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Abstract

This work deals with computer analysis of tex-
tured surfaces. Descriptions of textures are form-
alized from natural language descriptions. Local
texture descriptions are obtained from the direction-
al and non-directional components of the Fourier tran-
sform power spectrum. Analytic expressions are de-
rived for orientation, contrast, size, spacing, and
in periodic cases, the locations of texture elements.
The local descriptions are defined over windows of
varying sizes.
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Introduction

My purpose is to present a new technique for com-
puter description of textured surfaces. Although |
use outdoor scenes, involving grass, water, forest,
and the like as a starting point of Intuition, tex-
tured surfaces generally appear in almost every sort
of scene and, therefore, | will also show some ex-
amples of isolated and artificial textures.

This study is motivated by a wide range of prac-
tical applications. The agricultural survey and ana-
lysis of earth resources by means of satellite pic-
tures is one such example. The social benefits of
computer-controlled cars using computer vision, as
described by John McCarthy, is another. Industrial
robots will soon acquire vision, too. Texture syn-
thesis, to which | feel our techniques are also ap-
plicable, is useful in computer-aided design and com-
puter-aided art. Interpretation of scanning electron-
microscope pictures, e.g., for metallurgy, may also be
of Interest.

A primary problem in texture is how we perceive
a textured surface as a uniform structure in a non-
trivial way. Intuitively speaking, there are many
levels on which one can perceive texture. In one sit-
uation we may look at the pattern created on a wall
and call that a "texture." In another situation we
may have a closer look at the same wall from the same
distance, but in this case see texture of the indi-
vidual bricks and ignore the texture given by the
overall architectural structure of the bricks. We
want to characterize textures in terms of a compact
symbolic representation.

We follow a structural description of textured
regions in terms of texture elements and their spatial
relationships. In turn, textured regions can also be
texture elements in a larger structure, etc.

Texture elements cannot be determined in iso-
lation. They are recognized through their similarity
relationships, although the measure of a similarity
may vary considerably. For example, in a texture of
pebbles the size similarity may be important even
though the sizes vary significantly. Still, there is
uniformity within a factor of 10 or so. Similarities
of other properties such as contrast, shape and spa-
tial distributions may also be only approximate.
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Texture Descriptions

The problem of texture recognition has been noted
already in early computer vision research. ' ' ! !

The best review paper about the current state of
texture extraction technology is that of Hawkins. Ac-
cording to him, there are four types of approaches that
have been taken toward texture classification:

(1) spatial frequency content; (2) gray level content;
(3) local shape content; and (4) higher order measures.
All of these approaches are pattern classification
techniques. These techniques are not satisfactory for
a description of real textures for the following rea-
sons :

(1) pattern classification techniques have concentrated
on linear decision procedures and domain independent
formulations. In this method the principle of contin-
uity based on local similarity relationships of some
features is missing; however, in real scenes this fact
is very important. Take, as an example, a grassy
field. Usually, grass appears as a lineary horizontal
texture, e.g., horizontal parallel lines. However,
when the wind blows, some of the grass stalks change
direction away from the horizontal lines. Although
this change of directionality is continuous and thus
detectable, pattern recognition methods would miss it.
(2) in pattern recognition approaches, context appears
as a set of numerical coefficients in a linear func-
tion and in the choice of features. Better models ex-
ist, in terms of context dependent decision trees,
which provide a flexible description of the object in
the scene. The description is not a simple name of a
class to which the object belongs, but rather a des-
cription of the object's parts, attributes, and rela-
tionshipsm

In fact, structural description of a texture is
the main theme in our work. In other words, our work
involves the description of texture elements (their
shape, size, orientation, etc.) and relational fea-
tures (spatial organization, texture gradient, and the

like).

In practical implementations we can describe only
simple relationships in spatial organization among the
elements, e.g., linear, bilinear, periodic, regular
but aperiodic, symmetric. Likewise, shape descriptors
of the elements must be relatively simple (straight
lines, dots, blob-like). One may question the effec-
tiveness of simple relationships and their descriptors;
it is reasonable to think that a more complex des-
cription of texture elements and their relationships
is necessary for adequate description of textures.
However, the psychological experiments indicate that
human differentiation of textures depends heavily on a
few simple descriptors, such as contrast and direction-
ality, and ignores even curvature In making texture
groupings. Although we cannot estimate the computa-
tional complexity of descriptors, we have an intuitive
feeling that in terms of time or In terms of complex-
ity of wiring for parallel systems, simple descriptors,
such aa directionality, are clearly preferred.

