
THE USE OF PARALLELISM TO IMPLEMENT A HEURISTIC SEARCH

Wi l l iam A. Kornfeld

MIT A r t i f i c i a l I n t e l l i g e n c e Laboratory

ABSTRACT

The role of parallel processing in heuristic search is examined by
means of an example (cryptarithmetic addition). A problem solver is
constructed that combines the metaphors of constraint propagation
and hypothesize-and-test. The system is capable of working on many
incompatible hypotheses at one time. Furthermore, it is capable of
allocating different amounts of processing power to running
activities and changing these allocations as computation proceeds. It
is empirically found that the parallel algorithm is, on the average,
more efficient than a corresponding sequential one. Implication* of
this for problem solving in general are discussed.

1. Introduction

Many AI systems that perform a "heuristic search" (i.e. they can be
thought of as searching some space of possibilities for an answer) are
based upon one or both of two programming techniques known as
constraint propagation and hypothesize-and-test.

In a system based on constraint propagation, internal data structures
represent (implicitly or explicitly) potentially acceptable points in
the search space. Computation proceeds in narrowing down these
possibilities by employing knowledge of the domain in the structure
of the computation. There is not enough space here to properly
introduce the concepts involved in constraint propagation. The
reader is referred to some systems described in the literature [1 , I I)
for an introduction. One point we wish to emphasize about pure
constraint propagation is that at any time the internal data structures
wi l l be consistent with any solution to the problem. Thus, if more
than one solution is possible, pure propagation of constraints will be
unable to select only one of them. Further, even if a unique
solution exists, a constraint propagation system may not be able to
f ind it.

The hypothesize-and-test methodology allows the program to make
assumptions that narrow the size of the search space; there is no
guarantee that the assumption is consistent with any solution to the
problem. The program continues to make hypotheses until a
solution is located, or it has been determined that no solution is
possible with the current set of assumptions. There is no
requirement that any hypothesis be correct and so mechanisms must
be available that prevent commitment to any hypothesis until it has
been demonstrated to be acceptable. The most commonly available
mechanism is known as backtracking. Backtracking allows the
program to return to an environment that would exist had that
assumption not been made.

As long as the search space is enumerable (a very weak assumption)'
hypothesize-and-test can be easily seen to be logically more
powerful. If there are several consistent solutions, a pure constraint
propagation system has no way to establish preference for one of
them. Even if only one solution is possible a constraint propagation
system wi l l not necessarily find it; this will be demonstrated later by

example. The proponents of constraint propagation point out that
hypothesize-and-test is grossly inefficient in situations where
constraint propagation can function (see for example Waltz [13]).
The example in this paper bears out this claim, though one recent
study [4] suggests there are situations in which pure backtracking is
more efficient than constraint propagation.

One can, however, imagine a composite system that has aspects of
both constraint propagation and hypothesize-and-test. In such a
system, constraint propagation can be used to prune the search
space, yet allowing hypothesize-and-test to continue the search
where constraint propagation is not able to. A constraint language
that can support the creation of such systems has been constructed
by Steele [12]. Steele allows assumptions to be made and
backtracking performed. The current work discusses another such
system in which the hypothesize-and-test methodology allows more
than one assumption to be pursued concurrently. It is an extension
of earlier work discussing parallel problem solving systems [7, 8] and
a language, Ether, for implementing these systems. Here we examine
one particular kind of search problem, cryptarithmetic addition, of
the sort used by Newell and Simon [10} We study this problem, not
because it is interesting in itself, but because it is well-defined and
test cases are relatively easy to come by. This allows us to test the
efficiencies of algorithms empirically. We have constructed a
parallel problem solver for doing these cryptarithmetic problems.

There are two main points we wish to make:

1. That a system combining both constraint propagation and parallel
hypothesize-and-test methodologies can be constructed. The code is
simple to read, write, and understand. Example code is presented.

