
Learning Probabilistic Hierarchical Task Networks to Capture User Preferences

Nan Li, Subbarao Kambhampati, and Sungwook Yoon
School of Computing and Informatics

Arizona State University
Tempe, Arizona 85281 USA

nan.li.3@asu.edu, rao@asu.edu, Sungwook.Yoon@asu.edu

Abstract

While much work on learning in planning focused
on learning domain physics (i.e., action models),
and search control knowledge, little attention has
been paid towards learning user preferences on de-
sirable plans. Hierarchical task networks (HTN)
are known to provide an effective way to encode
user prescriptions about what constitute good plans.
However, manual construction of these methods is
complex and error prone. In this paper, we propose
a novel approach to learning probabilistic hierar-
chical task networks that capture user preferences
by examining user-produced plans given no prior
information about the methods (in contrast, most
prior work on learning within the HTN framework
focused on learning “method preconditions”—i.e.,
domain physics—assuming that the structure of the
methods is given as input). We will show that
this problem has close parallels to the problem of
probabilistic grammar induction, and describe how
grammar induction methods can be adapted to learn
task networks. We will empirically demonstrate the
effectiveness of our approach by showing that task
networks we learn are able to generate plans with
a distribution close to the distribution of the user-
preferred plans.

1 Introduction

Application of learning techniques to planning is an area of
long standing research interest. Most work in this area to-date
has however focused on learning either search control knowl-
edge, or domain physics. Another critical piece of knowledge
needed for plan synthesis is that of user preferences about de-
sirable plans, and to our knowledge there has not been any
work focused on learning it. It has long been understood that
users may have complex preferences on plans (c.f. [Baier
and McIlraith, 2008]). Perhaps the most popular approach
for specifying preferences is by hierarchical task networks
(or HTNs), where in addition to the domain physics (in terms
of primitive actions and their preconditions and effects), the
planner is provided with a set of non-primitive actions (tasks)
and methods for reducing them into combinations of primi-
tive and non-primitive actions. Figure 1 shows a set of HTNs
for a travel domain. A plan (sequence of primitive actions)

is considered a valid HTN plan if and only if it (a) is exe-
cutable and achieves the goals and (b) can be produced by
reducing non-primitive tasks. While the first clause focuses
on goal achievement, the second clause ensures that the plan
produced is one that satisfies the user preferences.

For the example in Figure 1, as specified, the top level goal
of traveling from a source to a destination can be achieved
either by Gobytrain, which involves a specific sequence of
tasks, or Gobybus. In contrast, the plan of hitch-hiking from
the source to the destination, while executable, is not consid-
ered a valid plan. The reduction schemas can be viewed as
providing a “grammar” of desirable solutions, and the plan-
ner’s job is to find executable plans that are also grammati-
cally correct.

While HTNs can be used to specify the grammar of user-
desired solutions, manual construction of the HTNs is com-
plex and error prone. In this paper, we focus on learn-
ing this grammar, given only successful plans known to be
acceptable to the users. Our approach takes off from the
accepted view of task reduction schemas as specifying the
grammar of desirable solutions[Geib and Steedman, 2007;
Kambhampati et al., 1998]. We extend this understand-
ing in two ways: First, we consider weighted task reduc-
tion schemas. That is, each reduction schema for a goal is
associated with a probability p specifying the users prefer-
ence for that particular reduction. This is a useful general-
ization as we can now capture the degree of user’s prefer-
ence for a specific plan (instead of just a binary preference

judgement).1 Second, we exploit the connection between re-
duction schemas and grammar by adapting the considerable
work on grammar induction [Collins, 1997; Charniak, 2000;
Lari and Young, 1990]. Specifically, we view the sample plan
traces as sentences generated by a target grammar of schemas,
and develop an expectation-maximization (EM) algorithm for
learning task reduction schemas for that grammar.

