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Abstract

A central goal of transfer learning is to enable
learning when training data from the domain of in-
terest is limited. Yet, work on transfer across rela-
tional domains has so far focused on the case where
there is a significant amount of target data. This pa-
per bridges this gap by studying transfer when the
amount of target data is minimal and consists of in-
formation about just a handful of entities. In the
extreme case, only a single entity is known. We
present the SR2LR algorithm that finds an effective
mapping of predicates from a source model to the
target domain in this setting and thus renders pre-
existing knowledge useful to the target task. We
demonstrate SR2LR’s effectiveness in three bench-
mark relational domains on social interactions and
study its behavior as information about an increas-
ing number of entities becomes available.

1 Introduction

Machine learning algorithms have traditionally been designed
assuming that an adequate amount of training data for the
task of interest is available. Although numerous successful
approaches for this case have been developed, their accu-
racy will suffer when training data is very limited. One of
the most effective techniques for enabling learning in such
situations is transfer learning, i.e. transferring a source
model learned in a domain that is related to the target do-
main at hand [Silver et al., 2005; Banerjee et al., 2006;
Taylor et al., 2008]. Transfer learning has been successful
in a variety of learning problems, e.g., [Raina et al., 2006;
Niculescu-Mizil and Caruana, 2007; Torrey et al., 2007].

One area in which transfer learning has proven partic-
ularly effective is statistical relational learning (SRL). In
SRL, general probabilistic models are learned from multi-
relational data, in which a set of entities are engaged in
a variety of complex relations [Getoor and Taskar, 2007].
For example, in a domain describing an academic institu-
tion, e.g., [Richardson and Domingos, 2006], the entities
are people, publications, and courses, whereas the relations
are advised-by, taught-by, and written-by. In ad-
dition, each entity has attributes (i.e, relations of arity 1),
such as is-student and is-professor. As a result of

the rich connections among the entities, individual training
examples are typically very large, containing hundreds of
entities, have varying lengths, and cannot be broken down
into smaller disconnected components. To emphasize this,
we call relational training instances mega-examples. In an
academic domain, a mega-example may describe an entire
area of study, such as AI. Because of these characteristics
of multi-relational data, SRL algorithms have long training
times and are often susceptible to local maxima and plateaus.
Effective transfer learning approaches have been developed to
combat these problems, leading to improvements both in the
speed and the accuracy of learning [Mihalkova et al., 2007;
Davis and Domingos, 2008].

However, to the best of our knowledge, all existing algo-
rithms for transfer in SRL assume that an adequate amount
of target domain data, i.e., at least one full mega-example, is
available. There currently are no techniques for the case of
limited target data, in which transfer learning could have the
greatest impact. This paper bridges this gap by addressing
the setting of minimal target domain data that consists of just
a handful of entities. In the extreme case, a single entity is
known. Fig. 1 contrasts the amount of data assumed by pre-
vious work to that assumed here.

This setting may arise in a variety of situations. For in-
stance, when a new social networking site is launched, data
is available on only a few initial registrants. The popularity
of the site depends on its ability to make meaningful predic-
tions that would allow it to suggest promising friendships to
users. However, the sparcity of available data and the fact that
data from other social networking sites is usually proprietary
make learning of an effective model from scratch infeasible.

Frequently, two domains differ in their representations, but
the underlying regularities that govern the dynamics in each
domain are similar. So, when transferring a model learned
from an academic data set to a movie business domain, one
may discover that students and professors are similar to actors
and directors respectively, which makes writing an academic
paper analogous to directing or participating in a movie.
Likewise, because human interactions bear a certain degree
of similarity across settings, the social networking site can
learn strong models from data on the professional relations
among its employees and map them for the task of interest
based on its very limited supply of data from the new site.

When target data is so limited, effective transfer depends
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Figure 1: Target data available in previous versus current work. The nodes in this

graph represent the entities in the domain and the edges represent the relations in which

these entities participate. Previous work assumes that the information from the entire

graph is provided. The present paper assumes that just the bold relations are known.

on the ability to map the representation of a source model
learned in a closely related domain to that of the target task.
The main challenge addressed in this work is, therefore, to
harness the small amount of data in the target domain in order
to find useful mappings between the source and target repre-
sentations. We present an efficient algorithm for this task,
SR2LR (which stands for Short-Range To Long-Range), that
is based on the observation that a good model for the source
domain contains two types of clauses—short-range ones that
concern the properties of a single entity and long-range ones
that relate the properties of several entities. Because possible
mappings of the short-range clauses to the target domain can
be directly evaluated on the available target data, the key is
to use the short-range clauses in order to find mappings be-
tween the relations in the two domains, which are then used
to translate the long-range clauses.

