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Abstract

In this paper, we propose a new spectral clustering
method, referred to as Spectral Embedded Clus-
tering (SEC), to minimize the normalized cut cri-
terion in spectral clustering as well as control the
mismatch between the cluster assignment matrix
and the low dimensional embedded representation
of the data. SEC is based on the observation that
the cluster assignment matrix of high dimensional
data can be represented by a low dimensional lin-
ear mapping of data. We also discover the connec-
tion between SEC and other clustering methods,
such as spectral clustering, Clustering with local
and global regularization, K-means and Discrimi-
native K-means. The experiments on many real-
world data sets show that SEC significantly out-
performs the existing spectral clustering methods
as well as K-means clustering related methods.

1 Introduction

Clustering is a fundamental task of many machine learning,
data mining and pattern recognition problems. Clustering
aims at grouping the similar patterns into the same cluster,
and discovering the meaningful structure of the data [Jain
and Dubes, 1988]. In the past decades, many clustering al-
gorithms have been developed such as K-means clustering,
mixture models [McLachlan and Peel, 20001, spectral cluster-
ing [Ng et al., 2001; Shi and Malik, 2000; Yu and Shi, 2003],
support vector clustering [Ben-Hur er al., 2001], and maxi-
mum margin clustering [Xu et al., 2005; Zhang et al., 2007,
Li et al., 2009].

It is a challenging task to partition the high dimensional
data into different clusters. In practice, many high dimen-
sional data may exhibit dense grouping in a low dimensional
space. Hence, the researchers usually first project the high di-
mensional data onto the low dimensional subspace via some
dimension reduction techniques such as Principle Component
Analysis (PCA). To achieve better clustering performance,

*This material is based upon work funded by Singapore Na-
tional Research Foundation Interactive Digital Media R&D Program
(Grant No. NRF2008IDM-IDM-004-018) and NSFC (Grant No.
60835002).
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several works have been proposed to perform K-means clus-
tering and dimension reduction iteratively for high dimen-
sional data [la Torre and Kanade, 2006; Ding and Li, 2007;
Ye et al., 2007]. Recently, [Ye et al., 2008] proposed Dis-
criminative K-means (DisKmeans) to unify the iterative pro-
cedure of dimension reduction and K-means clustering into a
unified trace maximization problem. The improved clustering
performance was also demonstrated, when compared with the
standard K-means. However, DisKmeans did not consider the
geometry structure (a.k.a. manifold) of the data.

The use of manifold information in Spectral Clustering
(SC) has shown the state-of-the-art clustering performance
in many computer vision applications, such as segmenta-
tion [Shi and Malik, 2000; Yu and Shi, 2003]. But, the exist-
ing SC methods did not map the data into the low dimensional
space for clustering. In this paper, we first show that the clus-
ter assignment matrix of data can be represented by a low
dimensional linear mapping of data, when the dimensionality
of data is high enough. Thereafter, we explicitly incorporate
this prior knowledge into spectral clustering. More specifi-
cally, we minimize the normalized cut criterion in SC as well
as control the mismatch between the cluster assignment ma-
trix and the low dimensional embedded representation of the
data. The proposed clustering method is then referred to as
Spectral Embedded Clustering (SEC).

The rest of this paper is organized as follows. Section 2
first revisit the Spectral Clustering and the cluster assignment
methods. Our proposed method is presented in Section 3.
Connections to other clustering methods are discussed in Sec-
tion 4. Experimental results on real-world data sets are re-
ported in Section 5 and the conclusion remarks are given in
Section 6.

2 Brief Review of Spectral Clustering

Given a data set X = {x;}} ;, clustering is to partition X’
into c clusters. Denote the cluster assignment matrix by ¥ =
[Y1,Y2, o, yn)T € B"XC, where y; € B*1(1 < i < n) is the
cluster assignment vector for the pattern ;. The j-th element
of y; is 1, if the pattern x; is assigned to the j-th cluster; 0,
otherwise. The main task of a clustering algorithm is to learn
the cluster assignment matrix Y. Clustering is a non-trivial
problem because Y is constrained as integer solution. In this
Section, we first revisit spectral clustering method and the
techniques to obtain the discrete cluster assignment matrix.