We emphasize that our focus is only on capturing user pref-
erences, and not on learning about feasibility. User prefer-
ences need not be based on feasibility; indeed a user having
preferences based on feasibility is akin to the fox in Aesop’s
fable of Sour Grapes. A preferred plan may thus not neces-
sarily be executable. In the travel example, a plan to take the
train will be a preferred one, but may not be executable if
there is no train station. It is the responsibility of the planner

1Note that it is trivial to get non-weighted reduction schemas
from weighted ones, if so desired—just keep all schemas whose
weights are over a certain threshold and ignore their weights.

1754

Figure 1: Hierarchical task networks in a travel domain.

to ensure that the most preferred executable plan is returned
[Baier and McIlraith, 2008]. (It could however be possible
to combine preference and feasibility learning schemes; see
Section 5 for a discussion.)

In the following sections, we start by formally stating the
problem of learning probabilistic hierarchical task networks
(pHTNs). Next, we discuss the relations between probabilis-
tic grammar induction and pHTN learning. After that, we
present an algorithm that acquires pHTNs from example plan
traces. The algorithm works in two phases. The first phase
hypothesizes a set of schemas that can cover the training ex-
amples, and the second is an expectation maximization phase
that refines the probabilities associated with the schemas. We
then evaluate the effectiveness of our approach by comparing
the distributions of user-desired plans and the plans produced
from our learned task networks. We conclude with a discus-
sion of the related work and a summary of our contributions.

2 Probabilistic Hierarchical Task Networks

We define a pHTN domain H , as a 3-tuple, H = 〈A, NA, S〉,
where A is a set of primitive actions, NA is a set of non-
primitive actions, and S is a set of reduction schemas indexed
by non-primitive actions. We follow the normal STRIPS se-
mantics for the primitive actions. Each non-primitive action
nai ∈ NA is associated with a set of reduction schemas.
Each reduction schema sj can be seen as a 3-tuple, 〈nai →
p, dec〉, where dec is an ordered list of primitive and non-
primitive actions, and p is the probability of choosing that
decomposition. This probability specifies the preference of
the user. Without loss of generality, we restrict our attention
to reduction schemas in the Chomsky normal form, with each
schema decomposing a non-primitive task to either two non-
primitive tasks or a single primitive task. For example, for the
Travel domain presented in Figure 1, Table 1 shows an exam-
ple of the pHTN decomposition rules. According to these, the
user prefers using train (80%) to using bus (20%).

A problem R for a pHTN domain H is a pair of states
R = 〈I, G〉, I is the initial state, G is the partial description
of the desired goal state. A primitive action sequence o is a
valid solution to H and R if o can be executed from I leading
to a state where G holds, and there is some reduction process
in H that derives o from the top level goal. The probability
of p(o) is

∑
DEC Πdec∈DEC p(dec), where DEC is all the

decomposition processes that can generate o.
We can now state the pHTN learning problem formally.

Given a set O : o1, o2 · · · ok of training plans (each of which
are sequences of primitive actions satisfying the goal), find

a set of pHTNs H l that most likely generates the observed

primitive action sequence. Thus H l = argmaxH p (O |H).

Table 1: Ordered probabilistic hierarchical task networks (in
Chomsky normal form) in the travel domain

Primitive actions: Buyticket,Getin, Getout, Hitchhike;
Non-primitive actions: Travel,A1, A2, A3, B1, B2;
Travel → 0.2, A2 B1

Travel → 0.8, A1 B2

B1 → 1.0, A1 A3

B2 → 1.0, A2 A3

A1 → 1.0, Buyticket
A2 → 1.0, Getin
A3 → 1.0, Getout

In this work, we simplify the learning task further by fo-
cusing on learning parameter-less schemas. The assumption
is reasonable in domains such as the travel domain, but does
not work with domains like Blocks World, where the action
sequences are differentiated by bindings. We also assume that
the user preferences can be expressed as unconditional pH-
TNs. Thus we disallow reduction schemas of the form, “if

you are in Europe, prefer trains more than planes.”2 This
ensures that pHTNs correspond to context free grammars.

