simple case there is no choice of measurement point.
First, consider the case where B is intermittent. The output of
A will always be correct. Following the same line of develop-
ment as earlier, after n measurements:

pn-i—l([A]) =

To achieve the probability of misdiagnosis to be less than e:

71 pni((B]) = iy

qg" __loge
) <e. n= Tog g’

As g" =~ 0. With g = 0.9 and e = 0.01, n = 43.7. Now con-
sider the case where A is faulted. Until the fault is manifest,

A will be producing a good value and the results will look
the same as the case where B is faulted. Roughly, the fault
will be manifest in, ﬁ = 4.5 samples. Thus, the expected
diagnostic cost of the circuit of Figure 2 is roughly 24.1. Our
algorithm obtains a similar result. Again we see that it is con-
siderably more expensive to isolate intermittents further from

the input(s).

osT jg ’/.

1 2 3 4 5 6 7 8 9 10
NUMBER OF BUFFERS

Figure 3: DC of isolating an intermittent buffer in a row of n.

Figure 3 plots diagnostic cost (obtained from one simula-
tion) of isolating a single intermittent buffer in a sequence
of buffers using the minimum entropy strategy. The graph il-
lustrates that, as is the case with persistent faults, groups of
components are simultaneously exonerated so that DC grows
roughly logarithmic with circuit size. Note that the minimum
entropy strategy is much better than the simple approach pre-
sented earlier.

If inputs vary, a slightly different approach is needed. It
is computationally impractical to find the variable to mea-
sure next which provides the maximum expected information
gain over all possible system inputs. Instead, we employ a
heuristic to ensure measuring the best variable which is di-
rectly adjacent to some remaining suspect component. This
avoids the possible suboptimal situation where the particu-
lar new inputs make the proposed measurement insensitive to
any of the faults (e.g., suppose the symptomatic value propa-
gated through a known good and-gate, and if the other input
of this and-gate were 1 when the fault was first observed and
was 0 in later inputs, measuring the output of that and-gate
would be useless for those input vectors, and it would take a
many samples to isolate the faulty component).

6 Benchmarks

The approach has been fully implemented on GDE/HTMS ar-
chitecture [de Kleer and Williams, 1987; de Kleer, 1992]. Ta-
ble 3 lists the diagnostic cost of diagnosing circuits in the IS-
CAS85 benchmark. The first column is the ISCAS8S circuit
name. The second column is the number of distinct gates of
the circuit. The remaining columns are computed by hypoth-
esizing all possible single intermittent faults. For each fault,
a single (constant) test-vector is found which gives rise to an
observable symptom for one of the outputs. For each row,
for each component, two simulations are performed (with 1
switched to 0, and a O switched to a 1). The next column is
the DC to isolate the intermittent component with misdiag-
nosis probability e = 0.1, g = 0.9 and all faults equally
likely apriori. The last column is the observed error rate. Not



surprisingly, the number of samples needed to isolate inter-
mittent faults is far more than is needed for persistent faults.

Table 3: Summary of results on the ISCAS85 benchmarks.

[ circuit J[ components [ noni | icost [ error | icost [ error |
[ il [ cost | e=0.1 [ e=0.01 |
cl7 6 2.7 29 45
c432 160 55 94 119
c499 201 5.4 106 126
c880 384 53 79 104

7 Learning g(c) for single faults

Although the prior probability of component failure can be
estimated by the manufacturer or previous experience with
that component in similar systems, g(c) typically varies
widely. Therefore, we estimate the g(c)’s instead of presum-
ing their values. Estimating g(c) requires significant addi-
tional machinery which we only describe here in the single
fault case. The generalization to multiple faults is analogous
to the one used for reprographic modules [de Kleer et al.,
2008] and requires a maximization step. Fortunately, the sin-
gle fault case is easy to analyze.

Our approach does not depend on isolating c for any obser-
vation. We define G(¢) to be the number of times ¢ could have
been working correctly, and B(c) as the number of times ¢
has been observed working incorrectly when faulted. Corrob-
oratory measurements which ¢ cannot influence are ignored
(conflicting measurements exonerate any component which
cannot influence it, in which case g(c) is no longer relevant).
We estimate g(c):

G(e)
9(e) = G(c) + B(c)’

if either G(c) or B(c) is 0, then we define g(c) = 0.5. The sit-
uations in which c¢ is working incorrectly are straightforward
to detect — they are simply the situations in which the Bayes’
update equation utilizes p;(z; = vi|D) = 1—g(c). The cases
in which c is working correctly requires additional inferential
machinery. Consider again the example of Figure 1 where all
the inputs are 0, and the expected c, = 0 is observed. Or-gate
O1 cannot be behaving improperly because its inputs are both
0, and its observed output is 0. And-gate A1 cannot be behav-
ing improperly because its inputs are both 0, and its output
must be 0, as O1 is behaving correctly and its output was ob-
served to be 0. Analogously, and-gate A2 cannot be faulted.
However, we have no evidence as to whether X1 is behaving
improperly or not, because if X1 were behaving improperly,
its output would be 1, but that cannot affect the observation
because and-gate A2’s other input is 0. X2 cannot causally
affect ¢,. If we observe ¢, = 0 at an instant in which all the
inputs are 0, we have learned that A1, A2 and O1 cannot be
misbehaving alone, and we learn nothing about the faulted-
ness of X1 and X2. Hence, G(Al), G(A2) and G(O1) are
incremented. All other counters are left unchanged. In sum-
mary, as a consequence of observing ¢, = 0, G(Al), G(A2),
and G(O1) are incremented. The net consequence will be that
the diagnostician may have to take (slightly) more samples to
eliminate A1, A2 or O1 as faulted.

