TONARDS AUTOMATING EXPLANATIONS

R. E. Culllngford, M. W. Krueger, M. Selfridge, and M. A. Bienkowski

Department of Electrical Engineering
and Computer Soience
The University of Connecticut
Storrs, CT 06268

ABSTRACT

This paper discusses an approach to the
modelling of the explanation process within the
framework of a graphics-based CAD system currently
under development, which can describe its own use,
including the common ways to make and recover from
errors. With a coordinated textual and pictorial
display, the system, CADHELP, simulates an expert
demonstrating the operation of the graphical
features of the CAD tool. It consults a knowledge
base of feature scripts, built up using situation-
al script and commonsense algorithmic methods, to
explain a feature, generate prompts as the feature
is being operated, and to give certain types of
"help" when a feature is misused. CADHELP pro-
vides these services by summarizing the feature

script in different ways depending upon what it
has told the user previously. The summarization
process is based wupon a series of "sketchifica-

tion" strategies, which prescribe which parts bf a

knowledge structure, a causal chain, or a single
concept can be thrown away, since the listener
should be able to infer them.
I. Introduction
The ability to explain things is an impor-

tant, but poorly understood, component of intelli-
gent behavior. This paper discusses an approach to
the modelling of the explanation process within
the framework of a graphics-based CAD system,
called CADHELP, which can explain its own opera-
tion to its user, including the common ways to
make and recover from errors. Functionally, the
CAD system is a familiar sort of graphical tool
for the design domain of digital logic circuits.
It provides a standard set of graphical features,
such as drawing, dragging and rubber-band line
techniques, and accepts user input during, design
from such standard devices as terminal, light pen
and data tablet.

CADHELP
Structures,

detailed
simulate an

contains
which

knowledge
expert user's

The research summarized here was sponsored by the
Advanced Research Projects Agency of the Depart-
ment of Defense, and monitored by the Office of

Naval Research under Contract N00014-79-C-0976.
The support of these agencies is gratefully ack-
nowledged.

362

knowledge of how the basic graphical features
work, or may fail to work. CADHELP explains it-
self by demonstration, i. e., by mimicking an ex-
pert operating the device while explaining it.
The explanation mechanism contains a set of

natural-language generation heuristics which allow
it to create explanatory text or prompts from the
underlying knowledge structure in a context-
sensitive manner. CADHELP is primed to tell a
user only what he, as a result of an explicit com-
mand or by dialog history, does not already know.
Therefore, subsequent explanations reflect the
knowledge the user gained from earlier ones by om-
itting detailed restatement of concepts he should
now understand.
I'l. An Example

In this section, we present a sample explana-
tion which CADHELP has produced. The user selects
the graphical feature to be explained, and the
level of the explanation (viz., summary, normal
operation, or errors) with simple typed input.
CADHELP cannot "understand" natural language in-
put, and thus cannot engage in mixed-initiative
dialogue [CARB70] with its user. Our desire was
not to produce an intelligent computer-aided in-

structional (CAl) system, but rather to focus on
the rather poorly understood generative component
that any such system will require:

CADHELP produces explanations by expressing
"concepts" (encoded in a conceptual dependency
format [SCHA77]) selected from the knowledge
structure describing the selected feature. The

text generated is not canned, but varies in signi-
ficant ways according to the context it is being
produced in. (In the current implementation, how-
ever, the display oomponent of the explanation is
prestored.) Suppose the user asks to have ex-
plained the graphical feature of "dragging" ob-
jects (in this domain, logic devices) into posi-
tion in the design area using the light pen. In a
"summary" explanation, the normal operation of the
feature is described in the highest-level terms
available:

To move an object to a location, use the
drag feature.

Select the drag feature.

Select the object.

Drag the object into the design area.
Position the object.

Exit from the drag feature.

In the "normal" mode of explanation, the
operation is expanded in a greater level of de-
tail:

To move an object to a location, use the

drag feature.

(Light pen and parts flash as they are named)

The light pen hangs on the hook on the

graphics device.

The hook is to the right of the screen.

The light pen has a sensor.

The light pen has a handle.

The light pen has a connection to the system.

Select the drag feature by pointing the

light pen.

Grasp the light pen.

Move the light pen to the screen.

Touch the light sensor to the drag symbol.

The symbol flashes.

Select the object by pointing.

