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Abstract

Despite the success of Gaussian processes (GPs)
in modelling spatial stochastic processes, dealing
with large datasets is still challenging. The problem
arises by the need to invert a potentially large co-
variance matrix during inference. In this paper we
address the complexity problem by constructing a
new stationary covariance function (Mercer kernel)
that naturally provides a sparse covariance matrix.
The sparseness of the matrix is defined by hyper-
parameters optimised during learning. The new co-
variance function enables exact GP inference and
performs comparatively to the squared-exponential
one, at a lower computational cost. This allows the
application of GPs to large-scale problems such as
ore grade prediction in mining or 3D surface mod-
elling. Experiments show that using the proposed
covariance function, very sparse covariance matri-
ces are normally obtained which can be effectively
used for faster inference and less memory usage.

1 Introduction

Gaussian processes (GPs) are a useful and powerful tool
for regression in supervised machine learning [Rasmussen
and Williams, 2006]. The range of applications includes
geophysics, mining, hydrology, reservoir engineering and
robotics. Despite its increasing popularity, modelling large-
scale spatial stochastic processes is still challenging. The dif-
ficulty comes from the fact that inference in GPs is usually
computationally expensive due to the need to invert a poten-
tially large covariance matrix during inference time, which
has O (N 3) cost. For problems with thousands of observa-
tions, exact inference in normal GPs is intractable and ap-
proximation algorithms are required.

Most of the approximation algorithms employ a subset
of points to approximate the posterior distribution at a new
point given the training data and hyper-parameters. These ap-
proximations rely on heuristics to select the subset of points
[Lawrence er al., 2003; Seeger et al., 2003], or use pseudo
targets obtained during the optimisation of the log-marginal
likelihood of the model [Snelson and Ghahramani, 2006].

In this work, we address the complexity problem differ-
ently. Instead of relying on sparse GP approximations, we
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propose a new covariance function which provides intrinsi-
cally sparse covariance matrices. This allows exact inference
in GPs using conventional methods. As the new sparse co-
variance function can be multiplied by any other valid covari-
ance function and the result is a sparse covariance matrix, a
lot of flexibility is given to practitioners to accurately model
their problems while still preserving sparseness properties.
We call the GPs constructed using our sparse covariance func-
tion Exact Sparse Gaussian Processes (ESGPs). The main
idea behind is the formulation of a valid and smooth co-
variance function whose output equals to zero whenever the
distance between input observations is larger than a hyper-
parameter. As with other hyper-parameters, this can be esti-
mated by maximising the marginal likelihood to better model
the properties of the data such as smoothness, characteristic
length-scale, and noise. Additionally, the proposed covari-
ance function in much resembles the popular squared expo-
nential in terms of smoothness, being four times continuously
differentiable. We empirically compare ESGP with local ap-
proximation techniques and demonstrate how other covari-
ance functions can be integrated in the same framework. Our
method results in very sparse covariance matrices (up to 90%
of the elements are zeros in in-ground grade estimation prob-
lems) which requires significantly less memory while provid-
ing similar performance.

This paper is organised as follows. In Section 2 we review
the basics of GP regression and introduce notation. Section
3 summarises previous work on approximate inference with
GPs. Section 4 presents our new intrinsically sparse covari-
ance function and its main properties. We evaluate the frame-
work providing experimental results in both artificial and real
data in Section 6. Finally, Section 7 concludes the paper and
discusses further developments.

2 Gaussian Processes

In this section we briefly review Gaussian Processes for re-
gression and introduce notation. We consider the supervised
learning problem where given a training set D = {x;,y; } Y,
consisting of N input points x; € R and the correspond-
ing outputs y; € R the objective is to compute the predictive
distribution f (x.) at a new test point x,. A Gaussian pro-
cess model places a multivariate Gaussian distribution over
the space of function variables f(x) mapping input to output
spaces. The model is specified by defining a mean function



m(x) and the covariance function k(x,x’) resulting in the
Gaussian process written as

f(X) ~ GgP (m(x), k(X’ X/)) :
Denoting groups of these points as (X, f,y)