2. That, on the average, a parallel program for solving these puzzles
can be constructed that requires less average run time when the
parallel program is executed by time-slicing on a single processor than
a sequential program executed on the same processor. Obviously, it
matters which sequential and which parallel program we compare:
the benchmarks for this comparison will be explained later and are, I
think, quite reasonable. The speedup we are talking about here is
not large, but is noticeable. The important point is that it is present
at all. A similar effect has been noticed in other suidies for various
problems [6, 8J. It suggests that concurrency may be a useful for the
design of heuristic search algorithms whether or not the programs
are executed on concurrent hardware or a conventional sequential
computer.

The remainder of this paper consists of a discussion of the problem
being solved and the nature of the parallel solution. We show how
the efficiency of the parallel program depends on the use of
heuristic information for allocating resources of the parallel
program. We then develop a series of allocation strategies, each one
improving on the previous one. We finally discuss the importance
of this experiment for a general theory of problem solving. We
show how the allocation strategies represent a use of what has been
celled mcta-lefcl knowledge in the literature, i.e. knowledge about

575

how to guide the search process to gain efficiency. In this study,
concurrency is necessary to make use of this mete-level knowledge.

2. The problem

We ere given three strings of letters, t.g. "DONALD", "OKRALD", and
" R O B K M " that represent integers when substitutions of digits are
made for each of the letters. There is at least one possible
assignment of digits for letters so that the numbers represented by
the first two (" D O N A L D " and " o r R A H /) , when added, yield the
number represented by the third ("ROttt-RT"). Any one of these
assignments is a solution. In the problems we will be looking at,
each wi l l contain exactly ten letters. A solution consists of a
mapping from these ten letters onto the ten digits 0 through 9.

3. A Constraint Propagation Solution

In our construction of the constraint network wt will use the actor
model of computation.. We find it a very natural formalism for
bui lding these sorts of systems. In this formalism nodes of the
network are implemented as actors. Constraint propagation between
nodes is implemented by sending of messages containing the new
constraints to the node being constrained. For our cryptarithmetic
problem solver we have three kinds of nodes: letters, digits, and
columns. They are arranged as shown:

Arcs in the diagram indicate flow of constraints. Thus column
nodes can constrain their left and right neighbor columns and
certain letter nodes (the ones representing letters contained within
the column). Letter nodes can constrain digit nodes and column
nodes that contain their respective letters. Digit nodes can
constrain letter nodes. In the initial configuration, before constraint
propagation begins, we store at each letter node a list of possible
digits that contains all ten digits. Similarly, each digit node contains
• "possible letters list" containing all ten letters. We will give a short
description of what each node has to do when it receives a message
informing it of a new constraint.

C o l u m n ! . A column can receive messages informing it of new
constraints on letters it contains and on possible values for its
carry-in and carry-out If a column node receives any such
messages, it computes possible new constraints on its letters, carry-in,
and carry-out. If any one of these has no possible values a
C O N T R A D I C T I O N is asserted. When a CONTRADICTION is asserted the
code implementing hypothesize-and-test is invoked to take an
appropriate action. New constraints on letters are sent to the
respective letter nodes. New constraints on carry-in and carry-out
are sent to the right and left neighbor columns respectively.

Letter.. Letters receive messages
subsets of the digits

0 through 9 that they can possibly be. If they learn of digits that
they cannot be, nodes representing those digits are sent messages.
Also, each column that contains the letter receives a new message
informing it of the new restrictions on the value of the particular
letter. If the set of possible digits becomes null, a CONTRADICTION is
asserted.

D ig i t s . These receive messages from letter nodes indicating that
they are or are not the respective letter. If the set of possible letters
is reduced to a singleton, a message is sent to the particular letter. If
the set of possible letters is reduced to null, a CONTRADICTION is
asserted.