Drag the object into the design area.

Move the light pen into the design area.

The object follows.

Remove the light pen when the object is at

the location.

Exit from the drag feature by pointing.

An explanation of "errors" describes how com-
mon mistakes Involving the feature can be made,

and how to recover:

When you move the object into the design area,
the system receives an input from the light
pen when the light pen touches the object.
The system predicts where you are moving the
light pen to.

The system redraws the object at the place.
The system waits to receive an input from the
light pen.

If you move the light pen too fast,
does not get an input.

The system cannot redraw the object.
To continue dragging, point to the object,.

the system

I1'l. Representing Expert Knowledge

In designing a mechanism which simulates the
explanations generated by an expert, we have as-
sumed that what is to be communicated is a
knowledge structure (KS), a large body of inter-
connected declarations (propositions or asser-
tions) describing a knowledge domain. Explana-
tion, then, can be conveniently modelled as a pro-
cess by which a more or less complete copy of a
declarative KS is moved from the memory of the ex-
plainer to that of the listener.

Several claims oan be made about the charac-

teristics of a KS suitable for CADHELP-style ex-
planations. First, it should be language free,
since we wish to be able to generate a number of
paraphrases of the same underlying event. We
would also like to be able to drive both the text
generator and the display device from the same
representation.

The units of the descriptions of graphical
features are called conceptualizations. The con-

363

ceptualizations are connected together at the
lowest level of the KS into causal chains. The
type of causal connection between the events is

in terms of the primitive causals of the
commonsense algorithmic representation [RIEG77]
for meohaniams. KS's for explanation, as bundles
of causal chains Including well-understood actors
and objects, conform well to the notion of a si-
tuational script [SCHA77]. The KS describing the
operation of a graphical feature is called a
feature script, and the objects appearing in them
which differ from use to use of the script are
called script variables. Feature scripts are
built according to the "standard" methods des-
cibed, for example, in [CULL78], and so will not
be pursued further here. More details of CADHELP
script structure can be found in [CULLBO].

expressed

IV. Explanation Strategies

The key observation concerning explanations
of feature scripts is that they contain dozens of
conceptualizations and causal relations which
could be selected for expression. Thus, the pro-
cess of explaining appears to be one of deciding
what not to say rather than what to say. For ex-
ample, the feature script SLPPOINT, which
describes "pointing to a graphical object with the
light pen," contains fourteen conceptualizations,
interconnected by ten causal relations. Each
assertion and relation is potentially expressible,
but an explainer seems to focus on only certain
elements of the KS during the explanation.

Note that the speaker has the dual
the inferenoe problem the understander has. The
understander is expected to fill in what the
speaker left out, by various types of inferences
[e.g., CHAR72, RIEG75, CULL79, WILE79]. The
speaker seeks as economical an expression of the
thought to be communicated as possible. He leaves
"sketchy" the parts of the utterance the hearer
should be able to infer. We call this process
conceptual sketchification. In examining what
sounds natural in CADHELP-style explanations, it's
clear that speakers sketchify what they say at
every level. Selection and suppression occur in
the wuse of the top-level pointer to the KS,
causal chains to express an operation, unit events
from a causal chain, and, finally, conceptual
cases in a conceptualization.

problem to

Examples of sketch ification are easy to find
in the example explanations of Section Il. Con-
sider the use of the term "point," for example.
In the "normal" mode of explanation, CADHELP ini-

tially assumes that the user knows so little about
pointing that the instrument used, the light pan,
must be located and described. Then the mainpath
sequence of actions comprising a pointing episode
is expanded. In the second use of "point," the
instrument is named, but the action sequence is
not given again. In the final use of "point," the
description is reduced to the minimum. The in-
strument and the actor, which can be inferred, are
not named. But the object pointed to, which is
variable from use to use of $LPPOINT, must be
named.

within

The role of sketchifying can be seen

single concepts, aa well. Consider the syntactic
phenomenon oalled the "imperative". Conceptually,
this Involves the suppression in the surface form
of the conceptual actor. But from the point of
view of explanation, it's known to both parties
who the actor la: the user, Beoause of thia, the
explanation need not explicitly name the actor,
since this can be inferred. Similarly, oertaln
uses of the infinitive construction are sketchy
expressions of an inferrable fact about the under-
lying concept. If | say "I decided to go home," my
hearer is expected to infer that the unnamed per-
son who will go is the same as the one who decid-
ed. It appears that many syntactic constructions
are the surface manifestations of underlying
redundancies of these sorts,

CADHELP'a explanation strategies are organ-
ized into a hierarchy containing three levels of
sketchification. The KS-summarization level uses
intent/summary conceptualizations associated with
feature scripts for descriptions of KS's which
have already been explained. The explainer keeps
a small working memory of the featurea which have
been the subject of an "explain" command, or which
were Imbedded in a feature which was explained.