=}, {f:}, {yz})i\;l for the training set and (X, f,,y.)
({%ui}s { i}y {yei}) x| for the testing points, the joint
Gaussian distribution with m(x) = 0 is
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where NV (p, X) is a multivariate Gaussian distribution with
mean g and covariance ¥, and K is used to denote the co-
variance matrix computed between all points in the set. If we
assume observations with Gaussian noise € and variance o>
such that y = f(x) + ¢, the joint distribution becomes

@

f
£,

K(X,X)
K(X,,X)

K(X,X,)
K(X.,X,)

K(X,X)+0% K(X,X,)
K(X.,.X) K(X,.,X,)

1]-+(e]

A popular choice for the covariance function is the squared
exponential used in this paper for comparisons in the experi-
ment section:

k(x,x) = 0% exp <;(x —x)TM(x — x’)) 3)

with M = diag(1)~2 where 1is a vector of positive numbers
representing the length-scales in each dimension.

2.1 Inference for New Points

By conditioning on the observed training points, the predic-
tive distribution can be obtained as

p(fe | X, Xoy) =N (1, 2s), 4)
where
po = KXo X)[K (X, X)+0%] 'y
2, = K(X.,X.)—K(X.,X)[K(X,X)+02]""

K (X, X.)+ oI
5
From Equation 5, it can be observed that the predictive
mean is a linear combination of NV kernel functions each cen-
o . N
tred on a training point, p, = > ., ok (x4, %), where

a=(K(X,X)+ 021)_1 y. A GP is also a best unbiased
linear estimator [Cressie, 1993; Kitanidis, 1997] in the mean
squared error sense. During inference, most of the computa-
tional cost takes place while computing the inversion in Equa-
tion 5, which is O (N ‘3) if implemented naively.

2.2 Learning Hyper-Parameters

Commonly, the covariance function k(x,x’) is parametrised
by set of hyper-parameters 6, and we can write k (x,x’;6).
These parameters allow for more flexibility in modelling the
properties of the data. Thus, learning a GP model is equiv-
alent to determining the hyper-parameters of the covariance
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function from some training dataset. In a Bayesian frame-
work this can be performed by maximising the log of the
marginal likelihood w.r.t. :

1 _ 1 N
logp(y | X,0) = _§yTKy y - 510g|Ky| - Elog%r
(6)

where K, = K(X,X) + oI is the covariance matrix for
the targets y. The marginal likelihood has three terms (from
left to right), the first accounts for the data fit; the second
is a complexity penalty term (encoding the Occam’s Razor
principle) and the last is a normalisation constant.

Eq. (6) is a non-convex function on the hyper-parameters
0 and therefore only local maxima can be obtained. In prac-
tice, this is not a major issue since good local maxima can
be obtained with gradient descent techniques by using multi-
ple starting points. However, this requires the computation of
partial derivatives resulting in:

1 0K 1 0K
—1 X,0)=_y'K ' K ly——tr( K1
a0, ogp(y | X,0) =y a0, Y Qtr( ?70)

Note that this expression requires the computation of partial
derivatives of the covariance function w.r.t 6.

3 Related Work

Recently, there have been several methods proposed to tackle
the problem of GP inference in large datasets. However, most
of these approaches rely on approximation techniques. A
common and simple procedure is to select a subset of data
points and perform inference using only these points. This is
equivalent to ignoring part of the data which makes the selec-
tion of the subset very important. In [Lawrence er al., 2003],
the selection of points is based on the differential entropy.
Similarly, [Seeger et al., 2003] suggest the use of another in-
formation theory quantity, the information gain.

Another interesting procedure is to select a subset of data
points to act as an inducing set and project this set up to all the
data points available. This is known as sparse GP approxima-
tion [Williams and Seeger, 2001; Smola and Bartlett, 2001;
Candela and Rasmussen, 2005] which usually performs bet-
ter than simply selecting a subset of data points. However,
the definition of the inducing set is difficult and can involve
non-convex optimisations [Snelson and Ghahramani, 2006].