As in previous work on transfer in SRL [Mihalkova et al.,
2007; Davis and Domingos, 2008], we transfer a Markov
logic network (MLN) [Richardson and Domingos, 2006]. We
provide a detailed description of MLNs in Section 2. SR2LR

is not limited to MLNs, and after describing the algorithm
in Section 3, we discuss what other representations can be
used. Then, in Section 4, we demonstrate the effectiveness of
SR2LR in three benchmark relational domains.

2 Background

In first-order logic, a predicate represents a relation in the
domain, such as advised-by. Predicates are like functions
that return true or false in which arguments have types. For
example written-by takes one argument of type paper and
one of type person. An atom is a predicate applied to terms,
where the terms can be variables or constants.1 Constants
represent the entities. A (negative/positive) literal is an atom
that (is/is not) negated. A literal whose terms are constants
is ground. A clause is ground if all of its literals are ground.
The word grounding refers to a ground literal or clause.

An MLN consists of a set of weighted formulae and pro-
vides a way of softening first-order logic by making situations
in which not all clauses are satisfied less likely but not impos-
sible [Richardson and Domingos, 2006]. Let X be the set
of all propositions describing a world (i.e., all ground liter-
als in the domain), F be the set of all clauses in the MLN,
wi be the weight of clause fi, Gfi

be the set of all possi-
ble groundings of clause fi, and Z be the normalizing parti-
tion function. Then the probability of a particular truth as-

1We assume the domains contain no logical functions.

signment x to X is given by the formula P (X = x) =
1
Z exp

(∑
fi∈F wi

∑
g∈Gfi

g(x)
)

. The value of g(x) is 1 if

ground clause g is satisfied and 0 otherwise.

The TAMAR algorithm [Mihalkova et al., 2007], which
transfers MLNs by mapping and revising them, is the most
closely related to this work. We will review the mapping
portion of TAMAR, which we call MTAMAR and to which
we compare SR2LR. MTAMAR uses the concept of a type-
consistent mapping. A mapping of a source clause to the tar-
get domain implies a correspondence from the source predi-
cates in the clause to a subset of the target predicates. Such a
correspondence between a source predicate and a target pred-
icate implicitly defines a mapping between the types of the ar-
guments of the two predicates. A mapping is type-consistent
if, within a clause, a type in the source domain is mapped to
at most one type in the target domain. MTAMAR maps each
source clause independently of the others by evaluating all
possible type-consistent mappings with the weighted pseudo
log-likelihood score from [Kok and Domingos, 2005]. This
measure assumes that at least one full target mega-example is
provided and uses the closed-world assumption to conclude
that ground facts not listed as true in the data are false. Re-
vising an MLN given the limited target data assumed in our
setting is infeasible. Thus, we will not use the revision por-
tion of TAMAR, and SR2LR does not perform revision.

3 The SR2LR Algorithm

We first describe the algorithm for the extreme single-entity-
centered setting, in which information about only one entity
is available. Then we generalize to more than one entity.
More precisely, for now we assume that the data lists all true
atoms concerning a central entity E, and only those atoms.
Atoms that involve E but are not listed are assumed to be
false. Atoms that do not involve E have unknown values.

SR2LR starts by producing all type-consistent mappings
(defined in Section 2) of the source clauses. The key idea of
SR2LR is to find valid source-to-target predicate correspon-
dences by directly evaluating only the mapped clauses whose
performance can be measured on the available target data and
then to use these correspondences to map clauses whose ac-
curacy cannot be directly evaluated. Mapped clauses that can
be directly evaluated are short-range; the rest are long-range.

Definition 1 A clause C is short-range with respect to an
entity of type t iff there exists a variable v that appears in
every literal of C and v represents arguments of type t. A
clause is long-range with respect to E iff it is not short-range.

