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Abstract: The current state of a Theorem Proving
System (The Markgraf Karl Refutation Procedure) at
the University of Karlsruhe is presented. The goal
of this project can be summarized by the following
three claims: it is possible to program a theorem
prover (TP) and augment it by appropriate heuristics

and domain-specific knowledge such that

(i) it will display an
haviour in its striving
than the 'passive’  combinatorial
very large search spaces, which was
racteristic behaviour of the TPs of
Consequently

(i) it will not generate a search space of many

thousands  of irrelevant clauses, but  will find

a proof with comparatively few redundant de-

rivation steps.

Such a TP will establish an

in performance over previous

terms of the (difficulty of the
prove.

'active' and directed be-
for a proof, rather
search through
the cha-
the past.

(Hi) unprecedented leap
TPs expressed in

theorems it can

The thus far corroborate the first

two

results  obtained

claims.

O. INTRODUCTION

The working hypothesis of this TP project [DS77],
[DS79], first formulated in an early proposal in
1975, reflects the then dominating themes of artifi-
cial intelligence research, namely that TPs have
attained a certain level of performance, which will
not be significantly improved by:

(i) developing more and more intricate, refinement
strategies (like unit preference, linear reso-
lution, TOSS, MTOSS, ), whose sole purpose
is to reduce the search space, nor by

using different logics (like natural deduction
logics, sequence logics, matrix reduction
methods etc)

(ii)

although this was the main focus of theorem proving
research in the past.

The relative weakness of current TP-systems as com-
pared to human performance is due to a large extent
to their lack of the rich mathematical and extrama-
tematical knowledge that human mathematicians have:
in particular, knowledge about the subject and know-
ledge of hpw to find proofs in that subject.

Hence the object of this project is to make this
knowledge explicit for the case of automata theory,
to find appropriate representations for this know-
ledge and to find ways of using it. As a testease
and for the final evaluation of the projects success
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or failure, the theorems of a standard mathematical
textbook [DE71] shall be proved mechanically.

In the first section of this paper we give a general
overview of the system as it is designed, albeit not
completed. The second section concentrates on those
parts of the system, whose implementation is fi-
nished and evaluated. In the third section experi-
mental results are given and the final two sections
present an evaluation based on the presentfindings.

1. OVERVIEW OF THE SYSTEM

A Bird's-eye View
Proving a theorem has two distinct aspects: the
creative aspect of how to find a proof, usually re-
garded as a problem of psychology, and secondly the
logical aspect as to what constitutes a proof and
how to write it down on a sheet of paper, usually
referred to as proof theory.

These two aspects are in practice not as totally
separated as this statement suggest (see e.g.
[SZ69]), however we found it sufficiently important
to let it dominate the overall design of the system:

Figure |

The Supervisor consists of several independent mo-
dules and has the complex task of generating an
overall proposal (or several such) as to how the
given theorem may best be proved, invoking the ne-
cessary knowledge that may be helpful in the course
of the search for a proof and finally transforming
both proposal and knowledge into technical infor-
mation sufficient to guide the Logic Engine through
the search space.

DATA

Havus

The Logic Engine is at heart a traditional theorem
prover based on Kowalski's connection graph proof
procedure [K075], augmented by several components
that account for its strength.

The Data Bank consists of the factual knowledge of
the particular mathematical field under investi-
gation, i.e. the definitions, axioms, previously
proved theorems and lemmata, augmented as far as
possible by local knowledge about their potential
use.
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A View from a Leaser Altitude
The diagram of figure 2 sufficiently refines figure
1 to gain a feeling for the overall working of the
system:
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(TA), whose task is to transform
this information, which up to this point is in-
telligible for a human user, into technical advice
and code, which will then govern the top level be-
haviour of the Logic Engine and is for that reason
passed on to the Monitor.

nical Assistant

The Monitor governs and controls the global beha-
viour of the Logic Engine: immediately after acti-
vation it checks for an easy proof using the ter-
minator heuristic (see section 2) and only upon
failure activates the full machinery of the Logic
Engine. Typical control tasks are detecting constant
replications of the same lemma, detecting a circu-
lar development in the search space and keeping track
of the 'self resolving' clauses. A good example how
the monitor governs the top level behaviour is in
its prevention of the unsteady behaviour which the
system showed during earlier experimentation: The
selection heuristics constantly suggest 'interesting'
steps to take and forced the system to vacillate
between different parts of the search speace -very
unlike the behaviour of people, who, if put into
the same situation, would tackle an interesting
path until they either succeed or become somehow
convinced that it was a blind alley.