Local methods have been applied in geostatistics for a long
time [Wackernagel, 2003]. The idea is to perform inference
by evaluating the covariance function only at points in the
neighbourhood of a query point. This method can be effec-
tive but the definition of the neighbourhood is crucial. Our
method is inspired by this approach but rather than defining
the neighbourhood manually, we obtain it automatically dur-
ing learning. An interesting idea on combining local and
global methods (such as the sparse Gaussian process) was
proposed in [Snelson and Ghahramani, 2007]. We compare
our method to theirs in Section 6.

This work differs from other studies by not addressing the
GP inference problem through an approximation technique.
Rather, it proposes a new covariance function that naturally



generates sparse covariance matrices. This idea was used in
[Wendland, 2005] with piecewise polynomials but extensions
to multiple dimensions is difficult due to the need to guaran-
tee positive definiteness. A similar formulation to ours was
proposed in [Storkey, 1999]. However, there is no hyper-
parameter learning and the main properties are not analysed.

To the best of our knowledge, this work is the first to
demonstrate with real examples how the complexity problem
can be addressed through the construction of a new sparse
covariance function allowing for exact GP inference in large
datasets.

4 Exactly Sparse Gaussian Processes

For very large datasets, the inversion or even storage of a full
matrix K (X, X) + 021 can be prohibitive. In geology prob-
lems for example, it is not uncommon to have datasets with
100K points or more. To deal with such large problems while
still being able to perform exact inference in the GP model,
we develop the covariance function below. First, note that the
mean prediction in Eq. 5 can be rewritten as a linear com-
bination of N evaluations of the covariance function, each
one centred on a training point, g, = vazl ik (X4, X;),

where a = (K (X, X) + 021)_1 y. To avoid the inversion
of the full matrix, we can instead develop a covariance func-
tion whose output vanishes outside some region R, so that
k(x.,x;) = 0 when x; is outside a region R. In this way,
only a subset of o would need to be computed which effec-

tively means that only few columns of (K (X, X) + o2I) !
need to be computed, significantly reducing the computa-
tional and storage costs as R diminishes. As we shall see,
the region can be specified automatically during learning.

4.1 Intrinsically Sparse Covariance Function

The covariance function we are looking for must vanish
out of some finite region R for exact sparse GP regres-
sion. It must produce smooth curves but it should not be in-
finitely differentiable so that it can be applicable to problems
with some discontinuities. For our derivation, the function
g(z) = cos? (mx) H (0.5 — |z|) was chosen, which due to
cos? (rx) = (cos (2wx) + 1) /2 is actually the cosine func-
tion shifted up, normalised and set to zero out of the interval
x € (—0.5,0.5). The cosine function was selected as the
basis function due to the following reasons: 1) it is analyti-
cally well tractable; 2) integrals with finite limits containing
combinations of its basic form can be calculated in closed
form; and 3) the cosine function usually provides good ap-
proximations for different functions, being the core element
for Fourier analysis. Here and afterwards H (-) represents
the Heaviside unit step function. As it stands, the chosen
basis function g () is smooth on the whole real axis, van-
ishes out of the interval # € (—0.5, 0.5) and has disconti-
nuities in the second derivative. To derive a valid covariance
function we conduct calculations analogous to presented in
[Rasmussen and Williams, 2006]. Using the transfer function
h (x;u) = g (x — u) the following 1D covariance function is

obtained:
o0
k1 (x,x’)zo/ ;u)h(i;u) du.
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Figure 1: Plot showing the output of the covariance function
for different values of Ax.

Due to the chosen form of the basis functions, the integral
in Eq. (8) can be analytically evaluated (see Appendix A for
details) to result in:

kl ($7l'/; la 00) =
2+COS(2‘IT%)
3

1

2

ifd <1
ifd>1

(-

o sin (27r%)

0

)

where o > 0 is a constant coefficient, [ > 0 is a given scale
and d is the distance between the points:

d=|z—1'|. (10)

From Eq. (8) it follows that for any points x; and any
real numbers a; where i

1, 2, ..., n the inequality
Z a;ajky (x5, 2;5) :a/ ( a;h (—z u)) du>0
ij=1 —oo \li=1 !

holds, so that the constructed covariance function is positive
semi-definite.

