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Abstract 

The language Prolog has been extended by allowing the in­
clusion of assertions about equality. When a unification of 
two terms that do not unify syntactically is attempted, an 
equality theorem may be used to prove the two terms equal. 
If it is possible to prove that the two terms are equal the 
unification succeeds with the variable bindings introduced 
by the equality proof. It is shown that this mechanism 
significantly improves the power of Prolog. Sophisticated 
data abstraction wi th all the advantages of object-oriented 
programming is available. Techniques for passing partially 
instantiated data are described that extends the "mult i-
use" capabilities of the language, improve the efficiency 
of some programs, and allow the implementation of arith­
metic relations that are both general and efficient. The 
modifications to standard Prolog are simple and straightfor­
ward and in addition the computational overhead for the 
extra linguistic power is not significant. Equality theorems 
wil l probably play an important role in future logic pro-
gramming systems. 

1. Introduction 

Prolog is a computer language based on Horn clause resolu­
tion. The basic resolution procedure, similarly with Prolog, 
does not allow statements about equality. We cannot, for 
example, express that 6 = successor(S) and then be able to 
unify P(6) wi th P(succesor(5)). We have adapted a Lisp-
based Prolog system <Kahn 82> so that it is possible to 
specify theorems about equality. The unification algorithm 
has been modified so that if the unification of two terms 
fails, an assertion is looked for that wil l prove the two terms 
are equal. As wi th any application of the unification pro-
cedure, the proof of equality of the two terms may cause 
the binding of variables in either or both of the terms. 

Our Prolog-with-Equality is a natural extension to stan­
dard Prolog. We have found several applications for it that 
extend the power, expressibility, and generality of Prolog. 
These principally fall into two categories—extensible data-
types and greater opportunities to pass partially specified 
data objects. The former turns out, surprisingly, to aug­

ment Prolog with all the flexibility of "object-oriented" lan­
guages typified by Smalltalk <Ingalls78>, and potentially 
much more. The second major application area is a greatly 
improved facility for passing partially instantiated data ob­
jects as an alternative to a backtracking-based enumera­
tion of possible bindings. These turn out to be quite easily 
implemented in Prolog-with-Equality. Moreover, the effect 
on efficiency in interpreted Prolog is minimal and there is 
every reason to suppose that most computational overhead 
that is introduced can be eliminated in compilation. 

The notion of equality theorems is very similar to the para-
modulation rule found in the theorem proving literature 
<Chang,Lee73>. 

2. Example—Rational Number Datatype 

We wil l create a rational number datatype as an example 
of the use of equality theorems. Rational numbers wil l be 
represented by a term made up of the functor r a t with two 
arguments, the numerator and denominator respectively. 
There is a distinguished predicate symbol equals which is 
used to specify the equality axioms. 

We add the following assertion to our database:1 

(equals (rat <--numl <-denoml) (rat <-num2 «-denom2)) :-
(times «-numl <-denon2 <-intermediate) 
(times <-num2 «-denoml <-intermediate) 

This expresses the usual cross-multiplication rule for decid­
ing if two rationals are equal to one another. 

Our augmented unification rule works as follows: When 
the interpreter attempts to unify two objects Φ and Φ 
using standard unification and fails, it wil l establish the 
goal (EQUALS Φ). If this demonstration succeeds, the 
unification succeeds with the new variable bindings. If 
this fails, it wi l l attempt to prove (EQUALS Φ). An 
attempt to unify ( r a t 2 3) wi th ( r a t «-X 3) wil l succeed 
because standard unification succeeds. An attempt to unify 

'Our Prolog syntax is not standard and should be briefly explained. 
A term is represented as a Lisp list whose first element is the functor 
and the remaining elements are the arguments. A literal prefaced by 
the symbol "«-" is a variable. 
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( r a t 2 3) wi th ( r a t «-X 6) wil l cause the goal 

(EQUALS (RAT 2 3) (RAT «-X 6)) 
to be posed by the system. This wil l succeed with the 
variable «-- bound to 4. The original computation continues 
with this binding and it is placed in the trail for undoing 
on backtracking. 

We have not yet told the system how to match rationals 
with any other kind of object. We wish to express a method 
to decide if a r a t is the same as an integer. The following 
assertion is added: 

If both the numerator and the denominator are uninstan-
tiated it succeeds by unifying the numerator with the in­
teger, otherwise it proves the multiplicative relationship 
that must hold for the equality to hold. 