As an example, suppose we would like to transfer the MLN
in Fig. 2 using the data in Fig. 3, i.e., transfer from a movie
domain to an academic domain. Let us consider one pos-
sible type-consistent mapping of the first clause in Fig. 2,
which is given in line 1.1 of Fig. 4. Note that variable a
appears in both literals of this clause. Therefore, the clause
is short-range. The truth value of any grounding such that
a = Bob can be directly evaluated from the data. However,
if we use the substitution a = Ann, b = Bob, the result-
ing grounding cannot be evaluated because the truth-value
of is-professor(Ann) is unknown. We say that the first
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1 0.7 : worked-for(a, b) ⇒ ¬is-director(a)
2 0.8 : in-movie(m, a) ∧ in-movie(m, b) ∧is-director(b) ⇒ worked-for(a, b)

Figure 2: Source MLN
is-student(Bob), written-by(Paper1, Bob),

written-by(Paper2, Bob) , advised-by(Bob, Ann)

Figure 3: Target domain data centered around Bob. All listed atoms

are true; atoms about Bob that are not listed are false; the remaining

atoms have unknown values.

grounding is verifiable, whereas the second is not. Now con-
sider one possible mapping of the second clause in Fig. 2,
given in line 2.1 of Fig. 4. This clause concerns relations that
go beyond just a single entity, e.g., about papers written by
other people and is therefore long-range.

Algorithm 1 formally describes SR2LR. In line 1, the
weight of a mapped clause is set to the weight of the source
clause from which it was mapped. Because of limited target
data, we do not attempt to re-learn weights or to revise the
mapped clauses.2 In line 3, the short-range mapped clauses
are evaluated, as described in Algorithm 2, which checks
whether the verifiable groundings of short-range clauses are
satisfied in the target data. Clauses that are satisfied at least Θ
proportion of the time are accepted; the rest are rejected. This
procedure automatically rejects clauses that are not informa-
tive. A short-range clause is informative with respect to a
single-entity-centered example if it has a verifiable grounding
in which at least one ground literal is false. Intuitively, a
clause is uninformative if, in every possible re-writing of the
clause as an implication, the premises are never satisfied,
and so the clause is always trivially true. For example,
consider the clause is-student(a) ∨ ¬advised-by(b, a),
which has two verifiable groundings corresponding to the
substitutions a=Bob, b=Ann, and a=Bob, b=Bob. It is
not informative because all the literals in its verifiable
groundings are true. To develop intuition for the significance
of this, consider one of the groundings: is-student(
Bob) ∨ ¬advised-by(Ann, Bob). We can re-write it
as ¬is-student(Bob) ⇒ ¬advised-by(Ann, Bob)
or equivalently as advised-by (Ann, Bob) ⇒
is-student(Bob). In both cases, the premises, or an-
tecedents, of these clauses do not hold, and thus the clauses
cannot be used to draw inferences that can be tested. So,
judgements about mappings based on such clauses are likely
to be misleading.

Once the short-range clauses are evaluated, in line 5 of Al-
gorithm 1, SR2LR evaluates the long-range ones, based on the
mappings found to be useful for short-range clauses. A long-
range clause is accepted if all source-to-target predicate map-
pings implied by it either led to accepted short-range clauses
(support by evaluation) or were never considered by Algo-
rithm 2 (support by exclusion). More precisely, let CS and
CL be short-range and long-range mapped clauses respec-
tively. If the set of source-to-target predicate correspondences
implied by CS is a subset of those implied by CL, we say that
the literals of CL that appear in CS are supported by eval-
uation. A correspondence between source predicate PS and
target predicate PT is supported by exclusion with respect to
a set of mapped short-range clauses S if PS and PT do not ap-

2
MTAMAR also directly copies the weights.

1.1 advised-by(a, b) ⇒ ¬is-professor(a)
worked-for → advised-by, is-director → is-professor

1.2 advised-by(a, b) ⇒ ¬is-student(a)
worked-for → advised-by, is-director → is-student

2.1 written-by(m, a) ∧ written-by(m, b)∧
is-professor(b) ⇒ advised-by(a, b)

worked-for → advised-by, is-director → is-professor,
in-movie → written-by

2.2 written-by(m, a) ∧ written-by(m, b)∧
is-student(b) ⇒ advised-by(a, b)

worked-for → advised-by, is-director → is-student,
in-movie → written-by

Figure 4: Example mapped clauses. The predicate correspondences

used to map each clause are listed under it.

Algorithm 1 SR2LR algorithm
Input: SrcMLN: Source Markov logic network

TE: Target data centered on the entity E
P : Set of predicates in the target domain

Θ: Truth threshold for accepting a short-range clause

Procedure:

1: Generate TarMap, the set of all possible type-consistent mappings of the clauses in

SrcMLN. Each mapped clause gets the weight of its corresponding source clause.