Based on Eqgs. (9)-(10) we calculate that

oo

bl

b= 0| Ok _ 2okl
=T ad|,,  0d?|,_,  0d3|,, 0d*|,,
Ok
| = —4xt 11
5|, mt#£0 (1)

which shows that the covariance function k; is continuous
and has continuous 4th derivative at d = .

The function ky (Ax, 0;1, 1) is compared with squared ex-
ponential in Figure 1. Note that it follows the squared expo-
nential covariance function closely but vanishes when |Axz| >
l

4.2 Extending to Multiple Dimensions
This covariance function can be extended to multiple dimen-
sions in the following ways:
1. Using direct products for all axes:
- _ b s
k) (X 5Loo) =00 [[ ki (wiafili ) (12)
where D is the dimensionality of the points and 1 is the vector

of the characteristic lengths, 1 = (i1, 2, ..., ZD)T.
2. Using Mahalanobis distance:
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where o > 0, ) is positive semi-definite and

(r;00,9)
0 {w (1—7)+ 5=sin (27”“)}

0

if r<1

if r>1
(13)

r:\/(x—x’)TQ(x—x’), Q>0. (14)
After this point we will frequently use the short notation
ks for the function kﬁ) (r;00,9Q).
4.3 Important properties of the new covariance
function
The developed multi-dimensional covariance function in both
forms kg\? and kgé) has the following remarkable properties:

1. It vanishes out of some finite region R:

Ri = {r eR? 1Y (r) £ o} (15)
Ry = {r eR? : k2 (r) £ o} (16)

Sizes of the regions R; and R, can be controlled via the
characteristic lengths [;. Moreover, these sizes can be
learnt from data by maximising the marginal likelihood
as common in the GP framework.

. All the derivatives up to (and including) the fourth or-
der derivative are continuous, which guarantees mean
square differentiability up to the corresponding order of
the sample curves in GPs. There are discontinuities for
the fifth order gradient.

. The region R is a D dimensional rectangle and the re-
gion Rz is a D dimensional ellipsoid.

(

. In the case of 1 dimension k& 1\? and kﬁ) become identi-

cal.

. The covariance function is anisotropic, i.e. has different
inner properties for different dimensions.

. This covariance function leads to sparse covariance ma-
trices and allows GP inference in large datasets without
the need for approximations.

5 Partial Derivatives for Learning

Learning the GP requires the computation of the covariance
function partial derivatives w.r.t. the hyper-parameters (Eq.
(7)). Based on Egs.(9), (12), the following expressions for

the partial derivatives of kj(\? (x,x';1, 0¢) can be calculated:

oky) 1)
— = —k 17
80'0 go M ( )

OkSY (i, 2l 00) 4o k) (wi, 2} li, 00) di
ol; 3 Ky 12

-8 ()

; I

di

l;

@
U

(18)
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where: = 1,2, ..., D.
For the second case, if 2 is diagonal and positive definite,
it can be expressed via the characteristic lengths as follows:

. 11 1
Q=d1ag (F’F”P) . (19)
14 D
From Egs. (14), (19) it follows that
3 (kY 20
r=4>0 A : (20)

Based on Egs. (13), (19)-(20) the following gradient compo-
nents of this multi-dimensional covariance function kj; can
be obtained:

Okn 24 cos (27r)

1
(1 —7‘)—!—2— sin (27r), if0<r <1
T

00 3

(2D

4

8;111\-4 _ % [ (1 —r)cos (nr) + sin (77))]
J
. 1 s — ,‘ 2
) smiw)l(%l xﬂ) df0<r<1. (22
j J

gradky =0, if r > 1. (23)

In Eq. (22), r is in the denominator, so that direct calculations
cannot be carried out using Eq. (22) when r = 0. However,
using the equality

Jim S0 47) _ (24)
r—0 r
one can directly show that
Ok (1500, 4 1 (zj—a2i\°
lim 2P0 (100, 9) _ 5y Ao 1 (25 22N
r—0 8ZJ r—0 3 lj lj
(25
Based on Eq. (25) it must be taken directly
Ok
=0,j=1,2,..,D. 26
|, J (26)

Egs. (21)-(23), (26) fully define the gradient of the new co-
variance function kj; at every point and can be directly used
in the learning procedure.