2.1 Spectral Clustering

Since last decade, Spectral Clustering (SC) has attracted
much attention. Several algorithms have been proposed
in the literature [Ng et al, 2001; Shi and Malik, 2000;
Yu and Shi, 2003]. Here, we focus on the spectral cluster-
ing algorithm with k-way normalized cut [Yu and Shi, 2003].

Letusdenote G = {X, A} as an undirected weighted graph
with a vertex set X' and an affinity matrix A € R™*", in
which each entry A;; of the symmetric matrix A represents
the affinity of a pair of vertices. The common choice of A;;
is defined by

[
2

A — { exp (— = ) x; and x; are neighbors;
ij = 0

where o is the parameter to control the spread of neighbors.
The graph Laplacian matrix L is then definedby L = D — A,
where D is a diagonal matrix with the diagonal elements as
D;; = Zj A;;,V i. Let us denote tr(A) as the trace oper-
ator of a matrix A. The minimization of the normalized cut
criterion can be transformed to the following maximization
problem [Yu and Shi, 2003]:

otherwise,

max tr(ZTAZ), (2)

ZTDZ=I

where Z = Y/(YT DY)~ 1/2,

Let us define a scaled cluster assignment matrix F' by
F=D'?z=D"?Y(Y"DY) /? = f(V).
Then the objective function (2) can be rewritten as:
max tr(FTD™Y2AD™1/2F). 3)
FTF=]

where F = DY2Y(YTDY)~'/2. Note that the elements
of F' are constrained to be discrete values, which makes the
problem (3) hard to solve.A well-known solution to this prob-
lem is to relax the matrix F' from the discrete values to the
continuous ones. Then the problem becomes:
max tr(FTKF),
FTF=]

where K = D~1/2AD=1/2,

The optimal solution of problem (4) can be obtained! by
the eigenvalue decomposition of the matrix /. Based on the
relaxed continuous solution, the final discrete solution is then
obtained by K-means or spectral rotation.

2.2 Cluster Assignment Methods

With the relaxed continuous solution F' € R™*¢ from spectral
decomposition, K-means or spectral rotation can be used to
calculate the discrete solution Y € B¢,

K-Means

The input to K-means clustering is n points, in which the -
th data point is the i-th row of F'. The standard K-means
algorithm is performed to obtain the discrete-valued cluster
assignment for each pattern. [Ng et al., 2001] used this tech-
nique for assigning cluster labels.

“

'A trivial eigenvector DY?1 corresponding to the largest eigen-
value of K is removed in spectral clustering.

1)
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Spectral Rotation
Note that the global optimal F' of the optimization problem
(4) is not unique. Let F* € R™*¢ be the matrix whose
columns consist of top ¢ eigenvectors of K and R € R¢*¢
be an orthogonal matrix. Then F' can be F'* R for any R. To
obtain the final clustering result, we need to find a discrete-
valued cluster assignment matrix which is close to F'*R. The
work in [Yu and Shi, 2003] also defined a mapping to obtain
the corresponding Y *:

Y* — f—l(F*) _ Diag(F*F*T)_l/2F*,
where Diag(M) denotes a diagonal matrix with the same
size and the same diagonal elements as the square matrix M.
It can be easily verified that f~1(F*R) = Y*R.

As F* R is the optimal solution to the relaxed problem (4)
for arbitrary orthogonal matrix 2, a suitable R should be se-
lected such that Y* R is closest to a discrete cluster assign-
ment matrix Y. The optimal R and Y are then obtained
by solving the following optimization problem [Yu and Shi,
2003]:

min |V —Y*R|?
Y €Bnxc,REReXe
Yi.=1,, RTR=1,

where 1. and 1,, denote the ¢ x 1 and n x 1 vectors of all 1’s
respectively. [Yu and Shi, 2003] used this technique to obtain
the cluster assignment matrix by iteratively solving Y and R.

subject to

3 Spectral Embedded Clustering

Denote the data matrix by X = [z1,z2,...,2,] € R¥",
For simplicity, we assume the data is centered, i.e. X1,, = 0.
Let us define the total scatter matrix S;, the between-cluster
scatter matrix .S and the within-cluster scatter matrix S,, as:

S, =XXT, (%)
S, = XGGTXT, (6)
Sw=XXT - XGGTXT, (7

where G = Y (YTY)71/2 and Y is defined as in Section 2.
It is easy to verify that GTG = I.