The user Phenoaenolofgoai level explains a KS
in terms of the wuser's actions and the system
responses he can see directly. This type of ex-
planation is Implemented by a small set of demon-
like rules (on the order of a dozen) which examine
the causal chains associated with the feature,
paring these down to concepts in which the user is
explicitly named as actor, or which are mental-
information transfer events by the user in
response to system actions. Thus, during the ex-
planation of "dragging", various objects are made
to flash at various points as the feature is
operated. The system also redraws the selected ob-
ject to give the illusion of the object's moving.
The system aa actor is suppressed by a sketchif 1-
catlon rule, however, which eventually forces the
language generator to use actorleas construotions
such as: "the symbol flashes" or "the object fol-
lows," Phenonenological level summarization is
used for descriptions of "normal" operation, in-
cluding the generation of prompts during the actu-
al execution of a graphical feature.

The third, most detailed level expands each
malnpath and support conceptualization in a causal
chain. This- is called the user/system
conversational level because it explaina the KS in
terms of the give and take between the user and
system, which is a kind of converaation. Becauae
the details of how the system reacts to the user's
manipulations are important in giving an under-
standing of how the user has gone wrong, conversa-
tional level summarization is used in
error/recovery explanations. As in the
phenomenological-level summarization, the tech-
nique of causal-chain sketchification is carried
out by a set of rules, operating as demons, which

select concepts to throw away. (The rules are, in
fact, a subset of the ones used in phenomenologi-
cal summariztion.)

V, Generating English

A, Background

By comparison with natural language under-
standing and inference, the research subarea of
natural language generation has received relative-
ly little attention. Although several language
generators exist (e.g., [SIMM72], [CHEST76],
[MCDO080]) which are capable of impressive fluency,
these begin with a syntactic representation of the
string to be created, including the words to be
used. Thus, they are unsuited for use in a system
such as CADHELP, which must generate from a con-
ceptual representation of a feature to be ex-
plained. Goldman's BABEL [GOLD75] is one of a
very limited number of examples of a sentence gen-
erator whioh starts with a conceptual representa-
tion of the thought to be uttered (in conceptual
dependency format) and maps it into a surface En-
glish string, Goldman's approach, however, is ba-
sically suited for sentence at a time generation.
The present researoh was motivated by the desire
to build a generator capable of producing
paragraph-length texts describing a knowledge
structure, in which the factors that make for
fluency could be explicitly studied.

B. Generation in CADHELP

CADHELP's generator, CGEN, has data and con-
trol structures which are very similar to the CA
language analyzer described in [BIRN80], Its pri-
mary data structure is a short term memory, called
the C-LIST, which the generator accesses in an
iterative process of looking UP words to express
the meaning of a concept currently at the focus of
attention (the "front" of the C-LIST); and of
inserting left-over subconcepts, perhaps with as-
sociated function words, in appropriate places on
the C-LIST. Initially, the C-LIST contains a con-
ceptualization which has survived the pruning pro-
cess the KS-level sketchifiers apply to a feature
script.

English has various conventions which govern
the order in whioh words should be said. These
conventions are stored in CGEN's dictionary as
positional constraints on where the constituents
expressing sub-conceptualizations must appear with
respect to a word which spans part of the current
concept. Consider the following simplified dic-
tionary definition for the word "move," as in
"move the stylus to the tablet:"

move: (PTRANS ACTOR (NIL) OBJECT (NIL) TO (NIL))
ACTOR — (PRECEDES PARENT)

OBJECT — (FOLLOWS PARENT)
(PRECEDES TO-SLOT-FILLER)

TO - (FOLLOWS PARENT)
(FOLLOWS OBJECT-SLOT-FILLER)
(FOLLOWS FUNCTIONMWORD:TO)

This definition states that "move" spans a
concept based on a physical transfer of location
(@ PTRANS) which an ACTOR makes an OBJECT undergo.