Up to this point the decisions and activities of the
PG and the TA are to a large extent based on the
semantics of the theory under investigation and
knowledge about proofs in this theory and their top-
goal may be formulated as: to be helpful "in fin-
ding a proof”. Once they have done so, that top-
goal becomes ‘"to derive a contradiction (the empty
clause)" and although this goal is of course iden-
tical to the previous one, it implies that diffe-
rent kinds of information may be useful: the ori-
ginal information provided by the PG based on the
semantics (which is by now coded into various para-
meters, priority values and activation modules) as
well as information based on the syntax (of the
connection graph or the potential resolvent).

It may be objected that this is the main goal of a
traditional TP also. While this of course true,
there is the important difference that a traditio-
nal (resolution based) TP is not dirextly guided
towards this goal in a step by step fashion, as no
refinement [LO78] specifies which literal to re-
solve upon next. For example linear resolution re-
duces the search space as compared to binary reso-
lution, but within the remaining space the search
is as blind as ever.

The PG and the TA are currently under development
and not implemented at the time of writing.

2. THE LOGIC ENGINE

The Logic Engine is based on Kowalski's connection
graph proof procedure [K075], which has several ad-
vantages over previous resolution based proof pro-
cedures: there is no unseccessfull search for po-
tentially unifiable literals, every resolution step
is done once at most and the deletion of links and
subsequently of clauses leads to a remarkable im-
provement in performance, which is heavily exploi-
ted in the Deletion-Module. Most crucial to our
approach however is the observation that since eve-
ry link represents a potential resolvent, the se-
lection of a proper sequence of links leads to the




alleged active, goaldirected behaviour of the sy-

2. | Input and Output

The interactive facilies are too numereous to ac-
count for here and instead a protocol of a typical
session is presented at the conference. An intere-
sting point to note is that the interaction at this
level was only designed for the intermediate stages
of development. It is now to an increasing degree
taken over by the Supervisor as it develops, with
the intention to move the interface with the user
althogether to the outside and to make the Super-
visor take most of the low level decisions. Two sets
of instructions however are to stay, the IN-Module
is used to set up (and to read) the Data Bank in a
way easily intelligible for the user. It also per-
forms a syntactical and semantical analysis of the
Data Bank, which is of considerable practical impor-
tance in view of the fact that it eventually con-
tains a whole standard mathematical textbook.

The PROTOCOL-Module provides several facilities for
tracing the behaviour of the system at different
degrees of abstraction in order to cope with its
complexity.

2.2 The Monitor

The deduction steps within the connection graph are
governed and controlled by several modules, which
are conceptually collected in the MONITOR.

We shall give a brief summary of the task of each of
these modules (although each module represents a
software development of about the size of a tradi-
tional theorem proving system). Only the heuristic
selection functions are presented in more detail be-
low.

Figure 3 gives an overview and refines figura 2;

teca
Splitting | | Planning|[Factoring |Definition|
Reduction Expansion

|Terminator] [Tracking |

The Splitting and Reduction Module is activated
first and converts the initial formulas into cn-
form subject to possible splitting and reduction
operations [BL71]. The resulting set(s) of en-for-
mulas are then transformed into the initial connec-
tion graph(s), which again are substantically re-
duced by subsumption and purity checks [EI81],
[WA81].

The Unification Module contains special purpose uni-
fication algorithms for frequently occurring axioms
like associativity, commutativity, idempotence and
their combinations, and hence these axioms are re-
moved from the data base prior to activation.

The Refinement Module simulates standard derivation
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strategies and most of the time only a small frac-
tion of all links in the graph is declared active.
For example if only the links emanating from a
clause in the initial set of support are declared
active and subsequently only the links of each re-
solvent in turn are declared active and the pre-
vious one passive (by appropriate <on-off-switches'),
the resulting derivation is linear. The Refinement-
Module allows to chose among some of the standard
strategies and setting refinements CLO78]. This has
turned out to be advantageous, since it substanti-
ally reduces the number of active links and hence
the expense for the computation of the heuristic
selection functions and the most successful runs
were obtained with this 'mixed approach'. The de-
cision, which refinement to choose, is taken by the
Monitor based on some genereal heuristics.