6 Experiments

This section provides empirical comparisons between exact
sparse GP, conventional GP with squared exponential and ap-
proximation procedures.

6.1 Artificial Dataset

In this experiment we compare the exact GP with the pro-
posed covariance function against the approach proposed in
[Snelson and Ghahramani, 2007]. The data is essentially the
same as presented in the experiment section in [Snelson and
Ghahramani, 2007]. As can be observed in Figure 2, the



Fully independent (training) conditional
approximation: FI(T)C

Exact GP with Sparse covariance function

Figure 2: Comparison between exact sparse GP and the lo-
cal and global approximation. FI(T)C stands for Fully inde-
pendent (training) conditional approximation. Details can be
found in [Snelson and Ghahramani, 2007]. Note that exact
sparse GP provides a much smoother curve.

sparse covariance function provides a much smoother pre-
diction for the underlying function than the combination of
local and global approximations. This example shows qual-
itatively that in some situations approximation methods can
lead to discontinuities. The same does not occur in the exact
sparse GP inference.

6.2 Rainfall Dataset

In this experiment we compare the exact sparse GP with the
exact GP with the squared exponential covariance function
and the covariance function obtained by the multiplication of
both of them. The dataset used is a popular dataset in geo-
statistics for comparing inference procedures and is known
as the Spatial Interpolation Comparison dataset [Dubois et
al., 20031(SIC) '. The dataset consists of 467 points measur-
ing rainfall in 2D space. We divide these points into two sets,
inference and testing. The inference set contains the points
used to perform inference on the testing points. For each
case the experiment is repeated 1500 times with randomly
selected inference and testing sets. Figure 3 shows the nor-
malised squared error for the different covariance functions
and the standard deviation (one sigma for each part of the
bar) as a function of the number of inference points. As the
number of inference points increases, so does the size of the
covariance matrix. The results demonstrate that very similar
errors are obtained for the different covariances. However,
the sparse covariance function produces sparse matrices thus
requiring much less floating point operations. Figure 4 shows
the percentage of zeros in the covariance matrix as a function
of the number of inference points. As can be observed, the
percentage of zeros grows quickly as more inference points
are added and it reaches its limit around 100 inference points.
Although the percentage of zeros reaches its limit, the num-
ber of zeros in the covariance matrix continues to increase
because the size of the covariance matrix increases with the

"The SIC dataset can be downloaded at:
geostats.org

http://www.ai-
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Figure 3: Normalised Mean Square Error for the SIC dataset.
The error is essentially the same for both covariance func-
tions, with the exact sparse performing slightly worse with
fewer inference points but similar with more inference points
(at a much lower computation cost).

number of inference points. Also worth noticing is the per-
formance of the multiplication between the two covariance
functions. The error is essentially the same as for the sparse
covariance function alone but the percentage of zeros is sig-
nificantly smaller. This example demonstrates the benefits of
the proposed approach in reducing storage and number of op-
erations for similar accuracy.

6.3 Iron Ore Dataset

In this dataset the goal is to estimate iron ore grade in 3D
space over a region of 2.5 cubic kilometres. The dataset is
from an open pit iron mine in Western Australia. About 17K
samples were collected and the iron concentration measured
with X-Ray systems. We divide the 17K dataset points into
inference and testing sets. The inference set is taken arbitrar-
ily from the dataset and from the remaining points the testing
points are arbitrarily chosen. The experiments are repeated
500 times. Figure 5 shows the normalised mean squared error
and the standard deviation (one sigma for each part of the bar)
in the cases of squared exponential, sparse covariance func-
tions and their product. The results demonstrate that all the
three lead to similar errors with the sparse covariance function
performing slightly better with the increase of the number of
inference points. Figure 6 shows that although they result in
similar errors, the sparse and the product lead to about 48%
of zeros in the covariance matrix, which is 120K to 12M cells
exactly equal to zero when the number of inference points
varies from 500 to 5000. This example demonstrates that the
proposed method provides greater savings for bigger datasets.