737

z
O—D—
D
0

Figure 4: A three component circuit that computes the con-
junction of its inputs.

Table 4: Result of probing strategy using learning, with Al
failing at ¢ = 11.

[ ] Al ] A2 ] Ol [ X1 [ X2 [ obs | H |
2 0.40 0.20 0.40 0 0 x=0 1.52
3 0.25 0.25 0.50 0 0 y=0 1.50
4 0.27 0.18 0.55 0 0 x=0 1.44
5 0.20 0.20 0.60 0 0 y=0 1.37
6 0.21 0.16 0.63 0 0 x=0 1.31
7 0.17 0.17 0.67 0 0 y=0 1.25
8 0.17 0.14 0.69 0 0 x=0 1.20
9 0.14 0.14 0.71 0 0 y=0 1.15

10 0.15 0.12 0.73 0 0 x=0 1.11
11 1.00 0 0 0 0 y=1 0

Consider the example of Figure 4. At ¢ = 0, the inputs
are both 0, and the output is observed to be z = 0. Neither
the single fault A nor B can influence z = 0, therefore the
counters for A and B are left unchanged. However, C' can
influence the output and therefore G(C) is incremented.

More formally, in response to an observation x; = v,
G(c) is incremented if a different value for x; logically fol-
lows from the negated model o(c); ¢ causally influences the
observation and G(C) is incremented.

Table 4 presents the sequence of probes to isolate a fault in
Al of the full adder. A1’s fault is manifest at 7 = 11. Notice
that the conditional probabilities shift differently as compared
to the non-learning case (Table 1). As g(c¢) = 0.5 is assumed
without any evidence, measuring * = 0 immediately drops
A2’s probability to 0.5 compared to the other two diagnoses.
When using learning initial g(c)’s need to be chosen with
some care as they significantly influence DC. Learning sig-
nificantly increases DC. For example, DC for the full adder
rises from 22 to 39 for the same error rate (with no knowledge
of initial g(c)’s).

Table 5: 4 combinations that need consideration for intermit-
tent fault [X1, X2]

[ X2:X1 [
[ incorrectbehavior [ (1 — g(X1))(1 — g(X2)) [ g(X1)(A — g(X2) |
correct behavior || (1 -—g(X1)g(X2) | g(X1)g(Xx2) |

incorrect behavior | correct behavior |

8 Multiple faults

Bayes’ rule applies as before, but evaluating the observa-
tion function is more complex. Consider multiple intermittent
faults. For every diagnosis we have to consider every pos-
sible combination of faulty/correct behavior. If |C,,| = n,
then 2" cases need to be considered. (The single-fault case
n = requires 2 terms as described earlier.) Consider our full
adder example and the candidate diagnosis [X 1, X 2]. Table 5



lists the 4 combinations to be analyzed. We see that: p(co =
L[X 1, X2)) = g(X1)(1 — g(X2)) + g(X1)(1 — g(X2)).

More formally: Let M (C,,C,,,S,r,t) be the predicate
where S C €}, C COMPS which holds iff r holds at time ¢ if
all components in S are producing an incorrect value. More
formally,

M(va Cp,S,r, t) =

[Cu],0BS,SD, \o(c), [\ olc)T(rt).
ceS ceCp—S

‘We can now define the observation function:

pe(r|D(Cy, Cp)) =
> [Ta-9@) ] 9.
ceCp—S

[SCCL]AM(Cp,Cr,S,r,t) cES

r can represent any observation, but in all the examples in this
paper r is x; = vi. The computation required is exponential
in the number of simultaneous single faults considered, not
the number of components, so p,(z; = vi|D(C)p, Cy,)) can
be evaluated relatively efficiently. These can be evaluated di-
rectly with the ATMS/HTMS framework.

A persistent fault in component ¢ can be modeled as an
intermittent fault with g(c) 0. As the probing strategy
is the same for persistent and intermittent faults, no change
is needed to the algorithms (except g(c) is more difficult to
learn) to diagnose multiple simultaneous faults of both types.

Modeling persistent faults as g(¢) = 0 has two drawbacks:
(1)itis a ‘strong’ fault model (i.e., the component always be-
haves incorrectly if it is faulted), and (2) it cannot distinguish
between intermittent and persistent faults in a single compo-
nent. Therefore we introduce fault modes as in [de Kleer and
Williams, 1989]. An inverter might fail with its output stuck
at 1, or its output stuck at 0, or it might intermittently produce
the wrong output:

INVERTER(z) — OK(x) vV SA0(x) vV SAl(z) V U(x),
where OK () corresponds to the earlier ~AB(z),
OK (z) — [in(z,t) = 0 = out(x,t) = 1],

and,
SA0(x) — [out(x) = 0], SAl(z) — [out(z) = 1],

and U(z) is treated as intermittent fault (just as AB(x) was
earlier).

9 Related Work

There has been relatively little work in the model-based diag-
nosis community on intermittent faults. The approach of this
paper exploits the notion of exoneration — ruling out com-
ponents as failing when observed to be behaving correctly.
Previous work along this line is the alibi notion of [Raiman,
1990] and of corroboration in [Brown et al., 1982]. [Koren
and Kohavi, 1977] converts single fault intermittent diagnosis
tasks of combinational logic to dynamic programming. [Con-
tant ef al., 2002] presents an intermittent diagnosis approach
applicable to Discrete Event Systems. [Abreu et al., 2008]
applies methods similar to those presented in this paper to
spectrum-based program debugging.
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