The Planning Module is currently under development
and contains additional, heuristically motivated,
splitting and simplification routines for the con-
nection graph as well as planning capabilities for
proof plans.

The Tracking Module controls the logic engine and
detects circular developments in the search space,
constant reapplication of the same lemma etc.

The Focussing of Attention Module prevents the un-
steady behaviour mentioned in section one and en-
sures that theorems and lemmas selected by the su-
pervisor are used in preference to other clauses.
Both activities are achieved by special weights

attached to the links in question.

The Definition Expansion Module exists in a rudimen-
tary form only: as more complicated examples are
tried, more refined heuristics are necessary to
control the expansion process, i.e. the replacement
of the defined literal by its defining clauses.

The Rule Base contains lemmas in the form of a pro-
duction system and each time the ifpart is satis-
fied the then-part is added to the current connec-
tion graph.

The Rewrite Rule Module contains simplification and
reduction rules in the form of rewrites, which are
applied to the terms of the initial graph, as well
as to every generated resolvent.

The Deletion-Module heavily exploits the crucial
property of this proof procedure that distinguishes
it from other proof procedures based on graphs

[SH76], [S176]: the fact that the deletion of links
and clauses can lead to a snowball effect of further
deletions. Because of this effect it is worth every

effort to find and compute as many criteria for po-
tential deletions as possible. At present a clause
is marked for deletion if:

(i) It is pure [WAB81]

(ii) it is a tautology [NASI]
(iii) it is subsumed by some other clause [EI81]

and this
relative  priorities

information has absolute priority over the

to be discussed below.

The Factoring Module controls the factoring of
clauses, which is based on special types of links
in the connection graph.

In contrast to the global search strategies
and global heuristics, the heuristic selection
functions of the Heuristic-Module



are based on local eyntaotical  information
about the graph or the resolvent (pararoodulant) res-
pectively UseilL These heuristics wars obtained
with two types of experiments: In the first experi-
nent a human testperson is asked to prove a given
set of formulas by resolution without any informatio
on the intended meaning of the predicate or function
symbols, Then the same set is proved by the system
and in case its performance is inferior, the analy-
sis of the deviation (and introspection of the test-
person on why a particular step was taken) can give
valueable hints for further heuristics.

In the second type of experiment the system is set

to prove a theorem. In the case of success, an ana-
lysis of the protocol, where in the listing of all

steps the steps necessary for the proof are marked,
provides a remarkably good source of ideas for im-

provement, particularly if the reason why a certain

step was chosen, is also printed in the protocol Ii-
sting.During the last two years several hundreds of
such listings were analyzed.

n

Initially we experimented withabout 20 different heu-

ristic feature*, where each feature attaches a cer-
tain value to every link k in G.. 6. is the present
graph, G. is the resulting graph after resolution
upon linx K and Res is the resolvent resulting from
this step:

(1) Sum of literals in 61:,.'_1
{it) Swm of olauses in Geay
(${1) Sum of links in Gy,
{{v) Avarage length of olausss in Gr,;
(v) Average sum of links on literals tn Gi.;
{{v) gﬂmsfmp. auerage sum) of oomatent symbols
+1
(vit) Nunbfr of distinat predicate symbols in
(vie) Number of distinet variables in Gy,
{iz) Gum of literais of Res
{z) Sum of links of Fas
(i) Sum of oonstant symbols in Res
(xii) Sum of distinot variables in Hes
{xitl) Mumber of distinot predicate symbols in Res
{ziv} Term ocomplezity of Res
{xv) Ninimm of linke on literals in Res
(zvi) Complexity of the most general wrifier o
attached to link k
{xvii) Age of Res
(xvitd) Degres of iaolation of Res
(eiz) Degres of fsolation of the payrents of Rss.

The problem is that although each heuristic feature
has a certain worth, the cost of its computation can
by far outweigh its potential contribution. Also it
may not be independent of the other heuristic fea-
tures; for example features (xi) and (xii) both mea-
sure the "degree of groundness of Res", but in a
different way. Similarly the values for Res and for
Gi+¢1 are not independent for certain features (e.g.
xiii and vli). Also there are the two problems of
finding an appropriate mtrio for each feature and
to decide upon their relative worth in case of con-
flict with other features.

Gl

in the heuristic features
certain facts (e.g.