In next subsections, we will introduce our proposed clus-
tering method, referred to as Spectral Embedded Clustering
(SEC).

3.1 Low Dimensional Embedding for Cluster
Assignment Matrix

Traditional SC methods partition data based only on the man-
ifold structure of data. However, when the manifold is not
well-defined, the SC method may not perform well. To im-
prove the clustering performance, we will apply the following
theorem in the design of SEC 2

Theorem 1. If rank(Sh) ¢ — 1 and rank(S:)
rank(Sw) + rank(Sy), then the true cluster assignment ma-
trix can be represented by a low dimensional linear mapping
of the data, that is, there exist W € R and b € R°*! such
thatY = XTW + 1,b7.

’Due to the space limitation, we omit the proof of this
theorem in the paper.  The proof can be downloaded at:
http://feipingnie.googlepages.com/ijcai09_clustering_proof.pdf.



As noted in [Ye, 2007], the conditions in Theorem 1 are
usually satisfied for the high-dimensional and small-sample-
size problem, which is usually the case in many real-world
applications. According to Theorem 1, the true cluster as-
signment matrix can be always embedded into a low dimen-
sional linear mapping of the data. To utilize such constraints,
we explicitly add a new regularizer into the objective function
in SEC.

3.2 Proposed Formulation
In spectral clustering, the optimization problem (4) is equiv-
alent to the following problem:

min tr(FTLF),
FTF=I

®)

where L = D=2LD~2 = [ —D~2 AD" 2 is the normalized
Laplacian matrix.

In addition, we expect that the learned F’ is close to a linear
space spanned by the data X . To this end, we propose to solve
the following optimization problem:

min

FTF=I,W,b

©))
where p and v are two tradeoff parameters to balance three
terms. In (9), the first term reflects the smoothness of data
manifold; while the third term characterizes the mismatch be-
tween the relaxed cluster assignment matrix F' and the low
dimensional representation of the data.

3.3 Detailed Algorithm

To obtain the optimal solution to (9), we set the derivatives of
the objective function with respect to b and W' to zeros. Note
that the data are centered, i.e, X1,, = 0. Then we have:

1
b=—F"1, and W=~rXXT+1)"'XF. (10)
n

Replacing W and b in (9) by (10), the optimization problem
(9) becomes:

FU(L+pyHe— py* XT (X X+ )71 X)F, (11)
I

min
FTF=
where H. = I — %1,115 is the centering matrix. The global
optimal solution F™* to (11) can be obtained by eigenvalue
decomposition. The columns of F™* are from the bottom c
eigenvectors of the matrix L+ pyHe — py? XT(yX XT +
I )_1X . Based on F'*, the discrete-valued cluster assignment
matrix can be obtained by K-means or spectral rotation. The
details of the proposed SEC are outlined in Algorithm 1.

4 Connections to Prior Work

In this Section, we discuss the connection between SEC and
Spectral Clustering, Clustering with Local and Global Regu-
larization, K-means and Discriminative K-means.

4.1 Connection between SEC and Spectral
Clustering

SEC reduces to spectral clustering, if s is set as zero. There-
fore spectral clustering is a special case of SEC.

tr(FTLE)+pu(trWT W4~ X TW 41,07 - F|)?),

1183

Algorithm 1 : The algorithm of SEC

Given a sample set X = [z, z2,...
number of clusters c.

1: Compute the normalized Laplacian matrix L.

2: Solve (11) with eigenvalue decomposition and obtain the
optimal F™.
Based on F™*, compute the discrete cluster assignment
matrix Y by using K-means or spectral rotation.

,Tn] € RT*™ and the

3:

4.2 Connection between SEC and Clustering with
Local and Global Regularization

Recently, [Wang et al., 2007] proposed Clustering with Local
and Global Regularization (CLGR), which solves the follow-
ing problem:

min tr(FT(L + pL)F),

12
FTF=] (12)

where L; is another Laplacian matrix constructed using local
learning regularization [Wu and Schélkopf, 2007].

