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ABSTRACT. A universa) minimal typs conformal mat-
ching algorithm and a universa) minima) unification
algorithm based on (FA791, [SL74), [LB79), [(HugD)]
are presented for a restricted class of squational
theories (the Regular ACFM Theories), i.s. it is
shown that the set of most genaral unifiers is re-
cursively snumerable for this class. The class of
Regular ACFN Theories is wide enough to containmost
spacial cases of unification algorithms that have
been investigated so far. This paper is a {very)
abbreviated version of [SS81cl, all proofs and most
of the technical material are omitted for lack of
space, For reasons of consistency with the original
paper, the numbering of definitions, lemmas and
theorems has been retained,

1.1 INTRODUCTION
Ui fioation theory is concerned with problems of the
following kind: Let f and g be function symbols, a
and b constants and let x and y be variables and
consider two firet order teme built from these sym-
bols; for example:

tl = f{x,g{a,b))

tg = f{g{y.b).x).
The tirst question which artses is whether or not
there exist terms which can be substituted for the
variables x and y such that 4 and t, become equal:
in the example g{a,b) and 2 are two such terms. Ne
shall write

o = {x+g(a,b}, y+a} for such & unifying

substitution: 0y is a unifier of t; and t, since
oltl = oltz.
In addition to the decision problem there is also the
problem of finding a wnification algoritim which
generates the unifiers for a given pair t and ty

Consider a variation of the above problem, which
arises when we assume that f is commutative:

{€)  f(xy) = f{y.x)
Now oy 15 still a unifying substitution and more-
over o, = {y+a} 1is also a unifier for t) and tz.
since
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aztl = f(x,g{a,.b}) *c flg{a,b),x) = °2t2'

But o, 1s more general than o;. since oy is an in-
stance of o, obtained as the camposition Ae0, with
x = {x+~g{a,b}}; hence a unification sigorithm only
needs to compute 7T

There are pairs of terms which have more than one
most general unifier {i.e. they are not an instance
of any other unifier) under commutativity, but they
always have at most finitely many. This is in con-
trast to the first situation (of free terms), where
every pair of terms has at most one moat general
unifying substitution.

The problem becomes entirely different when we
assume that the function denoted by f is asso-
ciative:

(A) f(x.f(y,2)) = f(f(x,y).z)
In that case 9 is sti1! a unifying substitution,
but

gq = {xef(g(a,b}, g(a,b)), y«u)
is also unifier:
o4ty = f(f(g(a,b), g{a.b}), 9{a,b))

wp Flgla.b), f(g(a,b), g(a,b))) = ogt,.

But 0y = {x-f{g{a,b), f{g{a,b), g(a,b}}), y+al is
again a unifying substitution and it is not diffi-
cult to see that there are infinitely many unifiers,
211 of which are most general.

Finally, if we assume that both axioms (A) and (C)
hold for f then the situation changes yet againand
for any pair of terms there are at most findtely
many most general unifiers wnder (A) and (C),

Many special unification algorithms for common theo-
ries have been developed in the past, since they
have important applications in computer science
[RSS$791. In particular, thay are a crucial compo-
nent of automatic theorem provers and of many pro-
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grams developed jn artificia) intelligence. We shall
now briefly review a formalism to express problems
of the above kind.

1.2 UNIVERSAL UNIFICATION
Let Fn be the initial algebra of free terms whose
elements are given a concrete representation by:
{1} X, the set of variables, is in Fn
(i1} for fen, the set of function symbols, and
tys ...tzeFR:f{tl.....tn)e Fn iff of = n.
{S581c) provides a brief survey of the logical and
algebraic background of unification theory. In this
abbreviated version it is however sufficient for the
reader to have an intuitive notion of first order
terms.

Let E:X-rFQ be a mapping which is equal to the iden-
tity mapping almost everywhere. A substitution
o:F~F, is the homomorphic extension of o and s re-
presented as a finite set of pairs
o= {x1+t1....,xn+tn}.