The information contained
is entered In different ways:
decreasing sise of the graph) have absolute priority
and override all other information (see also the
merge feature of TT in [DA78]). Most of the informa-
tion of the other features is expressed as a real
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number in [0,1], where we experimented with several
(linear, nonlinear) metrics. This information is
then entered in a weighted polynomial and the re-
sulting real number (the priority value) expresses
the relative worth of the particular link and is
attached to each link. In case of no overriding in-
formation the Control-Module selects the link with
the highest priority value. Still other information
is entered using the "window-technique": among the
links whose priority value is within a certain in-
terval (the 'window'), the Control-Module choses the
one which minimizes some other feature.

The system has been designed such that heuristic
features can easily be added and deleted, however
after two years of experimentation the system has
stabilized with the following solution (stabilized
in the sense that neither the addition of heuristics
from the above list nor the use of different metrics
will significantly change the performance of the sy-
stem on an appropriately large set of tests):
1. Complaxity of the Graph
1.1 rcLEN = (I of clauses of G, ‘J
(L of clauses of GJ
1.2 FLINKSUM = (X of links of Gy ..} -
{L of linke of G)
1.3 PCANCEL = #{P|P is predicats eymbol occuring
in Gy}
1.4 FTERMINATE: (see below)

2. Complexity of the Resolvent

2,1 FAGE = Age of Res

2.2 PLITSUM = Sum of literals in Res
2.3} FTERM » Term complexity of Ras

2.4 MRESIBO = Degree of imolation of Ras

3. Complexity of the Parente of Res
3.1 FPARISO = Degree of isolation of the parants

features influence the actual derivation in
following way: all steps that lead to a reduc-
tion in the size of the graph have absolute prio-
rity and are immediately executed. That is, every
link which leads to a graph with fewer clauses or
fewer links or both is put into a special class,
which is executed before any further evaluation ta-
kes place. The decision whether or not a link leads
to a reduction is based on information from the De-
letion-Module and is optionally taken for every
link or for the active links only. Note that there-
duction in the size of the graph may lead to further
deletions, hence a potential snowball effect of de-
letions is carried out immediately, which accounts
for the first main source of the strength of the
system.

All other features have a relative priority and are
classified as situation dependent and situation in-
dependent respectively, since the cost of theirini-
tial computation and later updating differs funda-
mentally [SS80].

A successful usage of the relative priorities de-
pends on an appropriate metric for each feature,
which expresses its estimated worth. A discussion
of why the following metrics where chosen is outside
of the scope of this paper and may be found in
[SS80]; but the important point to notice is, that
each metric displays a particular characterietio,
which expresses the heuristic worth relative to its
argument.

These
the
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Characteriatia: FAGE

{for Dm = 5}

AGE of Ran
1 ]

Age: max{Age Parentl, Age Parent2}+1

o __: user defined maximally admitted depth of de-
rivation

This feature is mainly ussd to aveid "infinite

holes® in the search space.

---—i.._._
ZLITSUM : L of Lit of Ras

FLITSUM
Characteristic:

Z of Lits

This feature adds a strong “unit-preferance-be-
haviour™ to the systam.

1 if no nested or no terms in Ees
n i
A I (. ) 2
n i
B PR . St A
2 k¥
(l ) 2
where: s :maximal nesting of i term in Ras
s " :user defined maximally admitted depth of

nesting
n:number of terms In Res

FCANCEL :-LIT{Gi) - I.I'I‘IGiﬂ)
whara LIT{Gil - *{P|P otcurs as predicate in G£}

FTERM :=

otharwise

Note that the value js either O or 1 and this infor-
mation is useful for a simulation of Colmerauer's
cancellation strategy [K075).

FLINKSUM : has either abaclute priority if it decrea-
ses Or alse is antered into the sslection
process of the CO-Module with the window-
tachnique

FRES1EO : has either absolute priority if Res is
pure, else

O mach litaral of Res has at leanmt 3
links

={1/3 there is a literal in Res with 2
links
1 thare is a literal in Res with 1 lihk

FPARIBO: wesimilar to PRESISO

Note that FPARISC and FRESISO are useful, since they
provide the Control-Moduls with the information that
after one {or less useful, after two) further ataps
another deletion process starts, which potentially
leads again to a snowball effect of daletions,

The main constraint for these heuristics is that
after each resolution step the values of the heu-
ristic features have to be updated and it is essen-
tial that the cost of this updating is much less
than the cost of performing every possible resolu-
tion. For that reason not every value of the argu-
ments for the metrics is computed exactly but esti-
mated by some heuristic estimation function.