Let us denote the cluster assignment matrix F
(1, fu]T € R™¥¢. We also define the k neighbors of x;
as N(.”L‘l) = {.”L'il, ...,l‘ik}, X; = [.’L‘il, ,LL‘lk] S R4*k and
F; = [fi,, .., fi]T € R¥*¢ Inlocal learning regularization,
for each x;, a locally linear projection W; € R4*¢ is learned
by minimizing the following structural risk functional [Wang
etal.,2007]:

- T en2 Ty
min > |[Wy = Sl 4yt (WIW),
z; EN ()

One can obtain the closed form solution for W:

W; = (Xo X + 1) X, F;. (13)

After all the locally linear projections are learnt, the cluster
assignment matrix F' can be found by minimizing the follow-
ing criterion:

JE) =" =T wi = |2 (14)

Substituting (13) back to (14), we have
J(F) =tr(F'(N - 1)"(N - I)F) = tr(FTL,F),

where L; = (N —I)T(N —I)and N € R™ " with its (i, j)-
th entry as:

N _{ at, if zj € N(z;) and j=in(h=1,..
ij =

0, otherwise;

in which a! denotes the h-th entry of a’
I ) ¢ i

One can observe that L + pL; in (12) is also a Laplacian
matrix, and so CLGR is just one variant of SC, which com-
bines the objectives of spectral clustering and the clustering
using local learning regularization in (14). Therefore, CLGR
is also a spectral case of SEC when L + pL; is used in (8).

It is worthwhile to mention that our SEC is fundamentally
different from CLGR in the following two aspects: 1) CLGR
uses two-step approach to learn the linear regularized models

k)



and the cluster assignment matrix. First, it calculates a series
of local projection matrices W;(i = 1,...,n) and then ob-
tains the cluster assignment matrix F' using (12). In contrast,
SEC solves the global projection matrix W and the cluster
assignment matrix F' simultaneously. 2) It is unclear how to
use CLGR to cope with the new-coming data. In contrast, the
global projection matrix W in SEC can be used for clustering
new-coming data.

4.3 Connection between SEC and K-means

K-means is a simple and frequently used clustering algorithm.
As shown in [Zha et al., 2001], the objective of K-means is to
minimize the following criterion:
min tr(S,) = min tr(XXT - XGGTXT) (15)
GTG=1 GTG=I
where G is defined as in (6). The problem (15) is simplified
as the following problem:
max tr(GTXTXG@).
GTG=I
Traditional K-means uses an EM-like iterative method to
solve the above problem. The spectral relaxation can also
be used to solve the K-means problem [Zha et al., 2001].

We will prove that the objective function of the proposed
SEC reduces to that of K-means, when v — 0 and py — oo
in SEC. The objective function of SEC in (11) is equivalent
to the following optimization problem:

max FT(K + "11,17 + py2XT(vX X7 + 1) X)F,
FTF=I n (17)

(16)

where K is the same matrix as in (4).
When py — oo, (17) reduces to:

1
T(ﬁ1n1£ +XT(vXXT +1)"1X)F.

This problem has a trivial solution 1,, corresponding to the
largest eigenvalue of the matrix 21,17 + v X7 (v X X7 +
I)_lX. Therefore, we add a new constraint F71,, = 0:

max
FTF=I,FT1,=0

& max FIXT(yXXT+ 1) ' X)F

FTF=I,FT1,,=0

& max FI(XT(yXX"+1)7'X)F. (1
FTF=I

When v — 0, the optimization problem in (18) reduces to

the optimization problem in (16). Therefore, the objective

function of SEC reduces to that of K-means algorithm, if y —

0 and py — oo.

4.4 Connection between SEC and Discriminative
K-means

Subspace clustering methods were proposed to learn the low-
dimensional subspace and data cluster simultaneously [Ding
et al., 2002; Li et al., 2004], possibly because high dimen-
sional data may exhibit dense grouping in a low dimen-
sional space. For instances, Discriminative Clustering meth-
ods solve the following optimization problem:

max tr(WT(vS; + W) 'WT S, W, (19)

1
FT(=1,17 4 A XT(vXXT + )71 X)F
n

8)
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where S; and S}, are defined in (5) and (6), respectively.