The following litt le program wil l now succeed 3 times: 

(member ( r a t 4 «-x) 
[2 3 (cons <-y <-z) ( r a t <-r <-w) ( r a t 2 7 ) ] ) 

<-x = 2 
+r = 4, «-x = «-w 
<-x = 14 

We will also wish, to specify the behavior of this new data­
type for several additional relations. The > relation for 
rationals is implemented with the following assertion: 

This rule could of course work in a Prolog without equality 
theorems when comparing two terms beginning with the 
functor r a t . Now, however, if we t ry to prove the goal 
(> ( r a t 3 2) 1), the attempt to unify this goal with the 
head of this assertion wil l cause an attempt to prove that 
1 equals ( r a t «-n2 «-d2) which wi l l succeed with the ap­
propriate bindings ( n 2 = l , d 2 = l ) , allowing the > goal to 
succeed. In other languages this might be called "automatic 
type conversion." 

3. Extensible Datatypes and Generic Operations 

Equality theorems allow us to gain the modularity advan­

tages of generic operations and class structuring as are 
found in object-oriented languages like Smalltalk. The 
important contributions of this class of languages are two: 

1. One can specify methods for computing facts about 
whole classes of objects and then have those methods auto­
matically inherited by subclasses. 

2. A given operation wil l have different effects on different 
data, in a manner determined by the datum's class. This 
is decided at run time rather than compile time. 

The paradigm of logic programming is very different from 
the paradigm of message passing systems. We do not have 
"objects" which receive "messages." The role of objects 
are played by terms; the role of messages by relations. The 
concept of "class" has no formal analog in Prolog-with-
Equality. The effect of class structuring is accomplished 
by the use of equals assertions. A subclass relationship is 
indicated by a single equals assertion containing terms for 
the sub- and super-class. The pattern of variables between 
the two terms and the body of the assertion express the 
relationship between the two classes. 

As an example, we might have the class regu la r -po lygon . 
Al l regular polygons have four attributes, an X and Y loca­
tion, a side length, and the number of sides. In Prolog we 
might want to specify a method for computing the areas of 
regular polygons. This would be done as follows: 

We could then have a functor e q u i l a t e r a l - t r i a n g l e that 
is defined to be equal to a regu la r -po lygon wi th three 
sides: 

Then if we prove the goal 

(area ( e q u i l a t e r a l - t r i a n g l e «- «- 100) «-ans) 

the attempt to unify it w i th the head of the area assertion 
wi l l result in an attempt to show the term with functor 
e q u i l a t e r a l - t r i a n g l e is equal to a term with functor 
regu la r -po lygon . This wi l l succeed wi th <- length bound 
to 3 and the goal wi l l succeed wi th «-ans bound to 150. 
Of course, since this is Prolog, we could ask the question: 
"How long does the side of an equilateral triangle have to 
be to have an area of 150?" This would be: 

(area ( e q u i l a t e r a l - t r i a n g l e «- «- <-- length) 150) 
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This goal wi l l succeed with «-length bound to 100. 

We could also have area assertions for other kinds of objects 
such as ellipses: 

This wil l not interfere in any way with goals asking for the 
areas of triangles because there is no theorem that allows 
us to show Triangles and Ellipses are equal. 

We could define a circle by saying: 

that wil l then allow the use of theorems about ellipses for 
answering questions about circles. 

There is one sense in which we have more flexibility in 
Prolog-with-Equality than can be achieved with object-
oriented languages. As with other aspects of Prolog, we 
are able to leave many aspects of our computation undeter­
mined and still carry out the computation. Wi th in object-
oriented languages an object's class is known at object in­
stantiation time. This is not true for terms in Prolog-with-
Equality. Suppose we have the goal: 

The variable obj is unified with a regu la r -po lygon of 
an indeterminate number of sides. Side-number is later 
unified with 3 and p red ica te is called. If p red ica te has 
assertions that will allow proofs about triangles then we 
will succeed because obj wil l unify with t r i a n g l e s . 

A fanciful example involves the term c l o s e d - f i g u r e with 
two argument, a perimeter and an area. We can state the 
following equality assertion: 

expressing the fact that if the perimeter of a closed figure 
is 27r and the area is nr2 for some r, then it is a circle. A 
c l o s e d - f i g u r e described in this way, if instantiated to be 
a circle, can be used in any proof that was defined using 
the c i r c l e functor. 

The code above is most unlikely to appear as part of a 
practical program. When things are left so undetermined, 
simple programs can take very long because there may be 
very esoteric ways of doing proofs. It is important, however, 
to see that such generality is available. Moreover, the uses 
of equality theorems that model the class-structuring idea 
are very efficiently implemented. We discuss these issues 
briefly in section 7. 