We can observe some things about the ability of this system to
satisfactorily derive a unique solution. First, if there is more than
one possible solution it wil l not find any of them. Since the letter
and digit assignments of each possible solution are certainly possible
assignments, they wil l appear on the possibility lists attached to each
node. Even if there is only one possible solution (or no possible
solutions) the system may not find it (or discover that no solutions
exist). For example, the "DONALD" + "OKRALD" - and "RODF.RT"
puzzle has only one solution: the constraint network described will
quiesce before finding it. Nevertheless, the knowledge can be said
to be "present" in the network: if the nodes of the network are
instantiated with an assignment of leters to digits, the network will
assert a CONTRADICTION iff the assignment is not a solution. Our
constraint network, then, needs the ability to make assumptions and
test them if it is to be able to solve these puzzles.

4. Hypothesize and Test in Ether

The constraint network and hypothesize-and-test methodologies
were written in the Ether language [7, 8). We will only give enough
details about the implementation to support the ensuing discussion.
The interested reader is referred to [9] for a more detailed
discussion of the implementation.

The primitive operations of the Ether languages are based around
the notion of an assertion rather than message passing. Rather than
coding in a message passing formalism "Send the node for the letter
D that is 5" we instead say "Assert that D is 5" and a process of
compilation turns this assertionai code into a message passing
implementation. For certain problems this process of compilation is
important because certain ideas can be expressed quite naturally in
the assertionai form that compile into very complex message passing
code. These issues wil l be discussed in [9\

Because we are interested in the possibility of pursuing more than
one instantiation of the constraint network in parallel, we need the
ability to have more than one available for processing. For this we
introduce the notion of a viewpoint. Each viewpoint tags a mutually
compatible collection of assumptions about the possible values of
letters and digits together with the constraints that derive via
propagation from these assumptions, (i.e. a viewpoint is one
particular instantiation of the network). Viewpoints are related to
each other by an inheritance mechanism. The viewpoint in which A
is assumed to be 5 and B is assumed to be 4 might be a subviewpoint
of the one in which A is assumed 5 and no other assumptions have
been made. Viewpoints are the repositories of assumptions and facts
derived from these assumptions.

In order to be able to hypothesize and test we need to introduce
some control primitives. These primitives are built around a
construct known as an activity. A l l processing that happens during
execution happens under the auspices of some activity. There are
language constructs for conveniently grouping parts of a related task
into a single activity. For example, we can create an activity, make a
new assumption in a viewpoint, and cause all further work within
the viewpoint (i.e. all further constraint passing in the instance of the

576

network defined by the sumpt ion) to be part of the activity.

Activi t ies are of interest because they give us ways to control
quantities of system resources available for the execution of
alternative explorations. If we itiflt an activity, all execution with
the activity stops; a stifled activity cannot be restarted. We also have
the ability to control the rates that non-stifled activities run.
Different activities can be assigned different amounts of processing
power, the total amount of CPU time an activity will get during an
interval of time is proportional to its processing power. The
processing power of tn activity can be altered by the system
asynchronously with the running of the activity.

Systems using hypothesize-and-test can be constructed in Ether by
using viewpoints to represent assumptions made, and octititics to
cont ro l which parts of the search space are explored, and with what
vigor.

5. A Simple Parallel Solution

In this treatment we wil l ignore many details of how both the Ether
system and the crypt arithmetic system implemented within it are
constructed. If we wish to "create a new instance of the constraint
network" that inherits from another, we create a new viewpoint
(using the new-viewpoint construct). To add an assertion about a
letter being associated with a digit within the context of this
viewpoint, we execute (assert (one-of -letter (-d ig i t))) where
l e t t t r and d i g i t are bound to the respective letter and digit which
we want to assume are identified in this viewpoint. The second
argument to one-or is a list of possible digits that the letter can be.
So, for example, we could execute (essert (one-of s (l J s ; 9))) to
indicate that S is odd. Ether syntax makes use of a quasi-quote
convention in which symbols prefaced by the character V are
substituted with the values of the associated symbols. If letter were
bound to "D" and d ig i t were bound to T, the item actually asserted
wou ld be (one-of D (S)). If the t i t e r t is executed within the
context of a certain activity, then all. work propagating constraints
that fol low from that assertion will happen within that activity.

