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Abstract

Clustering aggregation has emerged as an impor-
tant extension of the classical clustering problem.
It refers to the situation in which a number of dif-
ferent (input) clusterings have been obtained for
a particular data set and it is desired to aggregate
those clustering results to get a better clustering so-
lution. In this paper, we propose a unified frame-
work to solve the clustering aggregation problem,
where the aggregated clustering result is obtained
by minimizing the (weighted) sum of the Breg-
man divergence between it and all the input clus-
terings. Moreover, under our algorithm framework,
we also propose a novel cluster aggregation prob-
lem where some must-link and cannot-link con-
straints are given in addition to the input cluster-
ings. Finally the experimental results on some real
world data sets are presented to show the effective-
ness of our method.

1 Introduction

Aggregation/Ensemble methods, such as bagging [Breiman,
1996] and boosting, have been widely used in supervised
classification to make the results more stable and robust.
In fact, data clustering usually suffers from the stabil-
ity/robustness problems as well because (1) the off-the-shelf
clustering methods may discover very different structures in a
given set of data because of their different objectives; (2) for
a single clustering algorithm, there is no ground truth against
which the clustering result can be validated so no cross val-
idation can be performed to tune the parameters; (3) some
iterative methods (such as k-means) are highly dependent on
its initialization. To improve the quality of the clustering re-
sults, the idea of aggregation has also been brought into the
field of clustering. The problem of cluster aggregation can
be described as: how to make use of a set of different (input)
clusterings that have been obtained for a particular data set
to find a single final (consensus) clustering that is better than
existing clusterings in some sense.

∗The work is partially supported by NSF grants IIS-0546280,
DMS-0844513 and CCF-0830659.

During the last decade, many algorithms have been pro-
posed to solve the clustering aggregation problem, e.g., the
graph cut method [Fern and Brodley, 2004], information-
theoretic method [Topchy et al., 2003][Strehl et al., 2002],
matrix factorization based method [Li et al., 2007], and the
Bayesian method [Wang et al., 2009]. Most of the traditional
approaches treat each input clustering equally. Recently,
some researchers proposed to weigh different clusterings dif-
ferently when performing cluster aggregation to further im-
prove the diversity and reduce the redundancy in combining
the input clusterings [Al-Razgan and Domeniconi, 2006][Li
and Ding, 2008][Fern and Lin, 2008]. Now cluster aggrega-
tion has been widely applied in many AI areas such as com-
puter vision [Yu et al., 2008], information retrieval [Sevillano
et al., 2006] and bioinformatics [Hu and Yoo, 2004].

In this paper, we propose a novel cluster aggregation
method based on the cluster connectivity matrix (CCM) [Li
et al., 2007], where we aim to find an optimal clustering
of the data set whose CCM is consensus with respect to the
CCMs of the input clusterings. We use Bregman divergence
[Banerjee et al., 2004] to measure the quantity of such con-
sensus and the resulting problem is a convex one which can
be efficiently solved. We also formulate the weighted clus-
ter aggregation problem within our framework and derive a
block coordinate descent algorithm to solve it. Moreover, we
also show that prior knowledge on the cluster structures, such
as pairwise constraints which indicate whether a pair of data
points belong to the same cluster, can be easily incorporated
into the framework. We also derive a novel approach, semi-
supervised cluster aggregation, to utilize these constraints in
cluster aggregation. Finally the experimental results are pre-
sented to show the effectiveness of our method.

It is worthwhile to highlight several aspects of our method:

• Unlike some traditional methods which use Euclidean
distance or KL divergence to measure matrix consen-
sus, we adopt a much general criterion – Bregman diver-
gence, which can include many commonly used distor-
tion measures as its special cases.

• We extend our framework to formulate the weighted
cluster aggregation problem. We show that both the un-
weighted and weighted problems are convex and can be
efficiently solved.