3 Learning pHTNs

It is clear that the pHTN as defined above has strong simi-
larity to probabilistic context free grammars (PCFG). There
is a one-to-one correspondence between the non-terminals of
PCFG and the HTN non-primitive symbols. Rather than de-
veloping pHTN learning algorithm from the scratch, we will
exploit existing techniques for PCFG induction. In particu-
lar, expectation maximization (EM) is the weapon of choice
when it comes to PCFG induction and we shall use it also for
learning pHTN [Lari and Young, 1990]. The pHTN learning
problem does differ from existing work on PCFG induction in
some critical respects. For example, we assume that the input
to the algorithm is just a primitive action sequence, without
any annotations about non-primitive actions. As discussed
in the following section, our algorithm invents non-primitive
symbols as needed. We are not aware of any PCFG learning
study that directly works in such a setup.

Our algorithm consists of two parts. First, we have a
greedy structure hypothesizer, which creates non-primitive
symbols, and associated reduction schemas, as needed to
cover all the training examples. The key guiding principle
here is the parsimonious generation of reduction schemas in
Chomsky normal form. In the second phase, an expectation-
maximization approach is used to iteratively refine the prob-
abilities of the reduction schemas.

3.1 Greedy Structure Hypothesizer (GSH)

The pseudo code for the GSH algorithm is shown in algo-
rithm 1. GSH learns reduction rules in a bottom-up fash-
ion. It starts by initializing the schema set S to schemas
associated with primitive actions. Next the algorithm de-
tects whether there are recursive structures embedded in the
plans, and learns a recursive schema for them. Recursive
structures are of the form of continuous repetitions of a sin-
gle terminal/non-terminal action with another termina/non-
terminal action appearing once before or after the repetitions,

2Note that the condition we are talking about is on the preference
rather than method applicability/feasibility.

1755

such as {a, a, ..., a, b} and {a, b, b, ...b}. If both the length of
the repetitions and the frequency the repetitions appearing in
the plans meet the minimum thresholds, a recursive structure
is said to be detected. The thresholds are decided by both
the average length of the given plans and the total number
of plan examples. For instance, in plan {α1, α2, α2, α2, α3}
(where α denotes either a primitive or non-primitive action),
{α1, α2, α2, α2} and {α2, α2, α2, α3} are considered as re-
cursive structures. After identifying a recursive structure, the
structure learner can construct a recursive schema out of it.
Take {α1, α2, α2, α2} as an example, the acquired schema
for it would be α1 → α1 α2.

If the algorithm fails to find recursive structures, it starts
to search for the action pair that appears in the plans most
frequently, and constructs a reduction for the action pair. To
build a non-recursive schema, the algorithm will introduce a
new symbol and set it as the head of the new schema. After
getting the new schema, the system updates the current plan
set with this schema by replacing the action pairs in the plans
with the head of the schema.

Having acquired all the reduction schemas, the struc-
ture learning algorithm assigns initial probabilities for these
schemas. Note that for consistency, the sum of probabili-
ties associated with all ways of reducing a non-primitive task
must add up to 1. Thus, if there are k reduction schemas with
the same head symbol, then each of them are assigned the

probability 1
k

. To break ties among reduction schemas with
the same head, GSH adds a small random number to each
probability and normalizes the values again. This output of
GSH is a redundant set of reduction schemas, which is sent
to the EM phase.

Example: For example, in a variant of the travel domain,
where the traveler can buy a day pass and take the train multi-
ple times, two training plans are shown on the top right in Fig-
ure 2. Primitive schemas, A1 → Buyticket, A2 → Getin,
A3 → Getout, are first constructed for each action. Updated
plans are shown as level 2 in Figure 2. Next, since A2A3 is
the most frequent action pair in the plans, the structure hy-
pothesizer constructs a rule S1 → A2 A3. After updat-
ing the plans with the new rule, the plans become (A1, S1)
and (A1, S1, S1, S1) as shown as level 3 in Figure 2. Next,
GSH detects a recursive structure in plan (A1, S1, S1, S1) and
learns a rule A1 → A1 S1. At this point, since all of the
plans are parsable by existing schemas, GSH stops construct-
ing new rules. All of the rules constructed in this example are
shown in the bottom left in Figure 2.