The implementation described in this section is quite simple. It first
creates a viewpoint in which no assumptions are made and
continues propagating constraints within this viewpoint until it has
quicsccd, i.e. no more propagation can happen. When this state has
been achieved, if each letter does not have a unique digit that it can
be identified with, it is determined which letter has the least number
of possible digits that it can be (excluding those letters that already
have a unique assignment). For each one of these digits, a new
viewpoint and a new activity are created. Within these (in parallel),
the letter is asserted (assumed) to be the digit and propagation of
constraints continues. If quiescence is reached in this new activity
and the problem has not been solved, we recurse.

The function shown below takes a letter, a list of alternative digits,
and a viewpoint. It uses the environment contained in the
viewpoint to create new subviewpoints in which the letter is
assumed to be each of the alternative digits. We first check to see if
there is at least one possible digit. If not, there cannot be a possible
solution to this problem consistent with the parent viewpoint and so
we assert that there is a contradiction within the parent viewpoint.
Otherwise we iterate over each digit in the alternatives list and for
each one we create a new viewpoint whose parent is the parent
viewpoint and a new activity with parent start-act and assert the
letter is the particular digit; this initiates propagation of constraints.
If we discover there is a contradiction within the viewpoint (this is
accomplished by the code, fragment beginning with
"(when ((contradict ion)!") we assert within the parent viewpoint,
that the letter cannot be the particular digit. We are justified in
doing this because the only difference, in terms of assumptions
made, between the current viewpoint and the parent viewpoint is

the one assumption of the totter being identified with • particular
digit that was a possible alternative in the parent viewpoint: if this
assumption leads to a contradiction, we know that this is not a
possible identification for the letter. In addition we stifle (stop from
executing) the activity that was pursuing the now known to be
inval id assumption. We further check to see if the activity quiesces
in the section of code beginning with "(when ((eui t ic tnt * •)) " . If
this has occurred, we first check to see if the problem has been
solved. If so we are done: otherwise we determine the letter in the
viewpoint with the least number of possible digits (but greater than
I) and recursively call parallel-seiva on this.

When a new activity has been created (and has something to do) it
immediately begins executing concurrently with already existing
activities. The default allocation of processing power, when no
explicit allocation has been done, is such that each running activity
gets approximately equal servicing (in terms of CPU seconds) by the
scheduler.

6. Alternative Parallel Program

The simple parallel program described might well be reasonable if
we had a large number of processors. With a small number of
processors (in particular, only one processor, the case actually
studied) it is considerably less efficient in terms of average total run
time than some other solutions. Al l the solutions we wilt examine
are elaborations of, or simple modifications to the basic parallel
program already presented.

We observe that a traditional depth-first search (with backtracking) is
but a trivial modification of the code above. When new alternative
digits are proposed for a letter, instead of starting them up in
concurrent viewpoints as was done above, they are placed on a list.
Only the activity for the first one on the list is given any processing
power. If it quiesces we recursively call parallel-solve. If it is
discovered that the viewpoint is contradictory, the next one is begun
(i f a next one exists); otherwise, the parent viewpoint is asserted to
be inconsistent. Asserting that it u inconsistent will trigger the

577

activi ty monitoring the next higher viewpoint to pick the next
possibility on its list. Depth-first b a degenerate case of parallel
anarch in which only one activity at a time b given non-xero
processing power.