The Terminator Module is used in two ways: First it
acts like a simple (and relatively fast) theorem
prover and is activated on the initial connection
graph. If it fails, the full machinery of the logic
engine is loaded.

Secondly it is used to overcome the problem that the
above heuristics have the very limited horizon of
one step ahead, since the computation of a further
n-level look ahead for n>2, is so prohibitively ex-
pensive that it outweighs the advantage. For that
reason we implemented in addition a different n-le-
vel look ahead technique, which checks at tolerable
cost if there is a proof within a predefined com-
plexity bound. This terminator heuristic FTERMINATE
is the no-loop-requirement of [SI76, p. 832] and is
akin to the n-level-look-ahead heuristic proposed
by [KO075, p. 593] and is the second main source for
the success of the current system. The essential
idea is an elaboration of the following observation:

e

{§-}]

Figure 4

Each box in figure 4 represents a literal, a string
of boxes is a clause and complementary boxes (li-
terals) are connected by a link. If all unifiers
attached to the links in figure 4a are compatible it
represents a one-level-terminator, since it imme-
diately allows for the derivation of the empty
clause. Similarly figure 4b represents a two-level-
terminator if the unifiers are compatible (see
[SS80] for a detailed presentation). At regular in-
tervals (e.g. after n derivation steps) the Termi-
nator Module searches for such configurations.

2.3 Searching for a Proof

Once the Logic Engine is set into "prove-mode", the
CSS-Module converts the activated part of the Data
Bank into Skolemized clausal normal form and per-
forms various splitting and truth functional simpli-
fication tasks. The resulting set of clauses is
passed on to the CG-Module, which constructs the
connection graph and if possible performs an eva-
luation of terms, reductions or algebraic simplifi-
cations of terms with the aid of the above modules.
After these activities the initial connection graph
is set up and now the search for a proof within this
graph commences.

This search is locally controlled by the Control-
Module, which decides which link to resolve upon
next, based on nformation provided by the Heuristic-
Module, the Refinement-Module, the Deletion-Module
etc. The Control-Module turns the initial repreeen-



tation of clauses (the connection graph) into a
proof procedure (baaed on connection graphs) as it
defines a particular selection function, which maps
graphs to links. This mapping is complex and based
on information provided by several modules, but for
clarity it is entirely contained in the Control-No-
dule.

It should not be necessary to say that the complex
interplay of the various modules, which 'suggest'
which step to take next, prevents of course the
overall deduction from being 'standard* and the res-
pective completeness results do not necessarily
hold. However, by an appropriate setting of the
weight for FACE, it is impossible for a link to be
ignored indefinitely for selection and for that
reason we believe the system is complete.

The potential explosion of links is the bottleneck
of the connection graph: the following 'challenge’
proposed by P. Andrews, Carnegie Mellon at the 1979
Deduction Workshop, provides a point of demonstra-

tion: (3x QxwVy Qy) m (I Yy OxwQy).

The initial graph of this formula consists of al-
most 70 000 links and several hundred new links are
added to the grpah for each resolution step. If all
these links were declared 'active', the computation
of the selection functions would become intolerably
expensive.

In our system the example is split, reduced and sub-
sequently deleted to a graph never exceeding 50

links and easily proved within a few steps. Even for
more 'natural' examples, the number of deletion
steps is about one third and sometimes over one half
of the total number of steps.

Technical Data about the Project
Incorporation of Mathematical
Knowledge into an ATP-System, in-
vestigated for the Case of Auto-
mata Theory.

German Research Organisation (DFG)
Bonn, De 238/1, De 238/2.

Scorn
Name of Project:

Funding Agency:

Tim Period: 1976 to 1982 (six years)

Machine: SIEMENS 7.760

Minimally Required Storage Space: 6.000 K (virtual
memory)

Languages: SIEMENS-INTERLISP CEP75]
Present size of system: * 500 K of source code
Effort: * 10 manyears for its implementation

With more than 500 K of actual code at present and
approximatly 1.000 K under design for the next two
years, the system is the largest software develop-
ment undertaken in the history of automated theorem
proving and it may be indicative for the changing

pattern of research in this field.