I is the set of substitutions on Fﬂ. If tis a term
and o a substitution, Tet ¥({t)} denote the set of
variables occurring in t and define:

DOM({o} := {x€X: ox * x}

{0D{o} := {ox: x € DOM(o}

1¥(o) := {xev{p): peCOD{a)}
An equation s = t, 5,t€ FQ is unifiable {is solvable)
in the algebra 4 {ff there exists a homomorphism
&: FQ-rA such that Ls = £t 1s valid in 4. A set of
equations T induces a congruence ol in Fn and FQ/
is the quotient algebra modulo =

L]

y

-
For simplicity of notation we assume we have a box
of symbols, GENSYM, at our disposal, out of which
we can take an unlimited number of “new" symbols:
X = X, v GENSYM,

We shall adopt the computational proviso that when-
ever GENSYM is referenced by v € GENSYM it is sub-
sequently ‘updated' by GENSYM' = GENSYM - {v} and
x;) v {v}. Since F o Fpu we shall not always
keep track of the '-s and Just write F

A renaming substitution p€ RENc I is defined by
{1) COD(p)c X 3

(1) wx,y€X: 1f x » y then px » py

For s,t€ Fo i s o t if 3p€REN such that ps = pt.

In order to formalize the accessing of a subtermin
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a term t Jet N{t) be the set of positions in t{i.e.
subterm addresses) and we denote a subtemm of t at
1, by tin. A subterm replacement of ¢t by & at v is
Bt. with & = [n+s]. For definitions see CHTBO1. For
example {f t » f{g(a,b),c) then

m(t) = {A,1,2,1.1,1.2} and tj1.2 = b,

We denote replacements by 5, B, 3. etc. and sub-
stitutions by o, p, §, etc.

A relation - ¢ F XF is Noetherian (terminating)
if there are no 1nfinite sequences: $) S, S4..

tig the transitive and 2+ the reflexive and trnnsi-
tive closure of -. A relution - is confluent 1f for
every r,s,t€F, such that r - sand r :ot there
exists a u€F such that s — u and t —ou A con-
fluent Nootherian relation is oamontioal.

We define two important relations - and > on
ng Fn as follows:

A rewrite syatam R = {(Il.rl]....{'ln.rn)} 1§ any
set of pairs li.rieFﬁ. usually writen as 'i""i'
such that V(ri) € \'(11). 1sisn. For two terms s
and t, we say s ie paramodulated to t, s > t, if
there exist men(s), «€xX and I.I-»r1 €R such that
o(sIm) = (oep)¥y for some o€ REN and COD(o) < GENSYM
and t = 3s, where G = [n+{gep)r,].
For example, for R = {g({x,0) = 0} we have

= f{g(a,y}:b) > F(O,b} = t
with » = 1 amd o = {x+a, y«0}. The renaming sub-
stitution p is used to avoid any conflict between
variables,
For two terms s and ¢, we say § ©& reuritien to t,
s+ & if there exist n€n(s), o€ and 'Ii-oricR
such that s(n = (uao)l1 for some p€ REN and
COD(o) € GENSYM and ¢ = 3s, where 5= [m«{oep)r,)
If s and t are the same as in the above example
then: s “R t, since we are not allowed to substi-
tute into s, Occasionally we keep track of the in-

formation by writing $»=—w— t and § === t. In
[r,i,0] [w,i,ol
addition, we use (A, .c] to express the reflexi-

vity of o>+ resp. - (1.e. A, Means: no ‘rule' is

applied). Thus § — s for all seF
CAsxgHe]

The notation and definitions of term rewrite sy-
stems are consistent with [(HT801. Suppose for an
equational theory T there {s a rewrite system R,
such that for s,t€Fy:



s= t 1344 apan such that s'»RT p and tNRT p.

in that case we say T is enbedded inte II,r anrd write
T‘-.-I!T.