6.1 H e u r l f t l c I n fo rma t ion to Cont ro l I t aoa rce Al locat ion

A simple elaboration wt can make to the parallel implementation
presented that preserves to parallel character is to vary the
processing power based on an assessment of how likely the
assumptions we have made within its associated viewpoint are to
lead to useful information (either leading to a solution or
determining that the viewpoint is contradictory). We base the
quantity of processing power allocated to the activity doing the
explorat ion on the numerical value of this judgement. For this
particular problem, we are more likely to learn in a short period of
t ime whether a viewpoint contains a valid solution or is
contradictory if it is already fairly well constrained, Le. if the letters
in the viewpoint only have a few possible digits that they could be.
Af ter some experimentation we came upon the following formula
for determining relative processing power allocations for the
various different activities participating in the search:

where each ni is the number of possible digit assignments for the
letter i in the v iewpoint If the letters tend to have fewer possible
digi t possibilities, the sum terms (l O ^ n j) wil l tend to be large.
Squaring this number, and squaring the final sum serves to
accentuate the relative differences between the different viewpoints.
When the system is first set up, a separate activity known as the
manager activity continually monitors each of the other running
activities and evaluates this function for each associated viewpoint.
The processing power allocations to these activities are adjusted in
proport ion to the numerical value of this formula. The Ether
command we use for modifying the processing power allocations of
an activity is called support-in-rat tot. It takes three arguments: an
activity, a list of activities (that are children of the first) and a list of
non-negative numbers with the same number of elements as the list
of activities. The processing power assigned to the parent activity is
(re)div ided among the children activities in proportion to the
numbers in this l is t Thus, if a factor for a given activity is 0 the
activi ty gets no processing power; if the factor associated with the
activity is twice the factor associated with another, then the former
act ivi ty gets twice as much processing power as the latter. The
allocator described is implemented as follows:

We create a separate activity at top-level called the nenaaer-activity
and execute the fol lowing to have the allocation strategy continually
cal led asynchronously with the activities doing the actual search:

This scheme gives considerably better performance than the simple
parallel solution. It does better than the backtracking solution on
some examples with a single processor implementation, although on
the average the back t r ie king solution is more efficient. It is
important to understand the source of this improvement. We have a
scheme for estimating the likelihood that a running activity wil l
return useful information in a short period of time. We allocate
more resources to those activities that we estimate wil l supply us
wi th information for the least amount of resource expenditure.
Assuming our heuristic is reasonable, the average time to complete
the search is reduced.

There are three more improvements we have made to the processing
power allocation strategy before reaching the final strategy for
which we have collected data in the next section. Each will be
described in turn.

6.2 Concurrency Factors

We have observed in the allocation strategy discussed thus far that
even though activities are running with different amounts of
processing power that wt related to our estimate of the utility of
getting useful information back from them, there still seems to be so
many activities running that they tend to thrash against one another.
We would like to limit the amount of concurrency so that the
running activities can get something done. For this purpose we
introduce the notion of a concurrency factor. Instead of letting all
runnable activities run, we pick the n most promising activities
(using the metric above), where n is the concurrency factor, and
give only those activities processing power and in the ratios defined
by the metric. The optimal value for the concurrency factor is
picked experimentally and is discussed below.

The value of the concurrency factor that yields the best result is a
ref lect ion of two aspects of the problem: the quality of our heuristic
knowledge and the distribution of computational expense for
picking bad branches in the search. Obviously if our heuristic
knowledge were perfect, i.e. it could always point to the correct
branch to explore next, the optimal concurrency factor would be I

it should simply explore this best branch. If we are less sure we
are about which is the best, more branches should be explored.
Also, if the computational cost of exploring a bad branch is always
small, a small concurrency factor would be appropriate. If, however,
the cost of a bad branch can bo vary largo wo would want to use a
larger concurrency factor. With a small concurrency factor we
increase the probability that the problem solver wil l become stuck
for a very long time. A limiting case of this is with a search space
that is inf inite (introducing the possibility of a bad branch that never
runs out of possibilities) and a concurrency factor of I. If the
problem solver happens to pick one of these branches it wil l diverge.

Hayes-Roth has noted an analogy with portfolio theory, the purpose
of which is to pick an investment strategy that wil l yield the greatest
expected capital appreciation. Uncertainty about the future
performance of certain industries and volatility in the market place
argue for greater diversification of the portfolio.