Procedures for Texture Descriptors

Basically, there are two domains from which one
can derive texture descriptors: the spatial and the
Fourier domain. Yet, some features are more visible



in one domain than in the other. For example, the lo-
cal properties, Buch as the shape of a texture element,
are grumbled in the Fourier domain while they are pre-
served in the Bpatial domain; a similar situation ex-
igts in the Bpatial shift among elements. On the other
hand, the global organization of texture elements is
expressed more succinctly in the Fourier domain than

in the spatial domain. We shall describe below the
procedures of feature extraction in each respective
domain.

Texture descriptors derived in the spatial domain

Since descriptors refer to properties of objects
(texture elements) represented in the image space, it
is natural to look for operators acting directly in
the spatial domain. Several low level operators have
to be combined into a procedure to obtain the desired
texture description. A skeleton of such a process u-
sually consists of: procedures isolating the image
elements, geometric description of image elements, and
clustering of elements based on proximity and their
spatial organization. A set of simple descriptors
has been suggested and implemented by Rosenfeld and
Thurston. They use, in parallel, several local aver-
aging operators applied in different directions and on
various sizes of windows. Though this method finds
some texture boundaries, the operators are too trivial
for handling a wide class of real textures. Besides,
they do not provide any description of a texture, ra-
ther they only detect the texture differences.

Tn the process of isolating the image elements
the most important features are the following topolo-
gical properties: connectivity, continuity, and prox-
imity. These properties, applied to brightness or
color, are used in all region finders. Here, the al-
gorithm is based on grouping all adjacent points with
similar brightness and/or color. Discontinuity is the

basic property to be used in edge and line operators.->®

Current edge and line operators are designed for de-
tecting discontinuities between two large homogeneous
regions and they do not operate satisfactorily on
small regions. The textured elements that one finds
in outdoor scenes are too small in size and too large
in number to be processed usefully by any of the above
operators.

After completing the isolating of image elements
- figures, we shall describe them. We select those
descriptors which enable clustering, i.e. based on
proximity, those which will find the nearby elements.
In passing, | want to emphasize that color and bright-
ness are among the most important descriptors in nat-
ural scenes. |Image elements cannot be taken separ-
ately from their background. In fact, the common
background of the elements is a strong clue for their
clustering. The relationship between the background
and color is expressed in terms of contrast, and,
therefore, It can be used as another descriptor.

Since the shape of a two or three-dimensional ob-
ject in a general situation could be extremely compli-
cated, we cannot hope and, in fact, we do not want to
describe it in detail. Instead, complex shapes are
decomposed into simpler ones which are hopefully eas-
ier to describe; the size of the texture elements must
also be simplified to correspond with the shapeB. A
typical example is a tree which may be decomposed into
its trunk and crown, the trunk being geometrically lin-
ear, the crown being blob-like. In shape analysis of
outdoor scenes, we find directionality among the most
useful features.

Finally, we describe the spatial organization of
texture elements. This amounts to the description of
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a new structure formed by the texture elements. Here,
the main problem is to recognize the whole as composed
of texture elements. For example, the dots could form
a straight line or a random dot pattern; straight lines
with the same direction form parallel lines, etc.

Limitatio_of Spatial Domain Procedures Despite
the importance of descriptors derived in the spatial
domain, we shall not use them in this work for the fol-
lowing reason. Currently available edge finders and
region finders are tailored for large homogeneous re-
gions. In natural scenes, textured areas are composed
of small texture elements. Even to the extent that the
boundaries of small regions are determined, the data
structures require unreasonably large memory, since the
boundary descriptions are no longer economical. The
next steps - description of elements and clustering el-
ements of similar direction, size, color, or brightness
- seem prohibitively time consuming and difficult for
grass, pebbles, sand, etc.

Texture descriptors derived in _the Fourier domain

Why do we Suggest to use the Fourier domain rather
than the Bpatial domain? An effective texture operator
must have certain virtues. It should describe the spa-
tial distribution of texture elements, and it should
characterize the shape and the size of the texture
elements.

From the elementary properties of the Fourier op-
erator, it follows that any real periodic function has
a symmetric Fourier image with respect to the origin.
An equally well-known but somewhat more interesting
fact is that the power spectrum is invariant with re-
spect to translation In the spatial domain, but not
with respect to rotation. A trivial consiquence of
this property is that the directionality of a pattern
In the picture is preserved in the power spectrum, but
the phase of the transform is not.