For an equational theory T there are techniques to

obtain a system RT such that T--:RT; woreover for

wmany theories of practical interest it is possible

to obtain a rewrite system I!Y such that -»RT is

canonical [KB70], [HT80), [PS81]. Canonical rela-
tions ~ are an important basts for computations in
equational logice, since thay define & unique nomal
form lIt) for any t€F,., givenby t = It)t and
A sEFﬂ such that ||t]| - s. Hence

(1} s =, t 37F QUsil = 1t .
An equational theory T is decidable iff & =t is
decidable for any s,t€F . Let 7 denote the fa-
mily of decidable equationai theories.
A T=unification problem < = t>, consists of a pair
of terms s,t€F, and a theory T€ %
A substitution o€X i & T-unifier for <s = t>T iff
os = ot. The subset of I which unifies <5 = t> is
U:T(s.t). the set of witfiere (for s and t)} wnder T
It is easy to see that ln:r is recursively enumerable
{r.e.) for any s and t: Since Fn is r.e. so is I,
Now for any 4€x. check if 6s = 6t {which is deci-
dable since Te@ then §€ UL (s,t) otherwise

L 4 UIT(s,t},

The composition of substitutions is defined by the
usual composition of mappings: (oo1)t « o{tt). If
W< X, then T-equality 1s extended to substitutions
by
o= 1IN iff wxél ox >, X

0 and 1 are T-equal in W, We say o 15 an instanoe
of 1 and 1 1% more general than o, in symbols

L ali) 1ff 3rex Ta AcalW] for some W « X,

oIW) then o ~ vIW], o and T

iIfa <. (W] and * 5.
are T-equivalent in W.

For £;,Z, ¢ I we define

I)°%, = {000, : 0;€1,, 0,€L Y. £y e I, W) §fF
Yo, €5 3 0 €L, such that 5, = 0, (W1,

I = I, Nl iff L; 5, Ip (W) and T, < I; IN].
Universal unification is concerned with two funda-
mental problems:

PROBLEM ONE (Deoidability Problam)
For a given squational theory T€ ._7&: te {1t deci-
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dable for any 8 and t wvhether 8 and t are Wi~
fiable under r?
We are interested in classes of theories such that
"s and t are unifiable under T" is decidable for
every T in that class.
A unifier o for «<s = t:-T
wnifier (mgu) if for any unifier
GEUIT(s.t}: 6 5 o [W1, where V(s,t) c ¥, Since in
general a single most general unifier does not
exist for < = t> . we define ul.l:,r(s.t). the set of
most general wnifiera, aS:
(1) wtiz < Ur {correctness)
(11) UL =_Zeulr [W) {completeness)
{iif) oy 5, oy for iek; 0,0, €L {minimality).

is called 2 most gemeral

From condition (ii) it follows in particular that
UE = ToilE, f.e. UL is a left ideal in the semigroup
{£,=) and VI is generated by ulE. For practical
applications these conditions are sometime too
general and there are additional technical require-
ments on DOM(c), COD(g) and I¥(c) for o€ ulZ, which
we shall state when the need arises,

PROBLEM TWO (Emmeration Probiem)
For a given equational theory TE % is
uUIT(s.t) recursively emwmerable for any 8,t€ Fp?

That is, we are interested in algorithms which ge-
nerate all mgus for a given problem «<s = t .

TABLE 1 summarizes the major results that have been
obtained for special theories, which consist of
combinations of the following equations:

A associativity

i f(f(x,y),2) = f{x f(y-zn
c commutativity

f 3 -
D {distributivity) fix.g(.&fz';) *g f(x.y} f{
f 9(1‘;{) z) = 9§fo z}),fy

xoy) = @{x)*p(y)

+Z})
vZ})
H,E (homomorphism,

endomorphism)
1 {idempotence) fnex) = x

Moreover we use the following abbreviations:
Q6: Quasi-Groups

AG: Abelian—&'ougs

H10: Hilbert's 10th Problem
Sot: Second order terms

Hot: Higher order terms (i.e.
The column um:ter-AT indicates whether or not a type
conformal algorithm has been presented in the 1i-
terature. The type of a theory ar}d type conforma-

Tity are defined below.

rd

2 ¥ order)