4. Partially Specified Objects 

One of the desirable features of Prolog is its ability to deal 
wi th partially instantiated data objects. One way to look 
at this is that the partially instantiated data object stands 
for a non-singleton subset of the Herbrand Universe cor­
responding to our Prolog program. If we were not able to 
pass such objects freely in our programs the control struc­
ture of Prolog (or any logic programming language remotely 
like it) would require us to successively generate bindings 
of the variable to ground objects for consideration by the 
remainder of the proof. This is the power that unification 
gets us and also the principle difference between Prolog 
and the language Micro-Planner <Sussman, et. al. 70> which 
preceded it but was otherwise similar. We find that our in­
clusion of equality proofs in Prolog extends the range of 
possibility for passing partially instantiated data. In some 
cases this can significantly improve the efficiency of pro-
grams by replacing an otherwise expensive enumeration of 
ground terms with backtracking. In other cases it makes 
possible a program that would not be possible otherwise 
because there is no convenient way to enumerate the space. 

We define a binary functor called which wil l represent 
an arbitrary partially specified object. The first argument 
to an Ω term is a variable that is uninstantiated when 
the term is introduced. The second argument is a relation 
that must hold for all terms in the subset of the Herbrand 
Universe that this Ω term represents; it is expressed in 
terms of the uninstantiated variable. For example, if we 
execute the goal (> <-x 3) where the variable x is at this 
point uninstantiated, we wil l succeed with the binding for 
x: (Ω «-num (> «-num 3 ) ) . This represents (and wil l unify 
with) all numbers that are greater than three. When this 
is unified with a number (e.g. 5) the variable num is unified 
with 5 and the unification succeeds of the relation succeeds 
(which it does because three is greater than five). 

The equals relation for Ω terms is defined as follows: 

The predicate i n s t a n t i a t e succeeds if its argument is in­
stantiated, i.e. that it is neither a variable nor an uninstan­
tiated Ω term; when it succeeds the second argument is 
bound to the instantiated value. The first assertion declares 
that an Ω term is equal to something if the item the Ω 
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functor represents (obj) is equal to the th ing 's instantiated 
value and the constraining relation is true. The second 
assertion applies if two ft terms are unified and neither 
has yet been instantiated. Both ft terms are made equal 
to one another and to another ft term whose relation is 
the conjunct of the two previous relations. This new term 
represents the intersection of the space of possible ground 
terms of the two ft terms that were unified. 

2The preponderance of the impure ins tan t ia te relation is only neces-
sary when data if to be passed to evaluablc predicates (such as l i sp->) . 
As < Warren 77 > points out, most of the work in building a Prolog 
is in writing the "evaluable predicates". However, our > relation is a 
true Prolog predicate in that it is not required for its arguments to be 
instantiated when called. Our goal is to be able to bury such impure 
evaluable predicates inside logically sound relations. 

The definition of t imes determines which arguments are 
instantiated and takes an appropriate action. If two or 
three are instantiated it executes an evaluable predicate 
corresponding to a Lisp function call. Otherwise it creates 
ft terms that express the arithmetic constraints on the 
value of the variable. Other arithmetic functions are defined 
analogously. Prolog programs written using these relations 
have the property that the relations can be in any order and 
the program wil l find the answer without any backtracking. 
For example, the goal 

wil l succeed wi th correct bindings for all the variables. This 
is accomplished with sequential evaluation of the predicates 
and no backtracking. Arithmetic expressed in this way can 
solve systems of equations that are not simultaneous.3 It is 
a very efficient way of doing arithmetic, and wil l work for 
floating point as well as integer computations.4 

Arithmetic expressions are an example where it is impos­
sible in a practical sense to generate each of the possible 
bindings as ground terms. However there are other situa­
tions where we may wish to use ft terms as an alternative 
to enumerating the bindings. 

3This is equivalent in power to the constraint network formalisms 
<Borning 79, Sussman, Steele 78 >. 

4IC-Prolog < Clark 82 > provides arithmetic on integers by building 
the integers using successor. This is very general, but not efficient for 
practical problems. 
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Consider the following goal: 

(and (member «-x « -ve ry - long- l i s t ) 
(pred «-x)) 

where on entry v e r y - l o n g - l i s t is instantiated to a very 
long list and x is uninstantiated. Suppose that pred is true 
of only a few of those elements. In this case, using the 
standard Prolog definition of member, the relation would 
become a generator of succesive elements from the list. An 
alternative way of writ ing member would be that, if x is 
not instantiated upon entry into the member relation, the 
relation would instantiate x to: 

This would effectively save the constraint that x be a mem­
ber of the list until there was some item under considera­
tion. Then, and only then, would the constraint be checked. 

It is far from clear how one would characterize the condi­
tions under which ft terms wil l be preferable to using a 
predicate as a generator. Yet this does seem an important 
tool. It is distinct from, yet compatible wi th, extralogical 
control annotation as in IC-Prolog < Clark 82 >. 