2: Split the clauses in TarMap into sets of short-range clauses, S, and long-range

clauses, L.

3: S′ = filter-short-range(S, Θ) (Algorithm 2)

4: Add all clauses from S′ to Result

5: L′ = filter-long-range(L, S′) (Algorithm 3)

6: Add all clauses from L′ to Result

7: Let AC be the set of all clauses in Result mapped from source clause C with

weight wC .

8: Set the weight of each a ∈ AC to wC/|AC |.

pear in any of the source-to-target predicate correspondences
implied by the clauses in S. The goal of support by exclusion
is to allow for predicates that do not appear in the short-range
clauses to be mapped. Although support by exclusion may
seem too risky, i.e., if a pair of completely unrelated source
and target predicates are mapped to each other, in our experi-
ence the type consistency constraint and the requirement that
neither of the predicates was mapped to any other predicate
were strong enough to safeguard against this.

We now illustrate Algorithm 1 up to line 7. Fig. 4 lists some
mappings of the clauses in Fig. 2, along with the source-to-
target predicate correspondences implied by them. Clauses
1.1 and 1.2 are (informative) short-range, and 2.1 and 2.2
are long-range. Let Θ = 1. All verifiable groundings of
clause 1.1 are satisfied by the target data (given in Fig. 3).
Thus, this clause is accepted and the predicate correspon-
dences found by it are useful. Clause 1.2 is rejected because
not all of its verifiable groundings are satisfied by the target
data. Thus S′ contains only clause 1.1. Moving on to the
long-range clauses, we see that predicates advised-by and
is-professor in clause 2.1 are supported by clause 1.1;
written-by is supported by exclusion, so clause 2.1 is ac-
cepted. Clause 2.2 is not accepted because there is no support
for is-student(b).

Finally, in lines 7-8 of Algorithm 1 the weight of each
mapped clause MC is divided by the number of mapped
clauses that originated from the same source clause as MC

in order to ensure that none of the source clauses dominates
the resulting model. In preliminary experiments this led to
slightly better performance. The experiments supporting this
conclusion are omitted because of space considerations.

The generalization to more than one entity is easy. The
only difference is that now we have a set of single-entity-
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Algorithm 2 filter-short-range(S, Θ)

1: S′ = ∅
2: for each C ∈ S do

3: if C is informative and the proportion of verifiable groundings of C that are true

is ≥ Θ then

4: Add C to S′

5: Return S′

Algorithm 3 filter-long-range(L,S′)

1: L′ = ∅
2: for each LR ∈ L do

3: if All literals in LR are supported either by evaluation based on the clauses in

S′ or by exclusion then

4: Add LR to L′

5: Return L′

centered training examples, and Algorithm 2 checks the va-
lidity of each short-range clause on each of the examples, ac-
cepting a clause if it holds more than Θ proportion of the time
over all examples. As more entities become known, some of
the long-range clauses become directly verifiable. However,
in preliminary experiments (not presented because of space),
we found that directly evaluating long-range clauses in this
way does not significantly help performance, i.e., additional
entities lead to improved accuracy mostly because they allow
for more reliable evaluation of the short-range clauses.

Choice of Representation The only characteristic of
MLNs crucial to SR2LR is that MLNs use first-order clauses
that are interpreted in the standard way for first-order logic,
i.e. by evaluating their truth values. SR2LR would therefore
be applicable to any relational model based on a traditional
interpretation of first-order logic, such as purely logical repre-
sentations, stochastic logic programs [Muggleton, 1996], and
MACCENT [Dehaspe, 1997]. MLNs have properties which,
while not crucial to SR2LR, contribute to its effectiveness.
In particular, the ability of MLNs to handle uncertainty al-
lows SR2LR to recover gracefully from an occasional incor-
rect predicate mapping.

4 Experiments

We first describe methodology common to all experiments
and then discuss the empirical questions we asked.

4.1 Methodology

We compared SR2LR to MTAMAR and other baselines in
three benchmark relational domains on social interactions:
IMDB, UW-CSE, and WebKb.3 IMDB is about rela-
tions in the movie business and contains predicates such as
director, actor, movie, workedUnder. The goal is
to predict the workedUnder relation, which takes two ar-
guments of type person and indicates that the first one
acted in a movie directed by the second. UW-CSE is
about interactions in an academic environment and contains
predicates such as student, professor, advisedBy,

publication. The goal is to predict the advisedBy re-
lation, which takes two arguments of type person and indi-
cates that the second one is the research advisor of the first.