3.2 Refining Schema Probabilities: EM Phase

The probabilities associated with the initial set of schemas
generated by the GSH phase are tuned by an expectation-
maximization algorithm. Since all plan examples can be gen-
erated by the target reduction schemas, each plan should have
a parse tree associated with it. However, the tree structures of
the example plans T are not provided. Therefore, we consider
T as the hidden variables. We will use T(o, H) to denote the
parse tree of a plan example o given the reduction schemas
H . The algorithm operates iteratively. In each iteration, it
involves two steps, an E step, and an M step.

In the E step, the algorithm estimates the values of the hid-
den variables T , which, in this case, are the tree structures
associated with each plan example with symbol g as the root

Algorithm 1: GSH constructs an initial set of reduction
schemas, S, from the plan examples, O.

Input: Plan Example Set O.
S := primitive action reduction schemas;1

while not-all-plans-are-parsable(O, S) do2

if has-recursive-schema(O) then3

s := generate-recursive-schema(O);4

else5

s := generate-most-frequent-schema(O);6

end7

S := S + s;8

O := update-plan-set-with-schema(O, S);9

end10

S = initialize-probabilities(S);11

return S12

node, denoted as p (T | O, H).
To do this, the algorithm computes the most probable parse

tree for each plan example. Any subtree of a most probable
parse tree is also a most probable parse subtree. Therefore,
for each plan example, the algorithm builds the most probable
parse tree in a bottom-up fashion until reaching the start sym-
bol g. For the lowest level, since each primitive action only
associates with one reduction schema of the form na → a,
the most probable parse trees for them are directly recorded as
their only associated primitive reduction schemas. For higher
levels, the most probable parse tree is decided by

s, i =argmaxs,i p (s | H) ∗ p (T (o1, H) | o1, H)

∗ p (T (o2, H) | o2, H). (1)

where o is the current action sequence, a1, a2, . . . an; s is
a reduction schema of the form aroot → al ar, which spec-
ifies the reduction schema that is used to parse o at the first
level; i is an integer between 1 to n, which determines the
place that separates o into two subtraces, o1 and o2. o1 is
the action sequence, a1, a2, . . . ai, and o2 is the action se-
quence, ai+1, . . . an. After getting s and i, the most probable
parse tree of the current trace consists of aroot as the root, and
the most probable parse trees for the subtraces, T (o1, H) and
T (o2, H), as the left and right child of the root. The proba-
bility of that parse tree is: p (s | H) ∗ p (T (o1, H) | o1, H) ∗
p (T (o2, H) | o2, H). This bottom-up process continues until
it finds out the most probable parse tree for the entire plan.
Note that the algorithm stated above constructs a parse tree
even if the probability associated with it is 0. In order to re-
duce the complexity of the E step, parse trees that depend
on reduction schemas with 0 probabilities are directly pruned
without calculating the most probable parse subtrees.

After getting the parse trees for all plan examples, the al-
gorithm moves on to the M step. In this step, the algorithm
updates the selection probabilities associated with the reduc-
tion schemas by maximizing the expected log-likelihood of
the joint event

Hn+1 = argmaxHn
ΣT p(T |O, Hn) log p (O, T | Hn) (2)

where Hn stands for the probabilities of reduction schemas

in the nth iteration. For a reduction schema with head ai, the
new probability of getting chosen is simply the total number

1756

Figure 2: Example illustrating the operation of Greedy Structure Hypothesizer (see text)

of times that schema appearing in the parse trees divided by
the total number of times ai appearing in the parse trees.