• We also generalize our framework to incorporate pair-
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Table 1: Some distances and the corresponding optimal M
D(x) φ(x) ∇φ(x) Mpq

Euclidean Distance R
1
2x2 x 1

n

∑
i M

i
pq

Exponential Distance R exp(x) exp(x) log
(

1
n

∑
i exp(Mi

ij)
)

Kullback-Leibler Divergence R++ x log x − x log x
∏

i exp
(

1
n

logM
i
pq

)
Itakura-Saito Distance R++ − log x 1

x
n/

(∑
i

1
Mi

pq

)

Logistic Distance [0, 1] x log x + (1 − x) log(1 − x) log x
1−x

exp(mpq)
exp(mpq)+1 , mpq = 1

n

∑
i log

M
i
pq

1−Mi
pq

wise constraints, which have widely been used in semi-
supervised clustering [Basu et al., 2008] but rarely in
cluster aggregation, and we show that the resulting prob-
lem can be efficiently solved.

2 Unsupervised Cluster Aggregation with

Bregman Divergence

Before we go into the details of our framework, some
frequently used notations will be introduced. Let X =
{x1,x2, · · · ,xn} be a set of n data points. Suppose
we are given a set of m clusterings (or partitions) P =
{P1,P2, · · · ,Pm} of the data in X , each partition P i (i =
1, 2, · · · , m) consists of a set of clusters {πi

1, π
i
2, · · · , πi

k},

where k is the number of clusters for partition P i and X =⋃k

j=1 πi
j . Note that the number of clusters k could be differ-

ent for different clusterings.

2.1 Generalized Cluster Aggregation

We define the connectivity matrix M
i for partition P i as

M
i
uv =

{
1, if xu and xv belong to the same cluster
0, otherwise

(1)
Thus M

i is a n by n symmetric square matrix which can be
used to represent partition P i (in some cases we can also get
a soft connectivity matrix M

i such that Mi
uv denotes the pos-

sibility that xu and xv belong to the same cluster, in this case
M

i
uv ∈ [0, 1]). Then a general way for finding a consensus

partition P∗ is to minimize

J1 =
∑m

i=1
Dφ(M,Mi) (2)

where Dφ denotes any separable Bregman divergence as

Dφ(M,Mi) =
∑

u,v
Dφ

(
Muv,M

i
uv

)
(3)

and

Dφ(x, y) � φ(x) − φ(y) −∇φ(y)(x − y) (4)

where φ : S ⊆ R → R is a strictly convex function. There-
fore ∇MJ1 can be computed as:

∂

∂Mpq

∑
i

∑
uv

φ(Muv)−φ
(
M

i
uv

)
−∇φ

(
M

i
uv

) (
Muv−M

i
uv

)

=
∑

i

∇φ (Mpq)−∇φ
(
M

i
pq

)
=n∇φ (Mpq) −

∑
i

∇φ
(
M

i
pq

)

Let ∇MJ1 = 0 then we can get

∇φ (Mpq) =
1

n

∑
i

∇φ
(
M

i
pq

)
(5)

Since J1 is convex in M, the solution to Eq.(5) is the global
optimum for minimizing J1. Some typical Bregman diver-
gence measures and their corresponding connectivity matri-
ces are summarized in Table 1.

2.2 Generalized Weighted Cluster Aggregation

The objective in Eq.(2) treats each partition equally. How-
ever, in real world cases we may want to treat different
partition with different importance. Therefore we propose
to introduce a set of weighting factors {wi}

m
i=1 subject to

∀ i = 1, 2, · · · , m, wi ≥ 0,
∑

i wi = 1 and minimize the
following weighted objective

J2 =
∑

i
wiDφ

(
M,Mi

)
(6)

The problem is not convex with respect in w =
(w1, w2, · · · , wm)T and M. We propose a block coordinate
descent algorithm above. Keeping one variable fixed, the op-
timization over the other is a convex problem with a unique
solution. This guarantees monotonic decrease of the objective
function and convergence to a stationary point.