The predicates PRECEDES and FOLLOWS are used to
indicate where on the C-LIST the associated con-
ceptual case fillers are to be inserted. Here, the
predicates speoify a default ordering of ACTOR,
the word "move", OBJECT, then the filler of the TO
slot, following the function word "to". This ap-
proach to handling the details of English syntax
is admittedly oversimplified. It has the great
benefits of simplicity and uniformity, however,

and thus has allowed a progressive approach to the
addition of new language structure knowledge. For
example, handling the active and passive forms of
a verb turned out to require straightforward addi-
tions to the generator once a notion of "conceptu-
al focus" was worked out.

CGEN's basic generation cycle be
described by four rules:
1) If the front of the CLIST is empty,
then there is nothing to generate; return.

If there is a word on the front of the
CLIST then "say" the word by saving it on
a special list to be returned when the
generation cycle is complete.

2)

3) If there is a concept on the front of the
CLIST then remove the concept and try to
find a word in the dictionary to express
that concept. The look-up process is
similar to the discrimination-net
approach used in BABEL.

4) If the current concept
spanned by the word(s) found, replace it
with those words. Otherwise, insert the
leftover fillers into the C-LIST using
the positional constraints stored with
the word found.

is completely

There is a fifth
not to say something.

rule which concerns the decision
This decision is embodied
in the actions of the collection of concept-level
sketchifiers which continuously monitor the front
of the C-LIST for concepts which can be expressed
more economically than Rules 1-4 above would
prescribe. Thus, the basic model of generation
contained in CADHELP is that of an "exhaustive"
algorithm (Rules 1-4) being restrained by sketchi-
fying rules.

VI. An Extended Example

Here we illustrate the generation process
with computer output, edited for readability,
showing the generator OGEN expressing the same
concept at several levels of sketchiness. The con-
cept is one that is selected repeatedly by the ex-
planation mechanism (in a process not shown here)
as it applies user-phenomenological summarization
to produoe prompts for the user as he selects a
graphical feature.

First,
the concept-level
the system is run in a
Comments are indicated by

we show what CGEN produces if most of
sketchifiers are turned off, and
special "verbose" mode.

ULISP V1.4 Copyright,1978,R.L.Kirby
Eval: (genverbose ‘'selomdpO)

365

"The current top of c-list is the input concept
which states that the user is transferring
to the system the information that he has the
goal that the system instantiate one of the
graphical features ($cadfeat), and the inst-
rument of the transfer is the user applying
a force to a command block with the stylus.

CGEN: top of c-list is cO:
(mtrans actor (#person role (*user)) mode (t)
from (*cp* part *user)
to (*cp* part (#person role
mobj (s-goal actor *user mode

(*sys)))
(1)

goal ($cadfeat actor *sys
feathname (nil) mode (t)))
inst (propel actor *user
obj (#inst role (*stylus))
to (*perpto* part
(#loc role (&cmdblk)
locname (nil)))
mode (t) manner (forceful)))
"CGEN finds "tell" in its dictionary as spanning
~part of the input concept
CGEN: using

(tell)

~Following the instructions found under the word,
"CGEN rebuilds the c-list:

CGEN: current c-list

(cO actor) "the actor of the mtrans should be
"said first (the user)

"then the lexical item "tell"
"then the concept in the (to part)
"of the mtrans (the system)

(tell)
(cO to part)

(that) "then "that"

(C18 mobj) "then the concept in the mobj slot
(by the action that) "then "by the action that"
(cO inst) "then the instrumental concept
CGEN: top of c-list is c50:

(#person role (*user)) "the actor of the mtrans
CGEN: using

(you)

CGEN: current c-list "now the c-list has two

(you) "lexical items on top which can be
(tell) "popped off
CGEN: top of c-list is ¢55: "mtrans to part

(#person role (*sys)) "concept is next
CGEN: using

(cadhelp)

"realized by "cadhelp"

CGEN: current c-list
(cadhelp)
(that)

"contains two more
"words to be said

"Now the goal stative in the mtrans mobj slot
"reaches the top
CGEN: top of c-list is c29:
(s-goal actor (#peraon role (*user)) mode (t)
goal ($cadfeat actor (lperson role (*sys))
featname (nil) mode (t)))