3. PERFORMANCE STATISTICS

To gain a feeling for the improvement achieved by
the system, figure 5 gives a sample of some test
runs. In order to avoid one of the pitfalls of sta-
tistical data, which is to show the improvement
achieved on certain examples and not showing the
deterioration on others, the system is to be tested
on all of the main examples quoted in the ATP 1li-
terature: [WM76], [MOW76], [KRYKU72J. Of all exanples
tested thus far, the examples of figure 5 are re-
presentative (and wore tease, i.e. all other examples

316

were even more favourable for our system). The
examples of figure 5 are taken from the extensive,
comparative study undertaken at University of Mary-
land [WM76], where eight different proof procedures
were tested and statistically evaluated on a total
of 152 examples.

The table is to be understood as follows: the
first column gives the name of the set of axioms in
[WM76], e.g. LS-35 in line 9. The next three columns
quote the findings of [WM76], where the figure in
brackets gives the value for the worst proof pro-
cedure among the eight tested procedures and the
other figure gives the value for the proof proce-
dure that performed best. The final three columns
give the corresponding values for the Markgraf Karl
Procedure. For example, in order to prove the axiom
set LS-35 (line 9) the best proof procedure of
[WM76] had to generate 335 clauses in order to find
the proof, which consisted of 14 clauses, and the
worst proof procedure had to generate 1.521 clauses
in order to find that proof. In contrast our system
generated only 9 clauses and as these figures are
typical and hold uniformly for all cases, they are
the statistical expression and justification for
the first two claims put forward in the abstract.

4. KINSHIP TO OTHER DEDUCTION SYSTEMS

The advent of PLANNER [HE72] marked an important
point in the history of automatic theorem proving
research [AH72], and although none of the techni-
ques proposed there are actually present in our
system it is none the less the product of the shift
of the research paradigm, of which PLANNER was an
early hallmark.

The work most influential, which more permeates our
system than is possible to credit in detail, is
that of W. Bledsoe, University of Texas [BT75],
[BB75], [BB72], [BL71], [BL77], In contrast to
[BT75], we tried to separate as much as possible
the logic within which the proofs are carried out
from the heuristics which are helpful in finding
the proof.

The strongest resolution based system at presentis
[MOW76], and we have tested their examples in our
system. Comparison with their reported results,
shows that if our system finds a proof it is su-
perior to the same degree as reported in figure 5.

However, there are still several more difficult
examples reported in [MOW76] which we can not prove
at present. The strength of the system [MOW76] de-
rives mainly from a successful technique to handle
equality axioms and almost all the examples quoted
in [MOW76] rely on this technique. For that reason,
as long as our paramodulation module is not fully
equipped with proper heuristics there is no fair
comparison (the test cases were obtained with the
full set of equality axioms and no special treat-
ment for the equality predicate).

Finally among the very large systems which present-
ly dominate theorem proving research is the system
developed by R. Boyer and J.S. Moore at SRI [BM78].
Their system relies on powerful induction techni-
ques and although some of the easier examples quo-
ted in [BM78] could be proved by our system atpre-
sent, a justifiable comparison is only possible
once our induction modules are completed.
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Figure 5
A theorem prover based on heuristic evaluation was REFERENCES
also reported by Slagle and Farrell [SF71] however [AH72] B. Anderson, P. Hayes: An Arraignment of

it appears that such heuristics are not too success-
ful for an ordinary resolution based prover.

5. CONCLUSION

At present the system performs substantially better
than most other automatic theorem proving systems,
however on certain classes of examples (induction,
equality) the comparison is unfavourable for our
system (section 4). But there is little doubt that
these shortcomings reflect the present state of de-
velopment; once the other modules (T-unification,
paramodulated connection graphs, a far more refined
monitoring, induction, improved heuristics etc) are
operational, traditional theorem provers will no
longer be competitive.

This statement is less comforting than it appears:
the comparison is based on measures of the search
space and it totally neglecte the (enormous) re-
sources needed in order to achieve the behaviour
described. Within this frame of reference it would
be easy to design the "perfect" proof procedure:
the supervisor and the look-ahead heuristics would
find the proof and then guide the system without
any unnecessary steps through the search space.

Doubtlessy, the TP systems of the future will have
to be evaluated in totally different terms, which
take into account the fotal (time and space) re-
sources needed in order to find the proof of a given
theorem.

In summary, although there are good fundamental ar-
guments supporting the hypothesis that the future
of TP research is with the finely knowledge enginee-
red systems as proposed here, there is at present
no evidence that a traditional TP with its capacity
to quickly generate many ten thousands of clauses is
not just as capable. The situation is reminiscent
of todays chess playing programs, where the pro-
grams based on intellectually more interesting prin-
ciples are outperformed by the brute force systems
relying on advances in hardware technology.