There are two sets of variables, the projection matrix W
and the scaled cluster assignment matrix G, in (19). Most
of the existing works optimize W and G iteratively [la Torre
and Kanade, 2006; Ding and Li, 2007; Ye et al., 2007]. How-
ever, a recent work Discriminative K-means [Ye et al., 2008]
simplified (19) by optimizing G only, which is based on the
following observation [Ye, 2005]:

tr(WT (S + W) 'TWES,W < tr(yS; +1)71S,, (20)

where the equality holds when W = V M, and V is com-
posed of the eigenvectors of (vS; + I)~1S, corresponding
to all the nonzero eigenvalues, M is an arbitrary nonsingular
matrix.

Based on (20), the optimization problem (19) can be sim-
plified as:
21

Replacing (5) and (6) into (21) and adding the constraint
GTG = I in (21), we arrive at:

max trGT(XT(vXXT + 1)1 X)G. (22)
TG=]

Recall that (17) reduces to (18) in SEC, when v is a
nonzero constant and p — oco. We also observe that the op-
timization problem (18) in SEC and (22) in Discriminative
K-means [Ye et al., 2008] are exactly the same. Therefore,
when ;1 — oo, SEC reduces to Discriminative K-means al-
gorithm, if the spectral relaxation is used to solve the cluster
assignment matrix in Discriminative K-means algorithm.

In addition, we observe that K-means and Discriminative
K-means will lead to the same results, if the spectral relax-
ation is used to solve the cluster assignment matrices. Note
that XT (v X XT +1)71X = %I - %(7XTX + I)~!. Thus
XT(yXXT + 1)~ X in the optimization problem (22) and
XTX in the optimization problem (16) have the same top
c eigenvectors. The results from K-means and Discrimina-
tive K-means are reported to be different because EM-like
method is used to solve the cluster assignment matrices of
the optimization problem in (16) and (22) for K-means and
Discriminative K-means respectively.

mgxtr(wst +1)71S,.

S Experiments

In this Section, we compare the proposed Spectral Embed-
ded Clustering (SEC) with Spectral Clustering (SC) [Yu and
Shi, 2003], CLGR [Wang et al., 2007], K-means (KM) and
Discriminative K-means(DKM) [Ye ez al., 2008]. We employ
the spectral relaxation + spectral rotation to compute the as-
signment matrix for SEC, SC and CLGR. For KM and DKM,
we still use the EM-like method to assign cluster labels as in
[Ye et al., 2008]. We also implement K-means and Discrim-
inative K-means by using the spectral relaxation + spectral
rotation for cluster assignment. As K-means and Discrimina-
tive K-means turn to the same when the spectral relaxation is
used, we denote the results as KM-r in this work.

5.1 Experimental Setup

Eight data sets are used in the experiments, including two
UCTI data sets, Iris and Vote?, one object data set, COIL-20,

*http://www.ics.uci.edu/ mlearn/MLRepository.html



Table 1: Dataset Description.

Dataset Size | Dimensions | Classes
Iris 150 4 3
Vote 435 16 2
COIL-20 1440 1024 20
UMIST 575 644 20
AT&T 400 644 40
AR 840 768 120
YALE-B 2414 1024 38
CMU PIE || 3329 1024 68

and five face data sets, UMIST, AT&T, AR, YALE-B and
CMU PIE. Some data sets are resized, and Table 1 summa-
rizes the details of the datasets used in the experiments.

SC and SEC need to determine the parameter o in (1). In
this work, we use the self-tune spectral clustering [Zelnik-
Manor and Perona, 2004] method to determine the parameter
o. We also need to set the regularization parameters for SEC,
CLGR and DKM beforehand. For fair comparison, we set
the parameter v in SEC and CLGR as 1, and set the param-
eter 1 in SEC and CLGR, and the parameter v in DKM as
{1071°,1077,107%,107 1,102, 10%, 108}. We report the best
clustering result from the best parameter for SEC, CLGR and
DKM.

The results of all clustering algorithms depend on the ini-
tialization (either EM-like or the spectral rotation). To reduce
statistical variety, we independently repeat all clustering al-
gorithms for 50 times with random initialization, and then we
report the results corresponding to the best objective values.

