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ABSTRACT
A method is proposed for automatic
diagnosis of a dynamic system. It basi-

cally uses only the knowledge on system
description and does not require any
knowledge concerning failure causality.

The diagnosis consists of the four steps:
expectation value computation, suspects
computation, suspects discrimination using

observable data and suspects discrimina-
tion by test generation. Linear input
resolution is used with explicit meta-
level control. This method can diagnose
in principle all kinds of failures that
are logically diagnosable if the system
description is appropriate. The <capabil-

ity of the method is demonstrated by an
application example of a nuclear reactor
feed-water system.

I INTRODUCTION

Well established approach of identi-

fying the cause of anomaly in a dynami-
cally changing system is to use the pre-
analyzed scenario of event propagation. A
typical example is Disturbance Analysis
System (DAS) based on Cause-Consequence
Tree (CCT) CMeijer and Frogner, 19803.
DAS has useful pre-alarming and diagnosis
capabilities that can cover a variety of
forseen circumstances. Its efficiency
comes from its use of a set of explicitly
enumerated faults but building a CCT that
covers almost all possible faults is a
complicated and difficult task.

been

New approach has recently pro-

posed utilizing the knowledge engineering
technique [Nelson, 19823CUnderwood, 19823
CChandrasekaran, 19823. Application of
this technique to plant diagnosis offers
the following advantages:

1) Complex phenomena that propagate
through various plant components can be
represented in terms of logical event
chains.

2) The diagnostic ability can be easily

imporved by modification of the knowledge

base.
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3) It can explain its line of reasoning in

reaching a conclusion.

4) Knowhows that are heuristic and have
been accumulated through experts' experi-
ences can be utilized in problem solving.

This approach differs from the above
in that it does not require explicit
enumeration of each scenario, but it still
requires cause-result relationship as a
piece of knowledge. In this regards, what
is not expressed in this knowledge is out
of scope of diagnosis.

Another approach that has also
recently been proposed is to wuse the
knowledge about system description, i.e.
intended structure and expected behavior.
Application of this technique to computer
hardware diagnosis showed its capability
of solving the problem without requiring
causality relationship CGenesereth, 1981
and 19823 CDavis etc., 19823.

This paper introduces an attempt to
extend this technique to a diagnositic
problem of a dynamic system that has feed-
back loops. The advantages listed above
also apply to this approach.

I DIAGNOSIS PROBLEM

The problem to be solved is simply

stated as follows:

CGiven a
some

symptom indicating anomaly of
observable signal from some detector
at some time, identify a faulty component
or components of a plant that caused the
observable symptom.3

The main differences of this diag-
nosis from that of computer hardware are:

1) The system is dynamic, i.e. the observ-
able signals are time dependent.

2) The system forms feedback loops, i.e.
inputs of some components are affected by
outputs of themselves as well as of other
components with some time lag.
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3) Many of the important signals are
observable.
4) Some of the important components are

redundant.
Although the form of test generation

is limited, there still are ways to do it,
thereby focusing a suspect component.

Il SYSTEM DESCRIPTION

The method described here expects as
data a full description of a plant to be
analyzed. The degree of sophistification
of behavior description is determined by

its capability of distinguishing a normal
state from an abnormal state. The
knowledge representation used for system

description is based on MRS CGenesereth,
19813. Its syntax is same as that of
predicate calculus.

A. Structure Description

The structure of a system is speci-
fied by describing components, intercon-
nections and states.

1. Component Description

Each component is deisgnated by an
atomic name and its type is specified by
Type statement. Three examples are given
below.

(Type A Sensor) (Type B Selector)
(Type C Pump)

2. Connectivity Description

Each component has zero or more
inputs and outputs. Connectivity relation-
ship among components is specified by Conn
statement. One example is given below.

(Conn (output 1 C) (input 2 A))

3. State Description

Some components need information
about their states. This information
refers to on/off state, observability,
redundancy, swithcing condition, etc..
Four examples are given below.

(Value (input 1 A) on)
(Observable (value (output IB)))
(Redundant C D)

(Swltchable (value (Input IB)))

B. Behavior Description

The behavior of a system is specified
by describing the relationship between its
input(s) and output(s) of each component
In terms of rules. Behavior of a com-

ponent in a dynamic system is usually
described by a differential equation,
which is often discretized to a set of
arithmetic expressions.

1. Dynamics Description

The rules relating input(s) to
output(s) are denoted as forward behavior
rules (FB rules) and these relating
output(s) to input(s) as backward behavior
rules (BB rules). Simulation of the sys-
tem behavior requests use of the FB rules
but inference requests use of both rules.
Use of the BB rules is encountered in
inferring unobervable input(s) to a com-
ponent from observable output(s) of
sensor(s).

a. Forward Behavior Rules

Two examples are given. The first s
a sensor behavior and the second a con-
troller behavior. OK means that a com-
ponent is not faulty. Symbols starting
with $ mean that these are variables. The
statement (True A B) means that A is true
in situation B.