After finishing the M step, the algorithm starts a new itera-
tion until convergence. The output of the algorithm is a set of
probabilistic reduction schemas.

Discussion: Notice that although the EM step does not intro-
duce new reduction schemas, it deletes redundant reduction
schemas by assigning low or zero possibilities to them. We
also note that learning preferences from example traces can
suffer from overfitting problem: By generating exact reduc-
tion schemas for each example plan, we will get the reduc-
tion schemas that produce only the training examples. Our
greedy schema hypothesizer addresses this issue by detecting
recursive schemas to avoid overfitting, and by constructing
schemas giving preference to frequent action pairs to reduce
the total number of non-primitive actions in schemas.

4 Empirical Evaluation

To evaluate the ability of our approach to learn pHTNs, we
designed and carried out experiments in both synthetic and
benchmark domains. All the experiments were run on a 2.13
GHz Windows PC with 1.98GB of RAM. Although we focus
on learning accuracy rather than cpu time, we should clarify
up-front that the cpu time for learning was quite reasonable. It
ranged between 0 to 44 milliseconds per domain per training
plan.

Evaluation presents special challenges as we need to see
whether our algorithm is able to adequately capture user pref-
erences. We avoided costly direct user studies through an
oracle-based experimental strategy: we assume access to the
ideal pHTN schemas capturing user preferences: H∗. We
use H∗ to generate training examples which are fed to the
learning algorithm. The pHTN schemas learned by our algo-

rithm, H l are then compared to H∗. The main comparison
between the two schema sets is in terms of the distribution of
plans they generate. Additionally, we also compare them in
terms of number of non-primitive actions used, since redun-
dant schemas may lead to overfitting, and can also slow down
the preference computation at runtime.

To compare the distribution of the plans generated by H∗

and H l, we use Kullback-Leibler divergence measure, de-

fined as DKL(PH∗ ||PHl) = Σi PH∗(i) log PH∗ (i)
P

Hl (i)
, where

PHl and PH∗ are distributions of plans generated by H l and
H∗ respectively. This measure goes to 0 if the distribution

is identical and goes potentially to infinity if the distributions
differ significantly.

4.1 Experiments in Randomly Generated Domains

In these experiments, we first randomly generate a set of
recursive and non-recursive schemas, and use them as H∗.
In non-recursive domains, the randomly generated schemas
form a binary and-or tree with the goal as the root.The proba-
bilities for the schemas are also assigned randomly (and nor-
malized so that probabilities of all the schemas with the same
head sum to 1). Generating recursive domains is similar with
the only difference being that 10% of the schemas generated
are recursive. We also varied the size of the given schemas
by the number of non-primitive actions. The number of train-
ing plans, and the number of testing plans are adjusted ac-
cordingly. For instance, if the input schemas contain n non-
primitive actions, the number of training plans is 10n, and the
number of testing plans is 100n. For each schema size, we
averaged our results over 100 randomly generated schemas
of that size.

Rate of Learning: In order to test the learning speed, we
first measured KL divergence values with 15 non-primitive
actions given different numbers of training plans. The results
are shown in Figure 3(a). We can see that even with small
number of training examples, our learning mechanism can
still construct pHTN schemas with KL divergence no more
than 0.2. As the number of training cases increases, our al-
gorithm learns better schemas. However, the learning rate
slows down. Note that we did not report the KL divergence
with very small number of training examples. This is because
when the training plans provided are not enough to represent
the structures embedded in the target schemas, the learned
schemas will not be able to generate plans with those uncov-
ered structures. In this case, KL divergence will be infinity.