Fixing w, the resulted problem is similar to the problem of
minimizing J1, and we can get the solution by setting

∇MJ2 = 0 (7)

We can get that

∇φ (Mpq) =
∑

i
wi∇φ

(
M

i
pq

)
(8)

Fixing M, the problem becomes a linear programming prob-
lem

minw

∑
i
wiDφ

(
M,Mi

)
s.t. wi ≥ 0,

∑
i
wi = 1 (9)

which is a linear programming problem and can be efficiently
solved. However, the solution will always be

wi =

{
1, if i = arg minj Dφ(M,Mj)
0, otherwise

(10)

To avoid such trivial solution, we propose to add one regu-
larization term on J2 and solve the following optimization
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problem

minM,w

m∑
i=1

wiDφ(M,Mi) + λ‖w‖2 (11)

s.t.

m∑
i=1

wi = 1, wi ≥ 0 (∀ i = 1, 2, · · · , m)

where λ > 0 is a tradeoff parameter. In this way, we will
solve a quadratic programming problem with respect to w

when fixing M.
Finally, the generalized weighted cluster aggregation (gen-

eralized WCA) algorithm is summarized in Algorithm 1.

Algorithm 1 GENERALIZED WCA

Require: Partitions {P i}m
i=1, precision ε

1: Construct m cluster aggregation matrix {Mi}m
i=1

2: Initialize w
0 = [1/m, 1/m, · · · , 1/m]T ∈ R

m×1,
M

0 = In×n, Δ = +∞, t = 0
3: while Δ > ε do
4: t = t + 1
5: Solve M

t by minimizing
∑

i wiDφ(Mt,Mi)
6: Solve w

t by

minwt

∑m

i=1
wt

iDφ(Mt,Mi) + λ‖wt‖2

s.t.
∑m

i=1
wt

i = 1, wt
i ≥ 0 (∀ i = 1, 2, · · · , m)

7: Compute Δ = ‖Mt − M
t−1‖F

8: end while

3 Semi-supervised Cluster Aggregation with

Bregman Divergence

In this section we will consider a novel cluster aggregation
setting: in addition to the m partitions, we are also given two
sets of pairwise constraintsM and C, such that (xp,xq) ∈ M
indicates that xp and xq belong to the same cluster; and
(xp,xq) ∈ C denotes they belong to different clusters. Such
constraints has widely been used in semi-supervised cluster-
ing [Basu et al., 2004][Basu et al., 2008][Wang et al., 2008],
however, to the best of our knowledge, there are rarely any
works on applying those constraints into cluster aggregation.

3.1 Generalized Cluster Aggregation with
Constraints

To incorporate the constraints in M and C into the process of
generalized cluster aggregation, we need to solve the follow-
ing problem:

minM J1 =
∑

i
Dφ(M,Mi) (12)

s.t. Mpq = 1, if (xp,xq) ∈ M

Mpq = 0, if (xp,xq) ∈ C

Clearly, problem (12) is a convex optimization problem with
linear constraints. We first rewrite it as

minM J1 =
∑

i
Dφ(M,Mi) (13)

s.t. (ekp
)T

Mekq
= bk, k = 1, 2, · · · , K

where eki
∈ R

n×1 is a indicator vector with only the kii-
th element being one and all other elements being zero, and
k is the index of the constraint and K is the total number
of constraints. bk = 0 if (xkp

,xkq
) ∈ C and bk = 1 if

(xkp
,xkq

) ∈ M. Now we introduce a set of Lagrangian

multipliers {αi}
k
i=1 and construct the Lagrangian for problem

(13) as

L =
∑

i
Dφ(M,Mi)+

∑
k
αk

(
(ekp

)T
Mekq

− bk

)
(14)

Then

∂L

∂M
= n∇φ(M) −

∑
i

∇φ(Mi) +
∑

k

αkekp
e

T
kq

(15)

∂L

∂αk

= (ekp
)T

Mekq
− bk (16)