The IMDB and UW-CSE domains have closely related dy-
namics, which, however, are expressed in differing represen-

3UW-CSE is available from http://alchemy.cs.

washington.edu/. IMDB and WebKb are available from
http://www.cs.utexas.edu/users/ml/mlns/.

tations. For example, in IMDB an actor and a director are
usually in a workedUnder relationship if they appear in the
credits of the same movie. Analogously, in UW-CSE a stu-
dent and a professor are typically in an advisedBy relation-
ship if they appear in the author list of the same publication.
Thus, an algorithm capable of discovering effective mappings
from the predicates of one domain to those of the other, would
be able to achieve good accuracy via transfer. This example
also demonstrates why data centered around a single entity, or
a handful of isolated entities, cannot support effective learn-
ing from scratch: one of the most useful clauses for predict-
ing advisedBy involves knowledge about the publications of
two connected entities, i.e., the advisor and the advisee.

We also used the WebKb domain, which contains pred-
icates such as student, faculty, project. Although
UW-CSE may seem more closely related to this domain than
to IMDB, in fact, WebKb does not have a predicate analo-
gous to advisedBy, which renders it much less useful for
transfer. We note that although some of the predicates occur
in more than one domain under the same name, the systems
do not use the actual predicate names. As sources, we used
MLNs learned with the BUSL algorithm, demonstrated to give
good performance in the domains we consider [Mihalkova
and Mooney, 2007]. We slightly modified BUSL to encour-
age it to learn larger models by removing the minWeight
threshold and by treating the clauses learned for each predi-
cate separately. We call these models learned. For transfer
from UW-CSE, we also used the manually coded knowledge
base provided with that data set. We call it manual4.

The results are reported in terms of two metrics: AUC-
PR and CLL, commonly used for evaluation of MLNs and in
SRL, e.g., [Kok and Domingos, 2005]. AUC-PR is the area
under the precision-recall curve. A high AUC-PR score signi-
fies that the algorithm correctly assigns a higher probability to
the true positives than to the true negatives. AUC-PR is par-
ticularly appropriate for relational domains because it focuses
on how well the algorithm predicts the few true positives and
is not misled by the large number of true negatives. CLL is
the conditional log-likelihood. We report CLL for complete-
ness; however, because we are unable to tune the weights of
the MLN on the limited target data, the CLL may be mislead-
ing. This can happen when the predicted probabilities are cor-
rectly ordered, i.e., true ground atoms have higher probability
than false ones (thus giving a high AUC-PR), but are not close
to 0 or 1 (thus giving a low CLL). At the same time, because
of the large number of true negatives, the CLL can be boosted
by predicting near 0 for every ground atom; so a model that
predicts very low probabilities has a relatively high CLL even
when these probabilities are incorrectly ordered.

We implemented SR2LR and the baselines as part of the
Alchemy system [Kok et al., 2005], and used the imple-
mentation of MTAMAR available from http://www.cs.

utexas.edu/users/ml/mlns/. Θ in Algorithm 1 was
set to 1. Inference during testing was performed on the mega-
examples other than the one supplying training data, iterating
over the available test examples. Within the same experiment,

4Source MLNs are available from http://www.cs.

utexas.edu/usrs/ml/mlns/ under SR2LR.
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all systems used the same sequence of training and testing ex-
amples. The performance of a given predicate was evaluated
by inferring probabilities for all of its groundings, given the
truth values of all other predicates in the test mega-example
as evidence. While training occurs on limited data, we test
on a full mega-example. This is appropriate because the final
goal of transfer is to obtain a model that gives effective pre-
dictions in the target domain as a whole and not just for an
isolated entity. For inference, we used the Alchemy imple-
mentation of MC-SAT [Poon and Domingos, 2006] with the
default parameter settings. Statistical significance was mea-
sured via a paired t-test at the 95% level. As a final note,
all systems we compared ran extremely efficiently and found
mappings in seconds on a standard workstation.