517

Theorem Proving or the Logicians Folly,
Coop. Logic Memo 54, Univ. of Edinburgh

N. Ballayntyne, W. Bledsoe: Autom. Proofs
and Theorems in Analysis using nonstandard
Techniques, ATP-23, 1975, Univ. of Texas
[BBH72] W. Bledsoe, B. Boyer, Hemmeman: Computer
Proofs of Limit Theorems, J. Art. Intellig.
vol 3, 1972

W. Bledsoet Splitting and Reduction Heuri-
stics in ATP, J. Art. Int., vol 2, 1971

W. Bledsoe: A maximal method for set va-
riables in ATP, ATP-33, Univ. of Texas, 1977
R.S. Boyer, J.S. Moore: A Computational Lo-
gic, SRl Intern., Comp. Sci. Lab., 1978

W. Bledsoe, M. Tyson: The UT Interactive
Prover, Univ. of Texas, ATP-7, 1975

J.L. Darlington: Connection Graphs and Fact
Nets, Intern. Rep., GMD Bonn, |.S.T., 1978
J.L. Darlington: Connected Fact Nets and
Automatic Programming, GMD Bonn, 1.S.T.,1978
J.L. Darlington: A Net Based Theorem Proving
Procedure for Program Verification and Syn-
thesis, 4th Workshop on Art. Int., Bad
Honnef, 1979

P. Deussen: Halbgruppen und Automaten,
Springer 1971

P. Deussen, J. Siekmann: Neuantrag sum For-
schungsvorhaben 'Untersuchung zur Einbesie-
hung mathematischen Wissens beim Automati-
schen Bewelsen am Beispiel der Automaten-
theorie*, DFG-Forschungsprojekt, As. De 238/1
1977

P. Deussen, J. Siekmann: Zusatsantrag sum
Forschungsvorhaben *Untersuchung sur Einbe-
ziehung mathematischen Wissens beim Autom.
Bewelsen am Beispiel der Automatentheorie *,
DFG-Projekt De 238/1, 1979

N. Eisinger: Subsumption and Connection
Graphs, Universitlt Karlsruhe, 1981

B. Epp: INTERLISP Programmierhandbuch,
stitut far Deutsche Sprache, Mannheim
C. Hewitt: Description and Theoretical Ana-
lysis Of PLANNER, AI-TR-258, MIT

[BB75]

[BL71]
BL77
[BN78]
BT75
[DA78]
[DA78]

CDA79]

[DE71]

[DS77]

[DS79]

[E181]
[EP75] In-

[HE72]



[HU77] G. Huett Confluent Reductions: Abstract
Properties and Applications to Tern Rewriting

Systems, 18th IEEE symp. on Pound, of Coop.
Scie., 1977

[K0O753 R. Kowalski: A Proof Procedure based on
Connection Graphs, JACM, vol 22, no 4, 1975

[TIA77] D.S. Lankford, A.N. Ballantyne: Complete
Sets of Pemutative Reductions, ATP-35,
ATP-37, ATP-39, Univ. of Texas at Austin,
1977

[LO78] D. Loveland: Automated Theorem Proving,
North Holland, 1978

[NON76] J. NcCharen, R. Overbeck, L. Nos: Problems

and Experiments for and with Automated Theo-

rem Proving Programs, |EEE Transae, on
Computers, vol-C-25, no 6, 1976
[RRYKV72] Reboh, Raphael, Yates, Kling, Velarde:

Study of Automatic Theorem Proving Programs,

1972, Stanford Research Institute, SRI-TN-75
Stanford

[SF71] J.R. Slagle, CD. Farrell: Experiments in
Automatic Learning for a Multipurpose Heu-
ristic Program, CACM vol 14, 1971

[SI81] J. Siekmann: Mathematical Reasoning as done
by Man and Machine, Report (forthcoming),
Universitat Karlsruhe, 1981

[SH76] R.P. Shostak: Refutation Graphs, J. of Art.
Intelligence, vol 7, no 1, 1976

[S176] S. Sickel: Interconnectivity Graphs, IEEE
Trans, on Computers, vol C-25, no 6, 1976

[SB79] J. Siekmann, K. Bl&sius: Forschungsvorhaben
zur Behandlung des Gleichheitspradikates
beim Automatischen Beweisen, Universitat
Karlsruhe, 1979