If a function is periodic, partially periodic, of
almost periodic, then Its Fourier transform provides a
more concise representation of the image, and the re-
lational feature derived from the Fourier image forms
a good description of periodic or almost periodic pat-
perns. For example, take an image of a texture com-
posed of several parallel lines. Its power spectrum
will have only one line. In addition, the power spec-
trum will contain the information about the width of
the line and the number of lines occurring in the
image.

The fact that directionality is preserved in the
power spectrum allows us to infer some gross Bhape

properties. He are able to distinguiah directional
and non-directio-"*" rormonents of texture. For this
reason, it is useful to transform the power spectrum

from a cartesian coordinate system <r,<p>. Then in each
direction , one can regard P(r,m) as a one-dimensional
function P (r). Similarly, for each frequency r, P (g>
is a one-dimensional function. In addition, if we In-
tegrate along direction {p, we obtain

T

P(r) *2 Z P (r) ,
0 *

P
and similarly, integration along radius produces
Wi

P(») - r_l P.((p)

where W is the window size.
Thus, the description of the texture depends in

this method on the form of the pair of functions
<P(r), P(o,)>.



The taxonomy of textures that we can describe by
using the properties of functions P(r), P(cp) is dis-
played in Flowchart 1.

Examples of Texture Descriptions
Usinp Fourier Techniques

An example of a monodirectional texture is the
texture of wood, shown in Fig. 1. In this figure, the
upper left picture shows the original texture divided
into four windows to show more than one sample of the
same texture. The picture in the upper right corner
is the resynthesized texture, produced according to
the description. As one can see from these pictures,
the description is monodirectional texture and, there-
fore, in the resynthesized version, the non-direction-
al components are filtered out. The picture in the
lower left corner shows the power spectrum of the ori-
ginal texture.

An example of bidirectional texture is a piece of
canvas displayed In Fig. 2. In thiB figure, just like
in the previous one, the upper left picture Bhows the
original texture divided into four windows. The pic-
ture in the upper right corner is the power spectrum
of the original texture. The pictures in the lower
part of the figure are separated and resynthesized to
two monodirectional textures, produced according to
their description. An example of a noisy (pepper and
salt) and blob-like texture are shown in Figures 3
(the sand) and 4 (the blob), respectively.

Now we shall study a further possible interpre-
tation of function P(r)., Consider a monodirectional
pattern that appears as a one-dimensional (in the par-
ticular direction) square wave function Fi(x). Denote
the replicative symbol by w(x) and the wave form by
f{x). We can represent & pericdic texture F(x) as a
convolution of basic waveform ¥{x) and a pariodic func-
tion wix).

Thus, F{x} = £{x) * u(x).
The Fourler transform of F(x) ia

FIRM] = F [£x,9)] - F lu(x,1)] « #0¢ £ * u(@.

Applying the window function of the width w, the oper-
ation appears as a convélution In the Fourler domain,

. aine x *  ainc x wix)

F [W(x,w) + F(x)] = 7 | v I

It 48 clear that we can maasure E, ¥ in the power
spectrum from the function P(r}, for Swety direction-
ality and window elze w. Coneequently, we cen esti-
mate (how well, depends on the brightnese function)
the wavelength £, as before and, in additiom, the size
of the smalleat element, v. The quantities v and £
will be parameters associated with esch descriprion.

Examples of functions P(yp) and P(r) of texture
saeples will be presented next. Tha size of sawples
is 32 x 32 poiats. The points on the y-axis have the
correspénding values of the functions P(g) and P(r),
respactively. The pointa (on the x-axis) in rhe
graph for function P{g) represent the value (x-1) %E
{for x =}, 2, ..., 16). The pointe {on the x-
axis) in the greph for function P{r) have just the ac-
tual values of frequency £ - 1,..., 16.

Each pair of functions <P{p),P(r)> will be das-
eribed by aome parameters, listed in a table. Below
in the liet of the parameters and their description.

NAME: The natural lsngudge names of the texture sam-
vles.

DESCRIPTOR: A hypothetical dascription of the sample
according some criteria (thresholds) applied on
functiona <P(g, P(r)>.

MAX P{p): The maximal value of F(g.
B’ Is auch ¢ that P{%x) = max P{e).

WIDTH: The distance between 9y @p» where P; Ppax

<@, and ?((91) = MIN P(p), che left eide with re-
apect to F(q;m)-

P(qb) = MIN P(p) (the right side with respect to
Ptqﬂmx)‘

If the descriptor is & directional, firet perform
& fan Filtering in such a way that the fan filter
is centerad in g and then find MAX P(n,m} =
P(nmx, mm) and Fhus compute DIR = arctg max .