Let ∂L/∂M = 0 and ∂L/∂αk = 0 then we can get the
following equations

∇φ(M) =
1

n

∑
i

∇φ(Mi) +
∑

k

αk

n
ekp

e
T
kq

(17)

(ekp
)T

Mekq
= bk (18)

At the first glance, this is a differential equation group which
is hard to solve, however, as we only consider separable Breg-
man divergence in this paper, and (ekp

)T
Mekq

= Mkpkq
,

then we can derive the solution of M as

• For regular elements

∇φ(Mpq) =
1

n

∑
i

∇φ(Mi
pq) (19)

• For constrained elements

αk = n∇φ(Mkpkq
) −

∑
i

∇φ(Mi
kpkq

)(20)

Mkpkq
= bk (21)

where we call Mpq as a regular element if (xp,xq) �∈ M and
(xp,xq) �∈ C; we call Mpq as a constrained element if either
(xp,xq) ∈ M or (xp,xq) ∈ C. Comparing with Eq.(5), we
can find that the solutions for regular elements in M between
semi-supervised and unsupervised generalized cluster aggre-
gation are the same; for constrained elements in M, accord-
ing to Eq.(21), the semi-supervised algorithm just set them to
the exact values in their constraints.

3.2 Generalized Weighted Cluster Aggregation
with Constraints

In the semi-supervised weighted cluster aggregation setting,
we aim to solve the following problem

minw,M

∑
i
wiDφ(M,Mi) + λ‖w‖2 (22)

s.t. Mpq = 1, if (xp,xq) ∈ M

Mpq = 0, if (xp,xq) ∈ C∑m

i=1
wi = 1, wi ≥ 0 (∀i = 1, · · · , m)
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The same as problem (11), although it is not obvious
whether problem (22) with respect to w and M jointly, it
is convex with respect to them separately with the other one
fixed. Therefore we can adopt the block coordinate descent
approach to solve the problem. Specifically, when w is fixed,
we should solve the optimal M by

minM

∑
i
wiDφ(M,Mi) (23)

s.t. Mpq = 1, if (xp,xq) ∈ M

Mpq = 0, if (xp,xq) ∈ C

Similar to solving problem (12), we can get the solution to
the above problem as

• If Mpq is a constrained element, then

Mpq =

{
1, if (xp,xq) ∈ M
0, if (xp,xq) ∈ C

(24)

• If Mpq is a regular element, then Mpq can be solved by

∇φ (Mpq) =
∑

i
wi∇φ

(
M

i
pq

)
(25)

If M is fixed, then we can solve the optimal w by

minw

∑m

i=1
wiDφ(Mt,Mi) + λ‖w‖2

s.t.
∑m

i=1
wi = 1, wi ≥ 0 (∀ i = 1, · · · , m)(26)

which is a convex QP problem and can be efficiently solved.

Algorithm 2 summarizes the basic procedure of general-
ized weighted cluster aggregation (WCA) with constraints.

Algorithm 2 GENERALIZED WCA WITH CONSTRAINTS

Require: Partitions {P i}m
i=1, constraint sets M and C, pre-

cision ε
1: Construct m cluster aggregation matrix {Mi}m

i=1

2: Initialize w
0 = [1/m, 1/m, · · · , 1/m]T ∈ R

m×1,
M

0 = In×n, Δ = +∞, t = 0
3: while Δ > ε do
4: t = t + 1
5: Obtain M

t by solving problem (23) with w = w
t

6: Obtain w
t by solving problem (26) with M = M

t

7: Compute Δ = ‖Mt − M
t−1‖F

8: end while

4 Experiments

In this section we will present a set of experiments to test the
effectiveness of the proposed generalized cluster aggregation
(GCA) method. The data sets used in our experiments include
both synthetic and real world data sets.