6.4 Speed Comparison

This experiment demonstrates the computational gains in
using the proposed sparse covariance function. Synthetic
datasets containing 1000, 2000, 3000 and 4000 points were
generated by sampling a polynomial function with white
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Figure 6: Percentage of zeros for the iron ore grade estimation
problem.

noise. We compare the speed of a GP with the sparse co-
variance function to a GP with the squared exponential co-
variance function for different length scales and correspond-
ing number of non-zero elements in the covariance matrix.
The results are presented in Figure 7. The code is imple-
mented in Matlab and uses the sparse matrix implementation
package provided. Further gains could be obtained in more
efficient sparse matrix packages. As the number of points
in the datasets increases, the speed up becomes more evident.
With 4000 points, the sparse covariance function is faster than
the squared exponential for up to 70% of non-zeros elements
in the covariance matrix. After this point, the computational
cost of the sparse matrix implementation becomes dominant.
As in general the sparse covariance function provides covari-
ance matrices much sparser, speed gains can be quite substan-
tial (in addition to storage gains).

7 Conclusions

This paper proposed a new covariance function constructed
upon the cosine function for analytical tractability that natu-
rally provides sparse covariance matrices. The sparseness of
the data is controlled by a hyper-parameter that can be learnt
from data. The sparse covariance function enables exact in-
ference in GPs even for large datasets, providing both storage
and computational benefits. Although the main focus of this
paper was on GPs, it is important to emphasise that the co-
variance function proposed is also a Mercer kernel and there-
fore can be applied to kernel machines such as support vec-
tor machines, kernel principal component analysis and others
[Schélkopf and Smola, 2002]. The use of the sparse covari-
ance function in other kernel methods is objective of our fu-
ture work.
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A Detailed Derivation
The covariance function is constructed by evaluating the integral

k1($,x/):a/::;g(%—u)g<x )du 27)

/
- —u

l

where

g () = cos® (wz) H (0.5 — |z|) (28)
and H (x) is the Heaviside unit step function. From Eq. (28) it
follows that g (x) = 01if |z| > 0.5 so that from Eq. (27) we have

ki (z,2") =0 if |z—2a'|>1 (29)
If |z — 2’| < [ then the integrand of Eq. (27) is nonzero only when

)au

u € (max(f’x ) _ 0.5, min(lx’x ) + 0.5) therefore
k / IYI]I\(;E.(ﬂ ) +% 2 x 2 ml
1 (z,2") = /mx<l )y cos (71'7 - 7ru) cos” (M —mu
(30)
Using the identities cos®(z) =  (cos(2x)+1)/2 and

2 cos (z) cos (y) cos(z —y) + cos(x +y) the indefinite
integral of the integrand of Eq. (30) can be analytically calculated:

J(u) = /cos2 (’/T% - 7ru) cos’ <7rx7 — 7ru> du
1711) ( z a:’) . ( x+a
s sin | 2ru — 7 i
/
-I-Lsin (47ru—27rx+x ) (31
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From Egs. (31) and (30) one has that if |z — z'| < [ then

/

2 4+ cos (27r
- 8

u+ i cos
47

ki (2,2)) = o {J (M*%) J<ma><(lww)%3)j)

1 .
+ — sin

2

which after algebraic manipulations becomes
d
k1 (m, 1:') =00 ):|

2 4+ cos (271'%) (1 B d <27T7
(33)

3 7) ]
where d = |z — 2’| and 09 = 30/8. Finally, combining Egs. (29)
and (33), we obtain Eq. (9).