The first rule says that the sensor
is a two-input, one-output device, one
input being an on/off switch and the other
sensing a quantity mi, and that if the
sensor is on and functioning normally, the
output mo is mi/mr, where mr is a scale

factor. This is true for every t. The
second rule is more complicated. The out-
put of the controller mo at time t is com-
puted by a function f that requires 6
variables, one of which is the output mi
itself at the previous time step s. In
these rules meta-knowledge is used to
determine where to perform numeric compu-
tation.

(if (Type $x Sensor)
(if (and (OK $x)
(Value (input 1 $x) on)
(True (value (input 2 $x) $mi) $t)
(Value (rated $x) $mr)
(= $mo (/ $ml $mr)))
(True (\éalue (output 1 $x) $mo)
t)))

(if (Type $x Controller)
(if (and (OK $x)
(True (value (input 2 $x) $11) $s)
(True (value (input 3 $x) $wfl) $s)
(True (value (Input 4 $x) $wml) $s)
(True (value (output 1 $x) $ml) $s)
(Value (Input 1 $x) $Id)

(= $t (+ $s 1))
(True (value (input 2 $x) $lo) $t)
(= $mo f($ml $11 $lo $Id $wfl
$wml)))
(True (value (output 1 $x) $mo)
$1)))



b. Backward Behavior Rules

The following rule coresponds to the
first example above.

(if (Type $x Sensor)
(if (and (0K sx)
(True (value (putput 1 $x) Smo)} St}
{Value (input 1 sx) on)
(Value (rated $x) Smr)
(= smi (* $mo Smr}))
(True (value {input 2 $x) smi) st) )

2, Connectivity Description

There needs a set of rules that
interprets the connectivity relationship.
These are rules that if two ports are con-
nected, they always bear the same value.

a. Forward Connectivity Rule (FC
rule)

(if (and {Conn &x sy!
{True (value Sx $z) St})
{True (value 8y S$z) §$t})

b. Backward Connectivity Rule (BC
rule)

(if (and (Conn 5x $y)
{True (value $y $z) st))
{True {(value $x 5z) $t))

IV METHOD OF DIAGNOSIS

The diagnosis consists of the follow-
ing four steps.

A. Computation of Expectation Value

Start of diagnosis is an interpreta-
tion that the symptom does not match the
expectation. It is, therefore, necessary

to estimate the expected value of the sen-
sor where an anomaly is detected. To do
this, plant dynamics has to be simulated
starting from some initial state. It is
not necessary to go back to a state where
all components were normal because the
input and output relationship of a normal
component is consistent regardless of the
value of its input(s). It is sufficient,
in a dynamic system having feedback loops,
to go back at least to the time t-2A and
use a set of consistent observable data,
where t is the time of anomaly detection
and A is the maximum difference of time
for input(s) of any component to affect
output!s) of any other component including
itself in solving the dynamics by time
discretization.

Inference is made in two steps.
First, forward <chaining is applied to
obtain unobservable data at time t-2

starting from the observable dafa at time
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t-24 using the structure data, BB and BC
rules assuming all components are normal.
Next, forward <chaining is applied to
obtain the expectation value of the ano-
maly detected sensor at time t starting

from the estimated unobservable data using
the structure data, FB and FC rules.

B. Computation of Suspects

Using the fact that the symptom s
against the expectation, all components
that can logically be responsible for the
symptom are picked up as suspects. Linear
input resolution is applied starting from
the expectation violation at time t until
it reaches the estimated unobservable data
at time t-2/\ using the structure data, FB
and FC rules. All rules are converted to
conjunctive normal form.

C. Discrimination of the Suspects Using
Observable Data

It is possible to discriminate the
suspects by checking the consistency of
the available observable data. Here, con-
sistency means that the observed output(s)
can be expected from the observed input(s)
using the knowledge on system description.
The knowledge required in this step is the
structure data, FB, BB, FC and BC rules.

Inference is made in two steps.
First, a set of observable data required
to identify the anomaly of one or more
components is searched. Symbolic simula-
tion is performed by resolution starting

from the FB rule of any one of the
suspect candidates. Because the feedback
nature of the system necessitates con-
current use of both forward and backward
rules, inference should be controlled to
avoid to get into an infinite Iloop. In
Fig. 1, for example, starting the resolu-

tion from the component C, the sensors SlI,

S2 and S3 are picked up as the data that

S1

-a
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51 + Senscrs
..& - F.. : Suspects
Fig., 1

An example of the suspect
discrimination by observa-
ble data
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can be used to identify anomaly in the
components C, D and E. The sensors them-
selves can also be suspects in this case.
This process is repeated until all
suspects are grouped into smaller sets.
Next, numeric simulation is performed for
each set again using resolution to sheck
if the observable data are consistent to
each other. |If they are not consistent, at
least one of the components for that set
is faulty.