576

6.3 Eettmati i ig Which Assumptions Are Moat Valuable

Our strategy so far has been to use hypothesize-andtest on one tetter
only in each viewpoint. We sprout one new viewpoint and activity
to test the hypothesis that that letter is each one of the digits it could
possibly be in the parent viewpoint This is not necessarily the best
strategy. By hypothesizing a letter is a certain digit we may learn a
lot or a little. We have "learned a lot" if we (I) discover quickly that
a viewpoint is contradictory, or (2) cause a lot of constraint
propagation activity that significantly increases our evaluation of the
new viewpoint. One thing we have observed is that the amount we
learn from assuming a letter is a particular digit does not significantly
depend on which digit we use. In other words, if we assume the letter
N is 2 and discover a contradiction, then we are likely to either
discover a contradiction or signficantly constrain our solution by
assuming N is any other digit on its list of alternatives. To take
advantage of this phenomenon the program remembers what
happened when it makes particular assumptions. When it creates a
new viewpoint to study the result of assuming a letter is a particular
digit the result is recorded in the parent viewpoint when it has
completed. There are two possible results. If it led to a
contradict ion this fact is recorded. If it led to a quiescent (but
consistent) state it records the difference of the evaluation metric
applied to the parent viewpoint and the evaluation metric on the
quiescent viewpoint - our estimate of the amount of reduction that
is likely to be obtained by assuming this letter to be a digit Our new
evaluation metric attempts to take this information into
consideration. When assuming a letter L is a specific digit we use
the o ld evaluation metric if we do not have have never assumed L
to be a particular digit from this viewpoint: otherwise, we use the
average of the evaluations for each of the resultant viewpoint*. We
then multiply this figure by the factor I 4 .5 • n where n is the
number of letters that we have assumed L to be and determined that
they lead to contradictions.

N o w that we have a mechanism for taking advantage of information
learned by making different assumptions we would like to ensure
that a variety of choices are tried at each branching point We will
slightly modify the technique for picking the activities to be run at
any given time (in accordance with the concurrency factor). Where
c is the concurrency factor, we. use the following algorithm to pick
the c activities to run at a given time:

1. The activity with the highest evaluation is scheduled.

2. If n < c activities have been selected for running, the n+lst
activity is (a) the one with the highest metric if it does not duplicate
any of the first n activities in terms of which letter it is making an
assumption about for a given viewpoint, or (b) the highest rated
non-duplicated activity unless the highest rated activity has a rating
at least three times higher in which case we use the highest rated
activity. The factor three was picked experimentally and is based on
the fol lowing argument. There is a certain advantage in having a
diversity of letters being tested because this gives us a greater
chance to discover assumptions that will cause significant shrinkage
by constraint propagation. However, there is also an advantage to
running the activity that we have estimated will give us the best
result. The factor three is the ratio of estimates for expected gain
for which we would rather run the higher estimated test than one
that wi l l increase our diversity.

7. An Experiment

In order to test for the existence of a speed-up with concurrency we
t imed 10 problems using the final parallel algorithm described above
for several concurrency factors. The problems tested are:

They were picked by • trial-end-error process of selecting possible
problems and then running them to we if they have a solution. It Is
not known whether they have one or more than one solution. The
program finishes when it has found one solution. These tests were
run on the M I T Lisp machine, a single user machine designed for
efficient execution of Lisp programs. The times represent processor
run time only and are adjusted for time lost due to paging. The
manager activity, which continually monitors the state of the search
activities and readjusts processing power accordingly, receives a
processing power allocation of . 1 . We tested with concurrency
factors between I and 7. Numbers 2 through 7 each gave some
improvement with 4 being the best. Here we report the results for
concurrency factors I and 4. Times reported are in seconds:

With a concurrency factor of I the algorithm becomes, functionally,
a depth-first search. A concurrency factor of 4 represents the value
which yields least average run time for the problems examined.
Concurrency factors larger and smaller yield higher average values.
We caution the reader not to take the numbers too seriously. We
only wish to demonstrate that the parallel algorithm runs with some
improvement of efficiency ovtt the sequential algorithm.