Effectiveness of the EM Phase: To examine the effect of
the EM phase, we carried out experiments comparing the
KL divergence between PH∗ and PHl ; as well as the KL
divergence between PH∗ and PHg (Figure 3(b) and Fig-
ure 3(c)), where Hg is the set of schemas generated by the
greedy hypothesizer, which are subsequently refined by the

EM phase into H l. Inspection reveals that although KL diver-
gence increases in larger domains, in domains without recur-
sive schemas, KL divergence between the original plan dis-
tribution (PH∗) and the learned plan distribution (PHl) is no
more than 0.066 with 50 non-primitive actions. This is much

1757

15 30 45 60 75 90 105 120 135 150
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Training Plans

K
L

D
iv

er
ge

nc
e

Non−recursive Schemas
Recursive Schemas

(a)

10 20 30 40 505
0

0.2

0.4

0.6

0.8

1

Number of Non−primitive Actions

K
L

D
iv

er
ge

nc
e

Greedy Schemas
Learned Schemas After EM

(b)

10 20 30 40 505
0

0.2

0.4

0.6

0.8

1

Number of Non−primitive Actions

K
L

D
iv

er
ge

nc
e

Greedy Schemas
Learned Schemas After EM

(c)

10 20 30 40 505
1

1.2

1.4

1.6

1.8

2

Number of Non−primitive Actions

T
he

 R
at

io
 o

f N
um

be
r

of
 A

ct
io

ns

Non−recursive Schemas
Recursive Schemas

(d)

Figure 3: Experimental results in synthetic domains (a) KL Divergence values with different number of training plans. (b) KL
Divergence between plans generated by original and learned schemas in non-recursive domains. (c) KL Divergence between
plans generated by original and learned schemas in recursive domains. (d) Measuring conciseness in terms of the ratio between
the number of actions in the learned and original schemas.

smaller than the KL divergence 0.818 between the original
plan distribution and the plan distribution that would be gen-
erated by the schemas output by the GSH phase (PHg). The

EM phase is thus effective in refining Hg to H l.

Conciseness of Learned Schemas: The conciseness of the
schemas is also an essential factor measuring the quality of
the schemas, since by ignoring it one can trivially gener-
ate schemas with low KL divergence by continuously adding
new schemas for each training plan. To measure conciseness,
we compute the ratio between the number of actions in the

learned schemas (H l) and the original schemas (H∗). Fig-
ure 3(d) presents the results. We can see that with less than 10
non-primitive actions in a domain, the constructed schemas
have only 1 or 2 non-primitive actions more than the original
schemas. This is acceptable, since even manually constructed
schemas may be of different sizes and are usually not the most
concise schemas. However, the ratio increases to 1.6 when
the original schemas contain 50 non-primitive actions, which
would not be considered sufficiently compact in capturing the
structure of schemas. Future work in structural learning may
be able to alleviate this problem.

Effect of Recursive Schemas: We note that KL divergence
for domains with recursive schemas is larger than that for do-
mains without recursive schemas. This is because in domains
that contain recursive schemas, the plan space is infinite. The
finite number of plans generated by these schemas is not able
to represent the exact distribution embedded in the schemas.
Even for two sets of plans generated by the same schemas,
KL divergence is not zero.

4.2 Benchmark Domains

In addition to the experiments with synthetic domains, we
also picked two of the well known benchmark planning do-
mains and developed Chomsky normal form pHTNs for them.
Then we generated training plans and evaluated the learning
algorithm on them.

Logistics Planning: The domain we used in the first exper-
iment is a variant of the Logistics Planning domain, inside
which both planes and trucks are available to move packages.
There are 11 non-primitive actions, and 4 primitive actions,
load, fly, drive and unload, in this domain. We presented
100 training plans to the learning system. The training plans
consist of different ways of moving a package. Moreover,

Table 2: Learned schemas in Logistics

Primitive actions: load, fly, drive, unload;
Non-primitive actions: movePackage,S0, S1, S2,

S3, S4, S5;
movePackage → 0.17, movePackage movePackage
movePackage → 0.25, S0 S5 S5 → 1.0, S3 S2

movePackage → 0.58, S0 S4 S4 → 1.0, S1 S2

S0 → 1.0, load S1 → 1.0, fly
S2 → 1.0, unload S3 → 1.0, drive

these training plans show a preference for moving packages
by plane over moving by truck, and a preference for using
less number of trucks and planes (less steps in the plan).