Theory) Type [UE_ ¢ & [ UL A
T of T |dscidable recursive
m—— W
P 1 Yes Yes Yes
A L Yau Yen Ho
c W Yas b{} Yos
I W Yes You Yeon
A+C w Yes Yon Yes
A+l w Yeu Yes Yos
C+1 W Yeos Yes Yes
A+CH+1 w Yeas Yaa Yeos
p = v Yes No
D+A L No Yes Ho
D+C o ? Yas No
D+AHC = No Yes No
D+A+1 w Yen Yean Yen
H,E 1 Yes Yer Yeg
H+h = Yes Yes No
H+A+{ A Yes Yon Yes
E+A+C - K 7 No
[o,¢] 1t Yes Yes Yoy
AG w Yes Yes Yer
H10 - Na No No
Bot,
T =@ [#] MO - -
Rat,
Teg 0 No - -
TABLE 1 (The references to the work presented in
this table are ccollected in the full paper
fss8il)

Except for Hilbert's tenth problem, we have not in-
cluded the classical work on equation solving in
‘concrete’ structures such as rings and fields,
which is well known. The relationship of universal
unification to these classical results is similar
to that of universal algebra to classical algebra.

The central notion ;:UJ:,r induces a hierarchy of clas-

ses of eguational theories [SS81b1.

(i) A theory T is wnitary if every <s = t>_ has at
most one mgu. The class of such theories is
.:?1' (type one).

(1f) A theory T is finitary 1f it is not unitary
and for every «<s = t»,r uuzT always exists and
is finite. The class of such theories is .?w'
{type w).

(i1t} A theory T is infinitary if uUI.r always exists
and there exists <s = s, such that MUz, tsin-
finite. The class of such theories is &7
{type =}.

{iv) A theory T s of type mero if it is not oneof
the above classes. The class of these theories
is AL

There are severa) examples for unitary, finitaryand
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infinitary theories in the above table. An example
of a type zero problem is the unification of higher
order terms (which, however, usually assumes asyn-
tax different from Fn}. sTnce thare are infinitely
many ascending chains of unifiers under 5. [G066].
He define & partial order i onh tems by: s st
iff 33€r satisfying & *~ ét. A matching problem

<s 2 to consists of a pair of terms and a theory
TE .9:. A substitution veL s a T-matoher (Or one-
way unifier) if vs = t. If s and t are matchable
we shall write s s, t {resp. s 2y t). The minimal
set of matchers is ML, which induces the corres-
ponding hierarchy ..M, . #e £, .

A wrification algoritim A_ (2 matching algorithm
M.) for a theory T is an algorithm which takes two
terms s and t as input and generates a set

¥, g UL, (c ME,) for <s = t> (for <s 2 t>.). A
minimal algor{thm “Ar (vM,) is an algorithm which
generates uUz_ {uMz ).

For many practical applications this requirement is
not strong encugh, since it does not imply that the
algorithm terminates for theories TE€ ..Zu .?w On
the other hand, for T€ .?w' 1t is sometimes too ri-
gid, since an algorithm which generates a finite
superset of uUI_may be far more efficient than the
algorithm uA_ and for that resson preferable.

An atgorithm Ar is type conformal iff:
(1) A, generates a set ¥_with UL > ¥ >ulr;
(i1) A, terminates and ¥_ is finite if U is;
and
(117) if pUE_ is infinite then ¥~ uuz,.
Similarly: atgorittm M_ is type conformal itf (i)-
{(i11) hold with U replaced by M.
A iniveraal unification algorithm (a wiversal mat-
ching algorithm) for a clase of theories .7” < .%
is an algorithm which takes as input & pair of terms
(5.t) and a theory TE€ ‘?U and generates ¥ > WL,
(2 M) for <s = t>_ (for <s 2 t>.).

Since Ur_is trivially r.e. for any T€ 7, there
is the important requirement that a universai uni-
fication algorithm is either minimal or at least
type conformal. The known universal algorithms
[FA793, [LB791, [H0BO) are neither minimal nor type
conformal; and even some special purpose unification

algoritims, although they are minimal, are nottype
conformal either.



2. THE CLASS OF ACFM THEORIES

An equational theory T 45 admissible {(A) if the mat-
ching problem for T {s decidable. This restriction
pertatns to a1l unification problems of practical
interest, as otherwise o s & would be undecidable.