4.2 Overall Performance

The first set of experiments evaluates the relative accuracy of
SR2LR over all predicates in each domain in the most chal-
lenging case when information about a single entity from the
target domain is available. We formed single-entity-centered
examples by randomly selecting as the central entity 10% of
the entities of type person from each mega-example avail-
able in the target domain. This resulted in 29 entities in
IMDB, 58 in UW-CSE, and 147 in WebKb. We compared
against MTAMAR and a Scratch baseline that learns with no
transfer as follows. For every ordered pair of known atoms in
the available data, a clause is formed by having the first atom
imply the second and variablizing consistently. All clauses
obtained in this way are assigned a weight of 1. This baseline
generates a set of informative clauses (in the terminology of
Section 3) that are true in the given data.5 Thus, it can be
viewed as a variation of SR2LR that transfers only the short-
range clauses of a source model that contains of all possible
clauses of length 2.

Tables 1 and 2 list the accuracies for every possible tar-
get/source pair in terms of AUC-PR and CLL respectively.
Significant improvement (degradation) over MTAMAR is in-
dicated by a ↑ (↓), and significant improvement (degradation)
over Scratch is indicated by ↗ (↙). In terms of AUC-PR, the
more informative measure, transfer between UW-CSE and
IMDB is always beneficial over learning from scratch, and
SR2LR always has a significant advantage over MTAMAR. As
expected, transfer to or from WebKb and the other two do-
mains leads to less consistent gains and, in some cases, degra-
dation. SR2LR is competitive also in terms of CLL, although
in some cases, as discussed earlier, a model that gives sig-
nificant advantages in AUC-PR is at a disadvantage in CLL.

4.3 Focus on Specific Predicates

We have shown that, over all predicates in a domain, SR2LR

can lead to significant gains in accuracy. Next, we study in
greater detail the performance on the workedUnder predi-
cate in IMDB and advisedBy in UW-CSE, which, as ar-
gued earlier, require more data to be learned from scratch,

5If a clause has groundings that are violated by the data, then our
construction procedure guarantees that there will be another clause
with the same weight of 1, which draws the opposite conclusion.
Thus, clauses that are not always true in the data cancel each other
in pairs during inference.

Target Source MTAMAR Scratch SR2LR

IMDB UW-CSE-learned 0.327 0.276 0.452 ↑ ↗
IMDB UW-CSE-manual 0.414 0.276 0.577 ↑ ↗
IMDB WebKb-learned 0.388 0.276 0.468 ↑ ↗
UW-CSE IMDB-learned 0.115 0.108 0.188 ↑ ↗
UW-CSE WebKb-learned 0.199 0.108 0.174 ↓ ↗
WebKb IMDB-learned 0.164 0.287 0.168 ↑ ↙
WebKb UW-CSE-learned 0.297 0.287 0.295

WebKb UW-CSE-manual 0.276 0.287 0.178 ↓ ↙

Table 1: Average AUC-PR over all target domain predicates.
Target Source MTAMAR Scratch SR2LR

IMDB UW-CSE-learned -1.692 -4.575 -0.682 ↑↗
IMDB UW-CSE-manual -0.433 -4.575 -0.502 ↓↗
IMDB WebKb-learned -0.728 -4.575 -0.872 ↓↗
UW-CSE IMDB-learned -2.057 -5.708 -0.606 ↑↗
UW-CSE WebKb-learned -1.191 -5.708 -0.891 ↑↗
WebKb IMDB-learned -1.731 -3.440 -0.694 ↑↗
WebKb UW-CSE-learned -1.221 -3.440 -0.643 ↑↗
WebKb UW-CSE-manual -0.561 -3.440 -0.873 ↓↗

Table 2: Average CLL over all target domain predicates.

and are best predicted by long-range clauses. We used the
single-entity-centered instances from Section 4.2 and intro-
duced an additional SR-Only baseline that uses SR2LR to
transfer only the short-range clauses, ignoring the long-range
ones. This baseline is used to verify that transferring the long-
range clauses is beneficial. Significant improvement (degra-
dation) of SR2LR over SR-Only is indicated by a ⇑ (⇓). As
shown in Table 3, when transferring to IMDB from UW-CSE,
SR2LR outperforms significantly all other methods. SR2LR

also leads to significant gains in transfer from IMDB to UW-
CSE, although in this case SR2LR is significantly better than
SR-Only just on CLL, equalling its performance on AUC-
PR. Transferring from IMDB to UW-CSE is less beneficial
than going in the opposite direction, from UW-CSE to IMDB,
because several predicates in UW-CSE do not have analogs
in IMDB while most of IMDB’s predicates have a matching
predicate in UW-CSE. As before, transfer from the more dis-
tantly related WebKb domain produces mixed results.