The KL divergence between the original schemas and the
learned schemas in this domain is 0.04. Table 2 shows
schemas learned from the training plans. We can see that the
generated schemas successfully captured both the structure
and the preference in the input plans. The second and third
schemas for movePackage show that you can move a package
either by plane or by truck. The first schema is a recursive
case which means that you can repeatedly move the package
until reaching the destination.

Gold Miner: The second domain we used is Gold Miner. It
is a domain that is used in the learning track of the 2008 Inter-
national Planning Competition, in which a robot is in a mine
and tries to find the gold inside the mine. The robot can pick
up bombs or a laser cannon. The laser cannon can destroy
both hard and soft rocks, while the bombs can only penetrate
soft rocks. Moreover, the laser cannon will also destroy the
gold if the robot uses it to uncover the gold location. The de-
sired strategy for this domain is: 1) get the laser cannon, 2)
shoot the rock until reaching the cell next to the gold, 3) get a
bomb, 4) use the bomb to get gold.

The training schemas have 12 non-primitive actions and
5 primitive actions, move, getLaserCannon, shoot, getBomb
and getGold. We gave the system 100 plans of various lengths
generated by these schemas. Table 3 shows the schemas
learned for this domain. The KL divergence between the orig-
inal and learned schemas in this domain was relatively high
at 0.52. This can be explained by the significantly higher re-
cursion in the schemas in this domain. Nevertheless, it is easy
to see that the learned schemas do prefer plans that obey the
desired strategy, while the number of moves the robot needs

1758

Table 3: Learned schemas in Gold Miner

Primitive actions: move, getLaserGun, shoot,
getBomb, getGold;

Non-primitive actions: goal, S0, S1, S2,
S3, S4, S5, S6;

goal → 0.78, S0 goal goal → 0.22, S1 S6

S0 → 1.0, move S1 → 0.78, S1 S5

S1 → 0.22, getLaserGun S5 → 1.0, S2 S0

S2 → 1.0, shoot S6 → 1.0, S3 S4

S3 → 0.71, S3 S0 S3 → 0.29, getBomb
S4 → 1.0, getGold

to get the gold varies in cases. Specifically, the plans sanc-
tioned by the learned schemas start by moving to get the laser
cannon, followed by shooting all the rocks using the laser
cannon, and finish by using the bomb to get the gold.

5 Discussion and Related Work

In the planning community, HTN planning has for long been
given two distinct and sometimes conflicting interpretations
(c.f. [Kambhampati et al., 1998]): it can be interpreted either
in terms of domain abstraction (with non-primitive actions
mediating access to the executable ones) or in terms of user
preferences (with HTNs providing a grammar for the solu-
tions desired by the user). While the original top-down HTN
planners have been motivated by the former view and aim
at higher efficiency than primitive action planning, the latter
view has lead to the development of bottom-up HTN planners
[Barrett and Weld, 1994], and explains the seeming paradox
of higher complexity for HTN planning (afterall, finding a
plan cannot be harder than finding one that satisfies complex
preferences).

Despite this dichotomy, most prior work on learning HTN
models (e.g. [Ilghami et al., 2002; Langley and Choi, 2006;
Yang et al., 2007; Hogg et al., 2008]) has focused only on
the domain abstraction angle. Typical approaches here re-
quire the structure of the reduction schemas to be given as
input, and focus on learning applicability conditions for the
non-primitive tasks. In contrast, our work focuses on learn-
ing HTNs as a way to capture user preferences, given only
successful plan traces. The difference in focus also explains
the difference in evaluation techniques. While most previous
HTN learning efforts are evaluated in terms of how close the
learned schemas and feasibility conditions are to the actual
schemas, we focus on the distribution of plans generated by
the learned and original schemas.