DIR:

n
If the descriptor is non~directional then juﬂx
find
MAX P{n,m) = P{n___, m__ )
and compute DIR = anolE*
RO: Ise the wavelength computed from the maximal point
energy? 2

2
RO = window size/ Mo ¥ Toan

M : %8 the mean value of function P{w).
v : is the variance of P({o).

MAX P(r): 18 the maximal value of P(r).
: = P .
T rax ie such r that P(rm) MAX P(r}
WIDTH r: 1s the distance betwaen the center of P(r)

and the threshold value of the envelope of P{r).
Hr: is the mean value of P({r}.

v i 18 the variance of F(r).

v i the element elze equal to window sizefwidth ¢
of the envelope.

£: is the aspacing between slamenis, egual to
window size/frequency of the first peak.

In the case of bid{rectional taxture, & pair of values

is 1isted for the following paramerers:

MAX Plp), Ppgr V1ALPE s DIR and RO.

The texture names are on the top of each picture
displaying the corresponding function P((p) and P(r).

The actual samples of texture - wood, canvas, circle,
and Band - are in Figures 1, 2, 3, and 4.

In Fig. 5 we display a sample of grass. The upper
left window in Fig. 5 is the original sample; the upper

right window is its corresponding power spectrum; the
lower left window is the power spectrum after a high
pass filter; and the lower right window is the resyn-
thesized original picture after the high pass filter.

This example is presented to demonstrate the ne-
cessity for separating the slow changes from the real
texture pattern. The rationale for this is that most
of the objects (texture elements) tend to have the same
reflectively and the lighting varies smoothly. Thus
shading in the Fourier domain generates a low frequency
component.

Functions P(<p) and P(r) of textures grass, wood,
and canvas are displayed in Figs. 6a, 7, and Sa, re-
spectively. To consider the main directionality and,
thus, to be able to determine / and v, we display the
filtered alternative in Fig. 6b for grass, Fig. 8b and
8c for canvas (for one directionality). The table of
their corresponding parameters is Table 1.

Comments: First of all, notice that grass is described
as bidirectional, contrary to what would be expected.
The reason is that even after high pass filtering,
there is still significant slow change left, (wave-
length - 16) which forms the second peak. One needs to
know more about the scene (ita illumination, continui-
ty, context) in order to remove this kind of slow
change. It Is impossible without further knowledge e-



DENOTE N THE NUMBER OF DISTINGUISHED
PEARS OF FUNCTION Pig)

YES NO

THE TEXTURE 15 DIRECTIONAL

THE TEXTURE MAY
BE BIDIRECTIONAL
{TWOD SUPERIMPOSED

THE TEXTURE I5 NON-DIRECTIONAL

|

Gr P(r) - NONZERD cowsw@
THE TEXTURE 1S (""‘-‘“ Plri= 0 asd
HOMOGENEQUS Ploj# o

YES NG

THE TEXTURE IS
MONODIRECTIONAL
{PARALLEL STRIPES)

MOMNODIRECTIONA L YES, NO
TEXTURES]
THE TEXTURE IS THE TEXTURE
HOMOGENEOUS MAY BE
BLOB-LIKE
FLOWCHART 1
TABLE 1
RAME GRASS woop CANVAS

DESCRIPTOR BIDIRECTIONAL MONODIRECTIONAL BIDIRECTIONAL

MAX P(y) «<8.35, 7.5» 64 <108, 80>
Q <5, 13> 14 <1, 9>

mAX
WIDTR g <6, 4> 5 <§, 2»

DIR «<0.463, 2,03> 2.55 <1.57, 0>

RO €14.31, 16> 8.87 <16, B»

M 4,76 32.84 49.3

[

v 0,534 3.76 5.46

9

MaX F{r) 5.62 44.8 120. 3%

v 4 3 &4
WIDTR v 16 16 9

M 4,52 31.46 47.14

r

vr 0,324 2. 54 7.64

4 <8, 16> 10 <16, B>

i 8 8

BEX

Vv for MAX DIR 1 1 1.8
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bout the area to handle this situation appropriately,
because the same component (wavelength - 16), which

the case of grass is undesirable, is in the case of

the canvas texture an essential part of its descrip-
tion.

in

in the cases of grass and wood
shows similarities, which suggests that both of these
textures have some noisy irregular backgrounds. On
the other hand the canvas texture displays significant
peaks in low frequency and decreasing power in higher
frequencies.

Function P(r)

For more detailed analysis of P(r), one has to
separate the different directionalities. This is what
we have followed up In Figures 6b, 8b and 8c.