D. Discrimination of the Suspects by Gen-
erating Tests

It is possible to further discrim-
inate the suspects by placing single fault
and non-intermittency assumptions for each
set if a meaningful test can be generated
and if it is successful. Use of the redun-
dant component or valve open/close can be
a realizable test in a plant disgnosis.

Inference is made in two steps.
First, test form is generated. The
knowledge required and the inference pro-
cedure wused in this step are the same as
in IV C. Figure 2 is an example of a set
of suspects in which a test is possible.

51 : Sensors
E 1 Selector

Fig. 2
An example of the suspect
discrimination by genetrat-
ing a test

The components C and D are redundant.
Assume that the component C has been
selected. The suspects at this stage are
A, B, C and E. If there s still incon-
sistency among the data when the selector
E is switched from C to D, the compponent
C is exonerated from the suspects. Other-
wise, the component C is faulty. The
resolution starts from the redundant com-
ponent D which is selected by the
knowledge that C and D are redundant, the
selector E is switchable and now C is
selected, and is continued until the test
form is obtained. Similar test can be gen-
erated in case of valve control. Next,
numeric simulation Is performed using
resolution, and the simulated results s
evaluated against the observable data.

V  APPLICATION TO A DIAGNOSIS OF
A NUCLEAR REACTOR POMER PLANT

The above method is applied to a sim-
plified model of feed-water system of a
boiling water reactor shown in Fig. 3.
Steam going out of the core is returned to
the core by the feed-water pump after
being condensed to water. Small fraction
of the vapor is used to drive a turbine-
driven feed-water pump. The power level is
controlled by recirculation flow rate. The
water level is kept constant by the con-
troller which uses signals from water
level sensor, feed-water flow meter and
main steam flow meter. The condensor s
assumed to serve as a source and a sink of
water and vapor. The system dynamics are,
thus, determined by those of the core, the
controller and the pumps. The water level
sensor 1 (8S3) and 2 (S4), and the
turbine-driven (J) and motor-driven (L)
pumps are redundant components. In the
normal operating condition, S3 and J are
used. When S3 is used, S4 is not observ-
able.

The following hypothetical situation
is assumed. The component S3 happened to
fail. The anomaly was first detected by
the alarm signal of S9 at the feed-water
pump outlet during a load following opera-
tion in which the plant was not in a
steady state. By the time of detection,
the anomaly had already propagated through
various components and affected many sen-

sor outputs although they were still
within their allowable ranges except for
S9.

After computing the expectation value
of S9 using the past observable data (step
1), the suspects computation starts and
returns the following components (step 2):

A, B, C, D, E, F, G, H, I, J, K, L,
M, N, ¢, O, T, S1, 82, 53, 58, 8%

Use of the obaservable data discrim-
inates the suspects to the following seven
(step 3):

A, B, C, D, 81, 82, S3

A test is then generated knowing that
83 and 5S4 are redundant and 33 is in use:

LSwitch the selector E to 84 from S§3. If
the data S1, 382 and S4 are consistent, 83
is faulty. Otherwise, the fault must lie
in one of A, B, C, D, 81, S22 and S3.3J

In this case, the data are consistent
by the assumption, and thus, the test is
successful. The faulty component is con-
cluded to be the water level sensor 1.



All of the above diagnosis steps are
automated. To improve the efficiency,

heuristic knowledge is also employed and
used together with the knowledge on system
description. An example is a knowledge
that it is worth to start resolution from
the redundant component in discriminating
the suspects using the observable data.

VI CONCLUSION

A method to diagnose a dynamic system
with feedback structure is proposed. The
method neither require a fault model nor
knowledge concerning failure causality.
The diagnosis is mainly based on linear
input resolution with explicit meta-level
control and all of the inference steps are
automated.

Application to a BAR feed-water Sys-
tem demonstrates its diagnostic capability
although the model is much simplified and
the assumed anomaly is hypotheti-
cal.

Experience with example recommends
combinatory use of heuristic knowledge for
efficiency improvement. Employment of
frame type representation of the system

coupled with criteriality inference capa-
bilty would further improve the effi-
ciency. It is important to distinguish

logical inference from simulation.
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Core H 1Y
Feed-water controller : F
Hater level selector E
Recirculation pump B
IBJ Feed-water pump
Turbine-driven (main) J
Motor-driven laug) + L
Valve r H, N, Q, T
Condensor : R
Pipe : C, D, G, I. M, P, O
Sensor : 51 - S1¢0
Hater level sensor 1 ; 853
Hater level sensor 2 1 54
Pump outlet flow meter : 59
Interlock K

Fig. 3 Simplified diagram of feed-water system of a BWR