CGEN: using

(want) "expressed with "want"

CGEN: current c ~list
(c29 actor) ~whose actor goes first

(want) ~then want itself
(that) ~then "that"
(c29 goal) ~then the goal concept

(by the action that) ~then the mtrans inst
(cO inst)

CGEN: top of c-list is e72
(#person role (*user)) ~the user reappears

CGEN: using
(you)

"Now the "execute a cad feature" script concept

"reaches the top

CGEN: top of c-list is c42:

($eadfeat focus (actor) actor (Iperson role (‘sys))
feathame (nil) mode (t))

CGEN: using "CGEN has not been able to find a

(execute) "word which expresses the concept
"directly so it uses the generic
"verb "execute"

CGEN: top of c-list is c48: "system appears

(#person role (*sys)) "again

CGEN: using
(cadhelp)

"Now the nominalized form of the "feature script"”
"concept bubbles up from where "execute" put it...
CGEN: top of c-list is ¢c102:
($cadfeat nomform (nil) focus (actor)

actor (#person role (*sys))

featname (nil) mode (non))

CGEN: using
(feature)

"dictionary has a word for this form

CGEN: top of c-list is ¢107: "indefinite refer-
(indef) "ence

CGEN: using
(a)

"Finally the propel concept comes up for

"expression

CGEN: top of c-list is ¢c148:

(propel actor (lperson role (ecuser))
obj (#inst role (estylus))
to (eperpto* part (#loc role

(&cndblk) locname (nil)))

mode (t) manner (forceful))

CGEN: using "the aot itself is "press"
(press)

"after several more cycles, the result...
Value:

(you tell cadhelp that you want that cadhelp
execute a feature by the action that you press
the stylus on a command block)

Next, we hand the above oonoept to the standard
generator three tines in Succession. Each tine
the realization returned is shorter.

Eva1: (gen 'SelemdpO)

"The inst sketchifier looks at the instrumental
concept and notes that its actor is the same
as the input concept's. Therefore, a gerund
form can be used to express the instrument
economically...

inst: examining inst concept c12

"The imp sketchifier notes that user-phenom
summarization is going on (as is normal
in prompts), and that the actor is the
user; therefore the imperative is ok...

imp: squashing actor *user in cO

"The dictionary returns "select" as the mapping
word. "Select" takes care of more of the

input concept than "tell" does,
so this is chosen

CGEN: using

(select)

"In the c-list as rebuilt by "select", the actor
has disappeared because of imp, "select" only
requires expression of the (mobj goal)
subconcept, and inst has set up a special form
for the expression of the instrumental conoept

CGEN: current c-list

(select) "the lexical form "select"

(cO mobj goal) "the $cadfeature concept

"which "select" has nominalized

(by) cby”

(cO inst) "a nominalized form of the

"propel concept

CGEN: top of c-list is c44:
($cadfeat actor (lperson role (*sys))
featname (nil) mode (nom))

CGEN: using

(feature) "concept is expressed as "a feature"
"as before

CGEN: using

(a)

"The instrumental concept reaches the top.
Note the syninstr marker which the inst
sketchifier added to get the gerund form

CGEN: top of c-list is c72:

(propel syninstr ($prog) actor (nil)

obj (#inst role (estylus))

to (*perpto* part (#loc role (&cmdblk)
locname (nil)))

mode (t) manner (forceful))

CGEN: using
(pressing)

"the progressive realization

"the cycle continues, with the result...
Value:

(select a feature by pressing the stylus
on a command block)

"Now express the conoept again

Eval: (gen 'selcmdpO)

"This time the standard inst sketchifier
disqualifies Itself because it's already had
a shot at this oonoept. Thus entity-instrument
gets a chance to modify the concept. Its test
is: is an instrumental object being used in a
"normal" function in an instrumental concept?

entinst: examining inst oonoept in 00

"Imp does its wusual dirty work:
imp: squashing actor euser in cO

~with the result:
Value:
(select a feature with the stylus)

™Once more into the breach...