5.2 Evaluation Metrics

We use the following two popular evaluation metrics to eval-
uate the performance for all the clustering algorithms.
Clustering Accuracy (ACC) is defined as:

ACC — Zi:l 6(113 map(cl))

n

)

where [; is the true class label and ¢; is the obtained cluster la-
bel of x;, 6(x, y) is the delta function, and map(-) is the best
mapping function. Note 6(z,y) = 1, ifx = y; 0(z,y) = 0,
otherwise. The mapping function map(-) matches the true
class label and the obtained cluster label and the best map-
ping is solved by Kuhn-Munkres algorithm. A larger ACC
indicates a better performance.

Normalized Mutual Information (NMI) is calculated by:

MI(C,C)
max(H(C), H(C"))’

where C is a set of clusters obtained from the true labels and
(" is a set of clusters obtained from the clustering algorithm.
MI(C,C") is the mutual information metric, and H(C') and
H(C") are the entropies of C' and C” respectively. See [Cai
et al., 2005] for more information. NMI is between 0 and 1.
Again, a larger NMI value indicates a better performance.

NMI =

5.3 Experimental Results

The clustering results from various algorithms are reported in
Table 2 and Table 3. Moreover, the results of SEC with differ-
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Table 2: Performance comparison of clustering accuracy
from KM, DKM, KM-r, SC, CLGR and SEC on eight
databases.

KM || DKM | KM-r | SC | CLGR | SEC
Iris 89.3 89.3 76.0 74.6 | 78.0 | 90.0
Vote 83.6 83.9 78.8 669 | 68.3 82.3
COIL-20 69.5 66.6 582 || 725 | 79.8 80.6
UMIST 45.7 42.8 50.9 60.3 61.5 63.3
AT&T 60.8 66.2 68.7 747 | 715 84.2
AR 30.7 51.5 69.8 38.8 | 429 71.6
YALE-B 11.9 30.3 45.8 45.6 | 459 51.8
CMUPIE || 17.5 47.9 65.7 46.2 | 5109 70.1

Table 3: Performance comparison of normalized mutual in-
formation from KM, DKM, KM-r, SC, CLGR and SEC on
eight databases.

KM || DKM | KM-r SC | CLGR | SEC
Iris 75.1 75.1 58.0 53.3 54.6 77.0
Vote 37.0 374 29.1 14.8 18.3 35.3
COIL-20 78.5 78.6 73.6 87.3 89.2 90.7
UMIST 65.4 66.0 67.6 80.5 81.2 81.6
AT&T 80.7 81.8 82.9 87.1 89.6 90.4
AR 66.3 75.2 86.5 71.0 | 71.8 87.3
YALE-B 17.9 40.8 57.2 66.5 66.6 67.6
CMU PIE || 39.7 68.9 80.6 62.8 68.1 82.1

ent 1+ and DKM with different ~y are also shown in Figure 1.
We have the following observations:

1) When the traditional EM-like technique is used in KM and
DKM to assign cluster labels, DKM and KM lead to different
results. In some data sets, DKM significantly outperforms
KM. But DKM is slightly worse than KM in other data sets.
2) When EM-like and spectral relaxation + spectral rotation
methods are used to solve the cluster assignment matrix for
the same clustering algorithm (KM or DKM)), there is no con-
sistent winner on all the databases.

3) CLGR sightly outperforms SC in all the cases. SC and
CLGR significantly outperform KM and DKM in some cases,
but they are also significantly worse in other cases.

4) Our method SEC outperforms KM, DKM, KM-r, SC and
CLGR in most cases. For the image datasets (such as AR
and CMU PIE) with strong lighting variations, we observe
significant improvement of SEC over SC and CLGR. Even
for the dataset with clear manifold structure such as COIL-20
and UMIST, SEC is still better than SC and CLGR.

5) For low dimensional data sets (e.g., Iris and Vote), SEC
is slightly better than DKM with some range of parameters
1, and DKM slightly outperforms SEC with other range of
parameters . However, for all high dimensional data sets,
SEC outperforms DKM in most range of parameters ( in term
of both ACC and NMI.

6 Conclusions

Observing that the cluster assignment matrix can always be
represented by a low dimensional linear mapping of the high-
dimensional data, we propose Spectral Embedded Clustering
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Figure 1: Clustering Performance of SEC with v = 1 and different  and DKM with different . The horizontal axis is shown

in log space.