The last two examples of texture of blobs and
Band demonstrate the differences between nondirection-
al texturea. In Fig. 9 and 10 are functions P(tr) and
P(r) of samples of texture recorded in Fig. 4 and Fig.
3, respectively. Table 2 contains their corresponding
parameters.

The P({p)
is expected.

is a flat function In both textures as
P(r) in the case of blobs has one signi-

ficant peak; whereas, in the case of sand, P(r) is ap-
proximately flat.
TARLE 2

NAME BLOBS SAND
DESCRIPTOR BLOB~LIKE NOIEY
MAX P(p) 82.26 73.7%4
pmax 13 13
WIDTH ¢ 3 3
DIR 2,35 2,35
o 11.31 5
Hw 60.2 52.8
V‘P .72 2.48
MAX ¥(r) 120,48 75.8
vmax 3 6
WIDTH r 1 12
Mr 61.70 S54.4
Tr 6.32 3.18
[+ 10 5
v 2.6 1.2

We must make some comments about the differences
between continuous and finite discrete Fourier trans-
forms. The continuous Fourier transform exists for
every function with finite energy, while the finite
discrete Fourier transform exists for any function.
Our interpretations will be based on the continuous
transform and the actual computations on the discrete

transform (fast Fourier transform). The discrete
transform is really a Fourier series. A continuous
Fourier transform is rotationally invariant (except

while a descrete transform has
the coordinate axis and the
image has a continuous

for windowing effects),

distinguished axes along
diagonals. Thus, a directional
Fourier transform in a very narrow band transform only
for directions along the preferred axis. There is a

corresponding difficulty in defining fan filters which
we have not succeeded in solving.

One should make a note of a fairly
though elementary mathematical fact: namely, that
Fourier transform does not preserve functional re-
striction. More specifically, if g(x,y)/W denotes the
restriciton of the image function g(x,y) to a window W
(so that g(x,y) is truncated outside W), then

Flg(x,y)IW] - Flg(x,y)llw

important
the
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is true for every W only when g(x,y) Is periodic with
period equal to the si2e of W. Thus a Fourier image of
a truncated function, truncated outside a window, will
in general depend also on the part of the function
g(x,y) whose domain is outside W. What this means
practically is that certain texture elements could be
split in half by windowing, and, as a consequence, an
improper interpretation would be derived. This problem
can be partly compensated for by overlapping windowing.

Conclusion

In this paper we have presented procedures for de-
scribing textured surfaces by operating in the Fourier
domain of the image. Although the directionality in
the Fourier domain has already been recognized , it
has not been used in texture descriptions. The novelty
of this method is that it recognizes some gross shape
features (raonodirectional, bidirectional, nondirec-
tional, etc.) of textures in the Fourier domain. In
addition to the frequency properties, we are also able
to make some estimates about the size of texture ele-
ments. The descriptions are symbolic. They are asso-
ciated with a list of parameters (with corresponding
numerical values) that are used at a higher level in
the hypothesis-verification process. The data struc-
ture of texture descriptors is flexible and is expected
to change during the hypothesis-verification activity.
We are aware of several weaknesses inherent in this
method. For instance, human perception tends to dis-
count smooth changes In shading; yet the Fourier trans-
form reflects not only the edges but also the slow
changes. We are accustomed to regarding images in
terms of homogeneous regions with sharp boundaries and
to describing elements by brightness and color contrast
and outline shape. In the Fourier domain, these become

jumbled In a way that is only approximately resolved by
our heuristics; thus, they are not always usefully
described.

In addition, the texture elements (their shape)

and their organization are also jumbled together in the
Fourier domain. For instance, dots and small segments
of lines organized in parallel-lined fashion will be
described equally as monodirectlonal texture and,
therefore, not in full detail. For more detail, one
has to apply the spatial, local operators.

To sum it up, there are several possible texture
operators, such as statistical and Fourier operators,

and others. Some operators are bet-
Thus, the Fourier operators are very
linear perodic textures as well as for

periodic textures. Take grassy
etc. They are also useful

interval analysis,
ter than others.
efficient for
linear regular but not
fields, waves in the water,
for random dot patterns as long as the question is only
the recognition of random organization versus regular
organization (Example the sand texture). However,
Fourier operator will fail to recognize the differences
in more detailed shapes of texture elements. For ex-
ample, it will not distinguish texture made of "capital
A" and triangles (A) of the same size and organization.
Here more local operators are necessary. So the spa-
tial technique, being more local and therefore more ac-
curate in some sense, can complement the Fourier tech-
nique. Which operator is used where should be deter-
mined by higher level program.
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