Some interesting facts can be learned by examining the data.
Al though the parallel solution beat out the sequential solution in
only 6 of the 10 cases, these six cases are the ones for which the
sequential solutions take the longest. In particular, problems 6 and 9
have show by far the longest times for the sequential solution and
the time saving of the parallel solution is considerable. Similarly, for
the cases in which the sequential solution finished quickly, the
parallel solution tended to take longer. This phenomenon is fairly
easy to explain. The parallel solution supplies "insurance" against
picking bad branches in the search space. If the sequential solution
happened to pick a bad branch (or several bad branches) there was
no recourse but to follow it through. Similarly, if the sequential
program found a relatively quick path to the solution, the extra
efficiency of the parallel solution was not needed.

b\ Conclusions

We have demonstrated that cryptarithmetk puzzles can be solved
wi th a certain increase in average efficiency by the parallel
algorithm described over a more traditional depth-first search
solution. While this result in and of itself is of little use it does
demonstrate a tool that may be of great use in heuristic
programming - the use of parallelism to control a heuristic search.
Several writers have pointed to the use of mcto-letd knowledge (04.

579

Davis (2J) in controlling a March, Mete-level knowledge is
knowledge about how to use the problem solving loob at hand in a
way that increases overall search efficiency. The allocation
strategies we have examined are mete-level knowledge for
cryptarithmetic problems. By allowing a few to run in parallel, and
with controllable amounts of processing power we art able to
increase the efficiency of the search. Although the increase we
gained is not dramatic there is reason to suspect that it would be
more significant in more interesting problems. The silt of the
search space in these problems is relatively quite small. Thus picking
a "bad branch" in the search can't be too catastrophic. With a search
space that is much larger, and possibly infinite (as is the case with
many interesting problems), a bad branch using a parallel search can
only do. a bounded amount of harm, bounded by the quantity of
processing power allocated to it. Very similar results have been
obtained in speech understanding research projects (14,3] in which
competing hypotheses are used to control the allocation of resources
for further investigation.

We introduced several concepts that were used in the construction
of the allocation strategy. Processing power b allocated in
proportion to an. estimate of how likely we are to get useful
information out of the exploration of a branch. Concurrency factors
have been introduced to keep the problem solver reasonably
focused. A certain amount of diversity b incorporated in the
algorithm to increased the likelihood of discovering assumptions that
can be made that will lead to valuable information quickly.
Although the only problem we have examined b cryptarithmetic,
there is nothing about these general strategies that b specific to
cryptarithmetic. They contribute to a general theory of parallel
problem solving.

The form of the code is quite simple to write and understand. The
algorithm consists of a mixture of constraint propagation and parallel
hypothesize-and-test. The programs involve asynchronous,
concurrent activities processing different sets of assumptions.
Furthermore, the resources allocated to these activities can be
altered asynchronously with the execution of the activities.

We have demonstrated that introducing concurrency in the search
process does actually increase overall efficiency, in particular it does
no harm. This lends support to efforts to design a computing system
for message passing languages that involves many
intercommunicating autonomous processors (e.g. Hewitt (5]). It
suggests there is inherent concurrency in search problems that could
be gainfully run on multiple processors. We are interested in
generalizing the control notions we have developed, such as
processing power and quiescence, to be implementable on truly
parallel architectures.

9. Acknowledgements

Beppe Atfardi. Roger Duffey, Carl Hewitt Kurt Konotige, David
Levitt, Reid Smith, and Barbara White were kind enough to read
earlier drafts of this work and have substantially aided the
presentation.

I offer my sincere thanks to the lisp machine development group at
MIT. Without the superb computing environment available on the
lisp machine the program development necessary to carry out this
research would have been impossible.

10. Reference*

(I] Bowing, Alan, Thinghb -- A Cousteoiut-Orkutod Smuktion
Laboratory. XEROX PARC report SSL-79-3, July 1979.

560