[SS813 J. Siekmann, G. Smolka: Selection Heuristics,
Deletion Strategies and N-Level-Terminator
Situations in Connection Graphs, Universit&t
Karlsruhe, SEKI-Report, 1980

[SW79] J. Siekmann, G. Nrightson: Paramodulated
Connection Graphs, Acta Informatica, 13,
1981

[SZ69] P. Szabo: The collected papers of
G. Gentsen, North Holland, 1969

[WA79] C. Neither: Forschungsvorhaben zur Automa-
tisierung von Induktionsbeweisen, Universi-
tyt Karlsruhe, 1979

[WM76] G. Wilson, J. Minker: Resolution, Refine-
ments and Search Strategies; A Comparative
Study, IEEE Transac. on Comp., vol C-25,
no 8, 1976

[MA81] C. Neither: Elimination of Redundant Links

in Extended Connection Graphs, Springer

Fachberichte, vol 42, 1981

318

REFERENCES

References for the paper by J. Siekmann, P. Szabo:

"Universal Unification and Regular Equational ACFM

Theories'*, this volume.

[FA79] M. Fay: First Order Unification in an Equa-
tional Theory, Proc. 4th Workshop on Autom.
Deduction, Texas, 1979

[G066] W.E. Gould: A Matching Procedure forunorder
Logic, (thesis), Air Force Cambridge
Research Labs, 1966

[HO80] G. Huet, D.C. Oppen: Equations and Rewrite
Rules, in: "Formal Languages: Perspectives
and Open Problems", Ed. R. Book, Acad. Press,
1980

[HT80] G. Huet: Confluent Reductions: Abstract

Properties and Applications to Term Re-
writing Systems, JACM, vol 27, no 4, 1980
J.M. Hullot: Canonical Forms and Unification,
Proc. of 5th Workshop on Autom. Deduction,
Springer Lecture Notes, 1980

[HU80a] J.M. Hullot: A Catalogue of Canonical Term
Rewriting Systems, Research Rep. CSL-113,
SRI-International, 1980

D. Knuth, P. Bendix: Simple Word Problems in
Universal Algebras, in: Comp. Problems in
Abstract Algebra. J. Leech (ed), Pergamon
Press 1970

R. Kowalski: A Proof Procedure based on
Connection Graphs, JACM, vol 22, no 4, 1975
D.S. Lankford: A Unification Algorithm for
Abelian Group Theory, Rep. MTP-1, Louisiana
Techn. Univ., 1979

D. Lankford, M. Ballantyne: The Refutation
Completeness of Blocked Permutative Narro-
wing and Resolution, 4th Workshop on Autom.
Deduction, Texas, 1979
G. Peterson, M. Stickel:
Reductions for Equational
Complete Unification Algorithms,
vol 28, no 2, 1981

G. Plotkin: Building in Equational
Machine Intelligence, vol 7, 1972
P. Raulefs, J. Siekmann: Unification of
Idempotent Functions, Univ. Karlsruhe,
[RSS79] P. Raulefs, J. Siekmann, P. Szabo,

E. Unvericht: A short Survey on the State of
the Art in Matching and Unification Problems,
SIGSAM Bulletin, 13, 1979

J. Slagle: ATP for Theories with Simplifiers,
Coromutativity and Associativity, JACM 21,
1974

[SS81a] P. Szabo, J.

[HU8o]

[KB70]

[K075]

[LA79]

[LB79]

Complete Sets of
Theories with
JACM,

[PS81]

[PL72] Theories,

[RS78]
1978

[SL74]

Siekmann: A Minimal Unifi-

cation Algorithm for Idempotent Functions,

Univ. Karlsruhe (forthcoming 1981)

P. Szab6, J. Siekmann: Universal Unifi-

cation, Univ. Karlsruhe (forthcoming 1981)

[SS81c] J. Siekmann, P. Szabo: Universal Unifi-
cation and Regular ACFM Theories, Univ.

[SS8Ib]

Karlsruhe, Research Report, 1981

[VA75] J. van vaalen: An Extension of Unification
to Substitutions with an Application to
Automatic Theorem Proving, I|JCAI-4, Proc.
of 1975

[WF73] L. Nos, G. Robinson: Maximal Models and Re-

futation Completeness: Semidecision Proce-

dures in Autom. Theorem Proving,in: Word
problems (W.W.Boone, F.B.Cannonito,
R.C. Lyndon, eds), North Holland, 1973