Eva1: (gen 'selecmdpO)

"Both the standard inst and entity-inst
sketchlfiers disqualify themselves because
they've already had a shot at this concept.
Thus Kill-instrument gets in and erases the
instrumental concept altogether...

killinst: squashing inst concept in cO

imp: squashing actor *user in cO
"with the result:
Value:

(select a feature)

VIlI. Implementation Note

The natural-language and control modules of
CADHELP are programmed in Franz LISP. The high-
level graphics component was designed using the
facilities of the University of Toronto GPAC
[REEV77]. These parts of CADHELP currently run
under UNIX on a VAX-11/780 computer. The graphics
display itself is generated by a DEC VT-11 vector
display device controlled by a PDP-11/0M computer.

The graphics, natural language and explanation
modules are coordinated by a general-purpose in-
tegration package called a hierarchical task

manager [CULL81].

To give a feeling for run-time, CGEN produces
verbose expression of the command-select con-
cept discussed in Section VI in about 5 seconds
when it is used alone; and in about 15 seconds
when it is part of the complete CADHELP system.

the

VIIlI. Conclusions

This paper describes research into the
mechanisms that appear to be needed for generating

explanations intelligently. The micro-world
chosen, that of interactive graphics in support of
CAD, is a particularly attractive one because the

needed knowledge structures can be designed by ex-
tending existing representational formalisms:
scripts and mechanism-simulation causal relations.
Within this domain, methods of summarization have

been developed which oan be coupled to the level
of detail requested by the user, and the demands
of local context. Summarization is based upon the

notion of "sketchification," a multilevel
of selecting conceptual items for expression, then
suppressing components of an item based upon
whether the user should be able to infer them. A

process

collection of concept-level sketchlfiers interacts
with a natural language generator, CGEN, of a nov-
el design. These sketchlfiers prescribe syntactic
constructions which are more economical than those

whioh would normally be used by the generator.

367

REFERENCES

[BIRN79] Bimbaum, L. and Self ridge, M. Problems

in Conceptual Analysis of Natural Language.
CSTR-168, Yale U., New Haven, CT.

[CARB70] Carbonell, J. R. An Artificial Intelli-
gence Approach to CAIl. |EEE Trans, Man-Machine
Systems. MMS-11.

[CHAR72] Charniak, E. Towards a Model of
Children's Story Comprehension. AITR-266. M.I.T.
Cambridge, MA.

[CHAR77] Charniak, E. Ms Malaprop, A Language
Comprehension Program, Proc. Fifth Int- Joint
Conf.e on Alt Cambridge, MA.

[CHES76] Chester, D. Translating Mathematical
Proofs into English. Artificial Intriliffinoe.
November.

[CULL78] Cullingford, R. Script Application: Com-
puter Understanding of Newspaper Stories.
CSTR-116. Yale U., New Haven, CT.

[CULL79] Cullingford, R. Pattern-Matching and
Inference in Story Understanding. Discourse
Processes. Vol. 2, No. 4.

[CULL80] Cullingford, R., Krueger, M. and Sel-
fridge, M. Automated Explanations as a Component
of a Computer-Aided Design System. Proc.. Int.
Conf. on Systems. Man & Cybernetics, Cambridge,
MA. October.

[CULL81] Cullingford, R. Integrating Knowledge
Sources for Computer 'Understanding’ Tasks. IEEE
Trans.. SM&C. February.

[GOLD75] Goldman, N. Conceptual Generation. In
Schank, R. (ed.), Conceptual Information
Processing. North Holland.

[MCDO080] McDonald, D. Language Production as a
Process of Decision-Making under Constraints, Al
Lab. TR, M.I.T. Cambridge, MA

[REEV77] Reeves, W. GPAC User's Manual. Computer
Systems Research Group. Univ. of Toronto, Toron-
to, Canada.

[REIG75] Rieger, C. Conceptual Memory. In R.

Schank (ed.),
North Holland.

Conceptual Information Processing.

[RIEG77] Rieger, C and Grinberg, M. The Declara-
tive Representation and Procedural Simulation of
Causality in Physical Mechanisms. Proc Fifth

Int. Joint Conf, on il. Cambridge, Mass.

[SCHA77] Schank, R. and Abelson, R. SBEJS&SL Plana
Goals and nnd”rstanding, Erlbaum. Hillsdale, NJ.

[SIMM72] Simmons, R. and Slocum, J. Generating En-

glish Discourse from Semantic Networks. £ojUL*
AQ4. Vol. 15, No. 10.

[WILE79] Wilensky, R. Understanding Goal-Based
Stories. CSTR-UO. Yale Univ., New Haven, CT.