For the purpose of this paper we further restrict
the admissible theories by requiring that Tpossess
a confluent reduction syatem, i.e. 8 canonical (C)
system.
The final restriction is the requirement that T
constitutes a finitary matching problem {FM), i.e.
that Te. /4 The Jast restriction is less rigid
than it appears: e.g. all special unification prob-
lems in TABLE 1 are in this cltass. On the other hand,
there exist very simple theories which do not fall
into this class: let T = {g{f(x}) = g(x)}; then
<gl{y) & g(a):,r has an infinite matching set:

M = {yea, yef(a), y-f(f(a)), ....} .
The class of equational theories T with T admissible
and T€, 4and TesR_ for a canonical R {s the
clase of ACFM theories.
An equational theory T ie regular 1ff for every
s = t€T ¥(s) » V(t); similarly, a reurite system R
ts regular iff for every le=r €R ¥(1) = ¥(r). For a
regular theory 7 = {'I1 =yt i<in) the corresponding
regular rewrite system can immediately be obtained
as R = {'I,[-r{, r,l--l1 : 1sisn}, and T<=R_ is ob-
vious.
For regular theories we have an important property
concerning the length of terms, in symbols |ti{, de-
fined as the number of symbols in t,
To refer; to the (least possible) length of rewrites,
let [s — t] € N o {0} denote the smallest n Such

that s-so-sl-sz...-sn-t

2, Lemma 1. Let R be a reqular rewrite system and

me = max{|11], ir|: T@r€R}. Then for any s,t€ F[2
[ ]

suchthats:-ntand ls—-Rti- nzl:

fs) smg-ltl )

3. LOCALIZING THE TEST FOR T€_ /7

In grder to test an equational theory T for the
ACFM property let us assume it is admissible. Weal-
so assume that we have proved Te=R_, where R is
canonical, e.g. by using the techniques of [HT80].

Then there remains the test for TE_gg, which can
be difficult, since 1t has to be shown that
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vs,t€ Fn: IuME{s,t}1EN.
The test can be localized in the following sense:

. Theorem 6: Let T be an admissible theory with a
requiar canonical reduction system R, such that
TR . If T€, /%, then there exists a ground sub-
Istitution 1, “'i’ri) and (‘Ik.rk)GRT such that

<1‘i 2 'rrk>T
has an infinite matching set.

Hence, if there does not exist a pair <1 2 ™ with
an infinite matching set, then TE.,%N.!t is an
open problem to find a local (and finite) test set
for theories which are not regular,

4. UNIVERSAL URIFICATION ALGORITHMS IN REGULAR ACFM
THEDRIES

A universal matching algorittm and a universal uni-
fication algorithm are presented in this section.
Both algorithms take a regular ACFM theory T and a
pair of terms as input and output the sets uHETand
uU}:T respectively, hence the algorithms are univer-
sal in the sense that a universal Turing machine is
'universal'.

Throughout this section we slightly change the no-
tion of uU}:T(s,t} by adding the following technical
requirement:

{iv) voE uUJ:T(s,t} I¥(a} n W = P, where

Vis,t) « W< X,

In case (v} is satisfied we shall write Wz MW
and say ‘LUL auay from W' [PL72], [HOBOI.

Let R be a canonical system. A substitution o€r is
called normalized if for a1l t€ COD{c)} t is in mor-
m1 form (i.e. t = litllp). Let Ip < I be the set of
normalized substitutions and analogously UER {HfR)
the set of normalized unifiers (matchers). We de-
note the normalization of substitutions as for

terms, i.e. if o€ then |toHEE.