An intriguing question is whether pHTNs learned to cap-
ture user preferences can, in the long run, be over-loaded
with domain semantics. In particular, it would be interest-
ing to combine the two HTN learning strands by sending
our learned pHTNs as input to the existing feasibility learn-
ers. The applicability conditions that are learned on the non-
primitive actions can then be used to allow efficient top-down
interpretation of user preferences.

As discussed in [Baier and McIlraith, 2008], besides
HTNs, there are other representations, such as trajectory con-
straints expressed in linear temporal logic, for expressing user
preferences. It will be interesting to explore methods for
learning preferences in those representations too, and see to
what extent common user preferences are naturally express-
ible in HTNs.

6 Conclusion

Despite significant interest in learning in the context of plan-
ning, most prior work focused only on learning domain
physics or search control. In this paper, we motivated the
need for learning user preferences. Given a set of example
plans conforming to user preferences, we developed a frame-
work for learning probabilistic HTNs that are consistent with
these examples. Our approach draws from the literature on
probabilistic grammar induction. We provided a principled
empirical evaluation of our learning techniques both in syn-
thetic and benchmark domains. Our primary empirical evalu-
ation consisted of comparing the distributions of plans gener-
ated from the learned schemas and target schemas (presumed
to represent the user preferences), and demonstrates the ef-
fectiveness of learning.

We are currently extending this work in several directions,
including learning parameterized pHTNs, learning condi-
tional preferences, exploiting partial schema knowledge and
handling the “feasibility” bias in the training data (which is
caused by the fact that we learn only from successful plan
traces, and some of the plans preferred by the user may have
been filtered out because of infeasibility).

Acknowledgments: The authors would like to thank William
Cushing for several helpful discussions and suggestions con-
cerning this work. Kambhampati’s research is supported in
part by ONR grants N00014-09-1-0017 and N00014-07-1-
1049, and the DARPA Integrated Learning Program (through
a sub-contract from Lockheed Martin).

References
[Baier and McIlraith, 2008] Jorge A. Baier and Sheila A. McIlraith.

Planning with preferences. AI Magazine, 29(4):25–36, 2008.

[Barrett and Weld, 1994] Anthony Barrett, Daniel S. Weld: Task-
Decomposition via Plan Parsing. AAAI 1994: 1117-1122

[Charniak, 2000] Eugene Charniak. A maximum-entropy-inspired
parser. Proc. ACL, 2000.

[Collins, 1997] Michael Collins. Three generative, lexicalised
models for statistical parsing. In Proc. ACL. 1997.

[Geib and Steedman, 2007] Christopher W. Geib and Mark Steed-
man. On natural language processing and plan recognition. Proc.
IJCAI, 2007.

[Hogg et al., 2008] Chad Hogg, Héctor Muñoz-Avila, and Ugur
Kuter. Htn-maker: Learning htns with minimal additional knowl-
edge engineering required. Proc. AAAI. 2008.

[Ilghami et al., 2002] Okhtay. Ilghami, Dana S. Nau, Hector
Muñoz Avila, and David W. Aha. Camel: Learning method pre-
conditions for HTN planning. Proc AIPS, 2002.

[Kambhampati et al., 1998] Subbarao Kambhampati, Amol Mali,
and Biplav Srivastava. Hybrid planning for partially hierarchi-
cal domains. Proc. AAAI, 1998.

[Langley and Choi, 2006] Pat Langley and Dongkyu Choi. A uni-
fied cognitive architecture for physical agents. Proc. AAAI. 2006.

[Lari and Young, 1990] K. Lari and S. J. Young. The estimation of
stochastic context-free grammars using the inside-outside algo-
rithm. Computer Speech and Language, 4:35–56, 1990.

[Yang et al., 2007] Qiang Yang, Rong Pan, and Sinno Jialin Pan.
Learning recursive htn-method structures for planning. In ICAPS
Workshop on AI Planning and Learning. 2007.

1759