(SEC) to minimize the objective function of spectral cluster-
ing as well as control the mismatch between the cluster as-
signment matrix and the low dimensional representation of
data. We also prove that spectral clustering, CLGR, K-means
and Discriminative K-means are all the special cases of SEC
in terms of the objective functions. The exhaustive exper-
iments on eight data sets show that SEC generally outper-
forms the existing spectral clustering methods, K-means and
Discriminative K-means.

References

[Ben-Hur er al., 2001] A. Ben-Hur, D. Horn, H.T. Siegelmann, and
V. Vapnik. Support vector clustering. 2:125-137, 2001.

[Cai et al., 2005] Deng Cai, Xiaofei He, and Jiawei Han. Docu-
ment clustering using locality preserving indexing. IEEE Trans.
Knowl. Data Eng., 17(12):1624-1637, 2005.

[Ding and Li, 2007] Chris H. Q. Ding and Tao Li. Adaptive dimen-
sion reduction using discriminant analysis and -means clustering.
In ICML, pages 521-528, 2007.

[Ding er al., 2002] Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha,
and Horst D. Simon. Adaptive dimension reduction for clustering
high dimensional data. In ICDM, pages 147-154, 2002.

[Jain and Dubes, 1988] A.K. Jain and R.C. Dubes. Algorithms for
Clustering Data. Prentice Hall, Englewood Cliffs, NJ, 1988.

[1a Torre and Kanade, 2006] Fernando De la Torre and Takeo
Kanade. Discriminative cluster analysis. In /ICML, pages 241—
248, 2006.

[Li er al., 2004] Tao Li, Sheng Ma, and Mitsunori Ogihara. Docu-
ment clustering via adaptive subspace iteration. In SIGIR, pages
218-225, 2004.

[Li et al., 2009] Y.Li, LW. Tsang, J. T. Kwok, and Z. Zhou. Tighter
and convex maximum margin clustering. In AISTATS, 2009.

[McLachlan and Peel, 20001 G. McLachlan and D. Peel.
Mixture Models. John Wiley & Sons, New York, 2000.

Finite

[Ng et al., 2001] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss.
On spectral clustering: Analysis and an algorithm. In NIPS,
pages 849-856, 2001.

[Shi and Malik, 2000] Jianbo Shi and Jitendra Malik. Normalized
cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 22(8):888-905, 2000.

[Wang er al., 2007] Fei Wang, Changshui Zhang, and Tao Li. Clus-
tering with local and global regularization. In AAAI, pages 657—
662, 2007.

[Wu and Scholkopf, 2007] M. Wu and B. Schélkopf. Transductive
classification via local learning regularization. In AISTATS, pages
628-635, 03 2007.

[Xu et al., 2005] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans.
Maximum margin clustering. Cambridge, MA, 2005. MIT Press.

[Ye et al., 2007] Jieping Ye, Zheng Zhao, and Huan Liu. Adaptive
distance metric learning for clustering. In CVPR, 2007.

[Ye er al., 2008] Jieping Ye, Zheng Zhao, and Mingrui Wu. Dis-
criminative k-means for clustering. In Advances in Neural Infor-
mation Processing Systems 20, pages 1649-1656. 2008.

[Ye, 2005] Jieping Ye. Characterization of a family of algorithms
for generalized discriminant analysis on undersampled problems.
Journal of Machine Learning Research, 6:483-502, 2005.

[Ye, 2007] Jieping Ye. Least squares linear discriminant analysis.
In ICML, pages 1087-1093, 2007.

[Yu and Shi, 2003] Stella X. Yu and Jianbo Shi. Multiclass spectral
clustering. In ICCV, pages 313-319, 2003.

[Zelnik-Manor and Perona, 2004] Lihi Zelnik-Manor and Pietro
Perona. Self-tuning spectral clustering. In NIPS, 2004.

[Zha et al., 2001] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding,
Ming Gu, and Horst D. Simon. Spectral relaxation for k-means
clustering. In NIPS, pages 1057-1064, 2001.

[Zhang et al., 2007] K. Zhang, I.W. Tsang, and J.T. Kwok. Maxi-
mum margin clustering made practical. In /ICML, Corvallis, Ore-
gon, USA, June 2007.

1186