4.1 The Paramodulation Tree

Let > be the paramodulation relation on Fﬂx !»'9 as
defined in section 1.2 with the additicnal proviso
that we never paramodulate into variables, i.e. if

§ > t then s|md X. The set (t>=) = {[s])_:t %g}
[7y4,03 P
ts called the foilow set of >, factored by the

equivalence relation ot Note that {t>=) isfinite,
For ease of notation we just write s for some re-
presentative of [s]_,p. For a given term t we define



the labeled paramodulation tree Py as:
(i) t (the root) is a node in Py
(ii) 1 § is a node in P, 8nd S€ (5 2=) then s (the
sucoessor) 1s a node 1in Pt;
{141) the edge (s,5), where Ems. is labeled
with the triple [x,1,0].
The composition 's' of labels is defined as
[wo.io.uro]o[ﬂl.il,cl]-[(wo.ﬂl).(io,il).ooooll.
In analogy to the notion of a derivation word in
formal language theory we define the paramodulation
word L'(Pt.s) for sEPt by:
(4) L*(tt) = (Agshe)

(i1) L*(t,s) = L*(t,5) o {7,i,0) where § >———5,
[®,i,0]
1t is convenient to have selectors 3,1, on L* de-

fined by: L*{t,s} = (R(t,s), A(t,s), 6{t,s)}).

The relationship between T-unification and the para-
modulation tree is shown up by the following con-
struction: for & problem <s = ts define a term
H = h{s,t), where h is a 'new' symbol with Qh = 2,
and consider PH:
Theorem: (1) For every h(S,T)€P,: 1f o is mgu of §

and T then ooB€ LT _(s.t)

where 8= 8(H,h(s,T))

(ii) For every 8¢ Ur.T(s.t): there exists

h(s,t) €Py and o mu of 5 and ¥

such that § s, 090

where 0= 9(H,h({5,%))
The first part of the theorem states that every sub-
stitution which is obtained from a Robinson unifier
o for s and T and the labelword component o<0 is a
correct unifier for <s = t> . The second part of the
theorem ensures completenese: for every unifier
S€UZ({s,t) there is a node in Py such that & is an
instance of the substitution ocbtained at that node.

The proof of the theorem is immediate fromBirkhoff's
thecrem. It is also an immediate consequence of the
correctness and completeness of paramodulation [WR73.
In the following we are concerned with refinements
of the paramodulation tree incorporating those of
(HusQ2, [FA791, {LB791, [(5L74].

Let 5 be a term and I’s the corresponding paramodu-
fation tree. Then we define a refinement of Pgs the
nomalized paramodulation tree Fs. by: The generation
of nodes in Ps is stopped in case one of the follo-
wing two criteria is true: A node te Ps is & leaf
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nods iff Cl: (to=) =9

C2: o(s,t) ¢ T

The tree thus obtained is P_.

4.2 niversal Matohing Algorithme in Regular ACFM
Theories

For a given matching problem <s 2 t> assume thatT

is a regular ACFM theory and let Fs be the norma-

lized parampdulation tree for s. We extend the no-

tion of leaf nodes by the following criteria: 5S¢ P

is also a leaf node if:

€3: ME(S,t) = P, 1.e. t § s, which is decidable
since T is admissible.

We shall write qu(t). the minimal paramodulation

tree for a relative to t, 1f C3 1s applied to Fs

and <s = t>,r is the given matching problenm.

The set of matchers obtained from qu(t) is themost
general set of matchers for s and t up to renaming:
. Theorem 8: Let T be a regular ACFM theory and

<s 2 t’r'_f“ﬂ" = {("1'91)]51:"'\'(5")'
;= 0(s,8), SEWP (t) and {o;} = ulzy(S,t)}
M= uME (s,t) FW.

Since T is an ACFM theory uUX s finite, and hence
qu(t) is finite except for the fact that there may
be an infinite path in uPs{tJ which is not termi-
nated by €3 (i.e. there are infinitely many T-equi-
valent matchers for <s : t>1, along the path).

. Theorem 9;: Let T be & regular ACFM theory.
or any s, t€ Fﬂ

qu{t) is finite.

We have limited ourselves to regular ACFM theories,
since they are applicable in most cases of interest
An equationmal theory T is often separated into sub-
theories T = EuR such that R allows for a canoni-
cal reduction and for each s = t€E Var(s) = var(t)
holds, and interest 1s in (finite) unification al-

gorithms for E; see also [HT801, [PSBL1]. A1l theo-

ries in TABLE 1 of section 1 are regular.