5. Functional Notation 

Many people are uncomfortable with the flat relational 
style of Prolog as opposed to the functional notation Lisp 
and most other languages. Lisp syntax allows the com­
position of functions without the need to introduce tem­
porary variables to glue successive relations together as in 
the above example for computing the area of a polygon. 
We can straightforwardly augment Prolog wi th functional 
notation by using equality theorems: 

Notice that we distinguish the function %plus from the 
relation p lus . It makes no sense in (logic or) Prolog to unify 
a relation and a function. Using these new functors we can 
define a temperature converter relation that expresses the 
relationship between the Fahrenheit and centigrade scales. 
The relation is a one-liner: 

(temp-converter of (5 times (% difference <--f 32) (rat 5 0))) 

This is like the "executable pattern" of <Nakashima 82>. 

6. Equality Assertion Invocation 

Prolog constructs can be understood in either a declara-
tive or procedural sense. Thus far we have not considered 
the precise procedural semantics of Prolog-with-Equality. 
Certain care must be exercised in defining the procedural 
semantics to avoid infinite loops or otherwise unaccept-
ably wasteful searches. Our solution to this yields a sys­
tem which is far from complete in the logical sense, yet 
is sufficient for the classes of examples in this paper. It 
has a further desirable property that allows the compiler to 
precompute certain information that wil l allow most fail­
ing unifications to fail in constant time. Such a property 
is critical if this mechanism is to find its was into practical 
programs. 

The first restriction we put on unification via equality asser­
tions is that the assertions can only be used one way. 
Suppose we attempt to match ( foo 1) with (bar 2) . This 
will cause the unifier to generate a goal of the form: 

(equals ( foo 1) (bar 1)) 

Now suppose we had an equality theorem whose head was: 
(equals (bar «-n) «-s). An attempt to unify the goal 
with this assertion head would cause a recursive goal of 
(equals (foo 1) (bar 1 ) ) . This will lead to an infinite 
computation. To avoid this problem we require that in 
matching the first term of the equals goal with its coun­
terpart in the head of the assertion the functors must be 
the same. The unification of the second argument may 
recursively create new equality assertions. This allows for 
chains of equality matches (but not cycles). 

Unification in Prolog-with-Equality, as in standard Prolog, 
is deterministic—it can only succeed once. For normal 
Prolog there is no problem because there can be only one 
most general unifier. However, in consideration of of models 
other than the standard Herbrand model (see, for example, 
a survey of equational theories <Siekmann, Saabo 82>) it is 
possible for there to be no unique most general unifier. 
To properly handle such cases would require introducing a 
backtracking point in the unification itself. For the class of 
applications I have looked at so far there does not seem to 
be a compelling reason for doing so, yet this is possible route 
to be taken in the future. One way this could be understood 
within the class hierarchy paradigm is that there may be 
more than one most general unifier because there is more 
than one way to view the first as an instance of the second. 

7. Efficiency Considerations 

It is critically important from the efficiency point of view 
that one of the functors must be explicitly present as the 
first functor of an equals assertion. Thus equals asser­
tions can be grouped in much the same way that assertions 
wi th the same first predicate are grouped in the implemen-
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tation. If one tries to match two terms, neither of which has 
equals assertions for it, the match can fail quickly. In the 
event that one or both have assertions associated with them 
a series of equals derivations may ensue that is potentially 
costly. A compiler can do much to eliminate this when­
ever the terms are not relatable by figuring the chains of 
func to rs statically from the code. If neither functor can 
be reached by a chain of equals assertions from the other 
the two can definitely not be unified. By using hash tables 
to store this information most failures can be discovered 
very quickly. In particular, the use of equality to model 
object-oriented languages requires no backtracking and a 
small, constant, overhead to determine failure. 

8. Conclusions 

My experience with Prolog-with-Equality to date has been 
very encouraging. The modifications necessary to the inter­
preter to make equality theorems possible was done in one 
evening of programming. The basic paradigms explored 
(extended datatyping, partially instantiated Ω terms) ap­
pear quite natural and general. Moreover the added fea­
tures do not impinge on the efficiency of basic Prolog. I am 
hopeful that new paradigms for using equality will emerge 
as more experience is gained. 

I am currently developing a system in Prolog-with-Equality 
for composition of musical examples of species counter-
point. This area of music theory has been studied exten­
sively over several centuries and large, precise rules systems 
exists for it. The two paradigms are quite important for 
developing this system. The partially instantiated term 
notion is used to represent classes of pitches (when the 
fully instantiated note must be one of those pitches). The 
unification process for two partially instantiated pitches be­
comes a set intersect. This way expensive backtracking is 
avoided. 
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