4.1 Toy Examples

In this section we construct two synthetic data sets to test the
power of the proposed GCA method. Specifically, the two
data sets are constructed in the following way:

• Clusters with different shapes. This data set contains
five clusters with shapes like letter I (100 points), J (200
points), C (183 points), A (223 points), I (100 points).
The distribution of the data set is shown in Fig.1(a).

• Clusters lie in different subspaces. Points with four
clusters, each of which exists in just two dimensions
with the third dimension being noise [Parsons et al.,
2004]. The first two clusters exist in dimensions x and y.
The data forms a normal distribution with means 0.6 and
-0.6 in dimension x and 0.5 in dimension y, and standard
deviations of 0.1. In dimension z, these clusters have
μ = 0 and σ = 1. The second two clusters are in dimen-
sions y and z and are generated in the same manner.

We first run K-means on these data sets with randomly
initialized cluster centers, and the number of clusters is set
to the number of true clusters. The results are shown in
Fig.1(b)(e), from which we can see that K-means is totally
confused in these cases. We also test the performance of our
generalized weighted cluster aggregation (GWCA) algorithm
(see section 2.2) under the Euclidean distance, where the 30
base cluster connectivity matrices are obtained by clustering
the data set into 20 clusters using K-means with randomly
initialized cluster centers. The weight vector is initialized to
w = [1/30, 1/30, · · · , 1/30]T ∈ R

30×1. Finally the clus-
tering result is obtained by running K-means on the aggre-
gated cluster connectivity matrix, and the results are shown
in Fig.1(c)(f), which clearly illustrate the superiority of our
method.

4.2 Experiments on Real World Data Sets

In this section we will present the results of applying our al-
gorithm to a set of real world data sets. First we will describe
the basic characteristics of the data sets.

Data Sets

We use totally 14 data sets to evaluate the effectiveness of our
proposed. The basic information of these data sets are sum-
marized in Table 2. In the following we will briefly introduce
these data sets.

• UCI Data Sets. These data sets are from the UCI Reposi-
tory, which include Digits 389, Glass, Ionosphere, Iris, Let-
ter IJL, Protein, Soybean, Wine, and Zoo, where Digits
389 is a randomly sampled subset of the handwritten digits 3,
8, 9 from the digits data set, and Letter IJL is a randomly
sampled subset containing I, J, L from the letters data set.

• Text Data Sets. These data sets are standard benchmark
data sets that commonly used to assess text clustering algo-
rithms. The CSTR data set contains 476 abstracts of technical
reports published in the Department of Computer Science at a
research university; The Log data set contains 1367 text mes-
sages of system log from different desktop machines describ-
ing the status of computer components; The Reuters data set
is a subset of the Reuters-21578 Text Categorization Test col-
lection contains 10 most frequent categories among the 135
topics; The WebACE data set was from WebACE project,
which contains 2340 documents consisting news articles from
Reuters new service via the Web in October 1997[Han et al.,
1998]; The WebKB data set contains web pages gathered
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Figure 1: Toy examples. (a),(d) are the original data sets, where we use different colors to denote different clusters. (b),(e) are
the clustering results by K-means. (c),(f) are the results of our weighted clustering aggregation method with Euclidean distance.

Table 2: Description of the Data Sets
Data Sets # Samples # Dimensions # Class

CSTR 476 1000 4

Digits 389 456 16 3

Glass 214 9 7

Ionoshpere 351 34 2

Iris 150 4 3

Protein 116 20 6

Letter IJL 227 16 3

Log 1367 200 8

Reuters 2900 1000 10

Soybean 47 35 4

WebACE 2340 1000 20

WebKB4 4199 1000 4

Wine 178 13 3

Zoo 101 18 7

from university computer science departments. We use a sub-
set containing categories student, faculty, course and project.
All the data sets are preprocessed by the rainbow package.