For nonregular ACFM theories the situation is notas
simple and we suspect that a terminating universal
matching algorittm does not exist. For many special
cases a terminating matching algorithm is of course
possible even in the nonregular case.

4.3 Untuversal Unification Algorithms in Regular

ACFM Theories
The universal unification algorithm of this section



1s based on the matching algorithm of 4.2 and onthe
solvability of equatfons in the (IR.T)-algebra.uhn
Q= {{2,2)}. For given substitutions &,7€X we shoud
1ike to know 1f thers is a third substitution o€x
such that § = o=1. That 15, we are interested in
the solvability of eguations in (In.T):

(1) 8 = Ver , where 5,7€L and v is a variable
ranging ovar substitution.

We say (1) has a most general set of solutions
MT(G.t} tff for every v such that & = YT there
exists ceﬂtr(ﬁ.t) such that ¢ =_ v.

. Lenma 10: Let T be admissible and V€. /8,

or & = Ver, (i) ueE_(8,1) {s finite;

{11} uMr_(4,7) = § 15 decidable.

4. Lessm 10. i3 wellknown, but with an unnecessarily
complicated proof, in the case T = p (VA7S], since
1t is used to advantage in the connection graph
proof procedure [K075). We are now ready to state
the main result of this paper.

The emmeration of ul.l:T(s.t) is based on the norma-
Tized paramodulation tree P as defined in section
4.1, The check for minimality ¥s based on the {one-
sided) uP-tres.

. Thecrem 12: Let T be a regular ACFM theory. For
ny s, teF, and W = ¥(s,t), :

UL (s.t) F W is recursively emmarsbls.

The proof of 4 Theorem 12 is constructive and hance
spacifies & universal unification algorithm. The
proof is based on Temmas and technical material,
which we had to omit for lack of space, see [S88lc].
Note that the universal unification algorithm based
on 4, theorss 12 may not terminate.

If a decision procedure is known for T-untfiability
the paramodulation tree can be pruned considerably
by an application of this procedure to each node: in
case of nonunifiability the node is a leaf node. How-
ever even under this additional termination crite-
rion the paramodulation tree may grow indefinitely
even if Te __%; which s to be expected in general,
since we do not assume pUE to be recursive. For cer-
tain classes of theories termination is of course
possible.

5. CONCLUSION
We have presented theorems for a universal matching

algorithm and a universal unification algorithm for
regular ACFM theories. Both algorithms based on
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these theorems generate a complete minimal set of
unifiers (of matchers) and termination of the mat-
ching algorithm is shown.

For nonregular ACAM theories the matching algorithm
may not terminate and we suspect that uniform ter-
mination is unattainable.

Since most known special purpose unification algo-
rithms are based on regular ACAFM theories and since
this class allows for a comparatively simple uni-
versal unification algorithm, we believe this class
may come to play a prominent role (similar to cer-
tain classes, like SLR(l), in formal language theo-
ry).

On the other hand, the 'abstract' universal algo-
rithm does not represent a practical solution for
a given theory T, because of its gross inefficiency.

This contribution is of theoretical relevance in
that it exhibits a class of theories which possesses
an r.e. set uUly. This result can be applied in
practice for the design of an actual algorithm: So
far the design of a special purpose unification al-
gorithm was more of an art than a science since for
a given theory there was no indication whatsoever
of how the algorithm might work. In fact the algo-
rithms in TABLE 1 of section 1 all operate on en-

tirely different principles.

The next 700
On the basis of the "abstract" universal unifi-
cation algorithm it is possible to find a concrete
algorithm much more easily by first isolating the
crucial parts in the abstract algorithm and then
designing a practical and efficient solution. The

Unification  Algorithms

universal algorithm has been successfully applied
to a special case [RS78], yielding a minimal al-
gorithm [SS81a], which in addition is much simpler
than the one previously known. A collection of
canonical theories [HU80a] is a valuable source for
this purpose and has already been used to find the
first unification algorithm for Abelian group theo-
ry and quasi group theory [LA79], [HUS8O].
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