4.4 Increasing Numbers of Entities

In our final set of experiments, we compared the accuracy
of SR2LR versus that of MTAMAR on workedUnder and
advisedBy, as information about more entities becomes
available. To do this, we considered 5 distinct orderings of
the constants of type person in each mega-example, and pro-
vided the first n to the systems, with n ranging from 2 to
40 in IMDB, where the smallest mega-example has 44 con-
stants of type person and from 2 to 50 in UW-CSE, where
the smallest mega-example has 56 such constants. Each point
on the curves is the average over all training instances with
that many known entities. The results in terms of AUC-PR
are shown in Fig. 5. These curves mirror the CLL results,
which are omitted for space. As can be seen, SR2LR main-
tains its effectiveness even as more data becomes available.
Surprisingly, MTAMAR’s performance actually decreases as
more entities become known. This is due to the fact that a
larger number of known entities translates to a larger num-
ber of possible relations among them. If the known entities
are disconnected, MTAMAR does not observe any instances
in which mappings of the long-range clauses are helpful and
therefore rejects them. Instead, it accepts mappings of the
short-range clauses for which there is more evidence of use-
fulness. SR2LR is not susceptible to this because it treats
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Source MTAMAR SR-only Scratch SR2LR

UW-CSE-manual 0.726 0.339 0.032 0.982 ↑ ⇑ ↗
UW-CSE-learned 0.024 0.215 0.032 0.239 ↑ ⇑ ↗
WebKb-learned 0.025 0.023 0.032 0.023 ↓ ↙

Source MTAMAR SR-only Scratch SR2LR

IMDB-learned 0.010 0.030 0.008 0.030 ↑ ↗
WebKb-learned 0.007 0.007 0.008 0.007 ↙

Table 3: AUC-PR for workedUnder in IMDB (top) and

advisedBy in UW-CSE (bottom).
Source MTAMAR SR-only Scratch SR2LR

UW-CSE-manual -0.084 -0.066 -6.488 -0.037 ↑ ⇑ ↗
UW-CSE-learned -0.385 -0.695 -6.488 -0.727 ↓ ⇓ ↗
WebKb-learned -0.728 -0.700 -6.488 -0.700 ↑↗

Source MTAMAR SR-only Scratch SR2LR

IMDB-learned -1.767 -0.295 -5.542 -0.280 ↑ ⇑ ↗
WebKb-learned -0.757 -0.696 -5.542 -0.696 ↑↗

Table 4: CLL for workedUnder in IMDB (top) and advisedBy

in UW-CSE (bottom).

long-range and short-range clauses separately. This effect is
not observed in the smaller IMDB domain where randomly
chosen entities are much less likely to be disconnected.

5 Related Work

This paper is most closely related to [Mihalkova et al., 2007]

and [Davis and Domingos, 2008], in that it also considers
transfer of MLNs. However, both of these earlier works as-
sume at least one full target domain mega-example is pro-
vided. Mapping source knowledge to a target domain is
also addressed by the structure-mapping engine (SME) [For-
bus and Oblinger, 1990]. SME evaluates predicate mappings
based on a syntactic, structural criterion called systematicity
and does not consider the accuracy of the resulting inferences
in the target data. By contrast, TAMAR and SR2LR evaluate
mappings primarily based on whether they produce empiri-
cally adequate clauses in the target domain.

6 Conclusion and Future Work

We presented SR2LR, an effective algorithm for mapping
knowledge when target domain data is extremely limited and
consists of a handful of disconnected entities, in the extreme
case just one. This setting has not been studied before despite
the fact that successful transfer could have the greatest im-
pact in it. Our experiments demonstrate SR2LR’s significant
improvements over MTAMAR, which, unlike SR2LR, does not
have a mechanism for coping with the large amount of miss-
ing data, as well as over other baselines.

In the future, we plan to experiment with novel ways of
mapping source knowledge, such as mapping different arity
predicates to one another, as well as mapping the arguments
in different orders. Finally, we would like to explore ways
of mapping a conjunction of two source predicates to a sin-
gle target predicate and vice versa, thus performing a sort of
transfer-motivated predicate invention.
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Figure 5: Accuracy on increasing amounts of data on

workedUnder (left) and advisedBy (right).
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