Evaluation Measure

We use Clustering Accuracy to measure the performance of
our proposed methods. It discovers the one-to-one relation-
ship between clusters and classes and measures the extent
to which each cluster contained data points from the corre-
sponding class. It sums up the whole matching degree be-
tween all pair class-clusters. Clustering accuracy can be com-
puted as:

Acc =
1

N
max

(∑
Ck,Lm

T (Ck,Lm)
)

, (27)

where Ck denotes the k-th cluster in the final results, and Lm

is the true m-th class. T (Ck,Lm) is the number of entities
which belong to class m are assigned to cluster k. Accuracy
computes the maximum sum of T (Ck,Lm) for all pairs of
clusters and classes, and these pairs have no overlaps. Greater
clustering accuracy means the better clustering performance.

Comparative Methods

Besides our method, we also show the experimental results of
some other methods for comparison including

• K-means, which is randomly initialized and the results
are averaged over 50 independent runs.

• Spectral Clustering (SC), which is implemented in the
same way as in [Yu and Shi, 2003].

• Cluster-based Similarity Partitioning Algorithm
(CSPA) and Hyper-Graph-Partitioning Algorithm
(HGPA), implemented as in [Strehl et al., 2002].

• Nonnegative Matrix Factorization based Consensus
clustering (NMFC), implemented as in [Li et al., 2007].

• Weighted Consensus clustering (WC). The implemen-
tation is the same as in [Li and Ding, 2008].

We present the results of our GWCA algorithm and the
Semi-Supervised GWCA (SSGWCA) algorithm under the
Euclidean and exponential distance (denoted as EGWCA and
eGWCA). For the semi-supervised approaches, we first ran-
domly label 10% of the data, and then use these data labels to
generate the constraint sets M and C.

Experimental Results

The experimental results are summarized in Table 3, where
for our GWCA series methods, we run spectral clustering on
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Table 3: Experimental Results in Clustering Accuracy

K-means SC CSPA HPGA NMFC WC EGWCA eGWCA SSEGWCA SSeGWCA

CSTR 0.45 0.54 0.50 0.62 0.56 0.64 0.64 0.67 0.75 0.78

Digits 389 0.59 0.69 0.78 0.38 0.73 0.71 0.72 0.70 0.78 0.76

Glass 0.38 0.44 0.43 0.40 0.49 0.49 0.50 0.52 0.59 0.60

Ionosphere 0.70 0.74 0.68 0.52 0.71 0.71 0.73 0.72 0.77 0.78

Iris 0.83 0.91 0.86 0.69 0.89 0.89 0.92 0.90 0.97 0.96

Protein 0.53 0.58 0.59 0.59 0.60 0.63 0.65 0.67 0.75 0.77

Log 0.61 0.58 0.47 0.43 0.71 0.69 0.73 0.72 0.80 0.79

LetterIJL 0.49 0.48 0.48 0.53 0.52 0.52 0.54 0.56 0.67 0.65

Reuters 0.45 0.43 0.43 0.44 0.43 0.44 0.46 0.44 0.55 0.57

Soybean 0.72 0.77 0.70 0.81 0.89 0.91 0.90 0.90 0.96 0.97

WebACE 0.41 0.39 0.40 0.42 0.48 0.46 0.47 0.49 0.58 0.60

WebKB4 0.60 0.58 0.61 0.62 0.64 0.63 0.65 0.67 0.76 0.75

Wine 0.68 0.68 0.69 0.52 0.70 0.72 0.73 0.73 0.80 0.82

Zoo 0.61 0.64 0.56 0.58 0.62 0.70 0.72 0.75 0.84 0.87

the final combined cluster aggregation matrix (i.e., which is
used as the similarity matrix). From Table 3 we can clearly
observe that our GWCA based algorithm can generate bet-
ter clusterings, and the results can be further improved with
pairwise instance-level constraints.

5 Conclusions

In this paper we propose a general framework for cluster ag-
gregation based on Bregman divergence, and we derive a se-
ries of clustering aggregation algorithms under such a frame-
work. Finally the experiments on several real world data sets
are presented to show the effectiveness of our method.
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