
Equality for Prolog

Wil l iam A. Kornfeld
M IT Artif icial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

U.S.A.
telephone: (617) 492 6172
arpanet: BAK®MIT-MC

Abstract

The language Prolog has been extended by allowing the in­
clusion of assertions about equality. When a unification of
two terms that do not unify syntactically is attempted, an
equality theorem may be used to prove the two terms equal.
If it is possible to prove that the two terms are equal the
unification succeeds with the variable bindings introduced
by the equality proof. It is shown that this mechanism
significantly improves the power of Prolog. Sophisticated
data abstraction wi th all the advantages of object-oriented
programming is available. Techniques for passing partially
instantiated data are described that extends the "mult i-
use" capabilities of the language, improve the efficiency
of some programs, and allow the implementation of arith­
metic relations that are both general and efficient. The
modifications to standard Prolog are simple and straightfor­
ward and in addition the computational overhead for the
extra linguistic power is not significant. Equality theorems
wil l probably play an important role in future logic pro-
gramming systems.

1. Introduction

Prolog is a computer language based on Horn clause resolu­
tion. The basic resolution procedure, similarly with Prolog,
does not allow statements about equality. We cannot, for
example, express that 6 = successor(S) and then be able to
unify P(6) wi th P(succesor(5)). We have adapted a Lisp-
based Prolog system <Kahn 82> so that it is possible to
specify theorems about equality. The unification algorithm
has been modified so that if the unification of two terms
fails, an assertion is looked for that wil l prove the two terms
are equal. As wi th any application of the unification pro-
cedure, the proof of equality of the two terms may cause
the binding of variables in either or both of the terms.

Our Prolog-with-Equality is a natural extension to stan­
dard Prolog. We have found several applications for it that
extend the power, expressibility, and generality of Prolog.
These principally fall into two categories—extensible data-
types and greater opportunities to pass partially specified
data objects. The former turns out, surprisingly, to aug­

ment Prolog with all the flexibility of "object-oriented" lan­
guages typified by Smalltalk <Ingalls78>, and potentially
much more. The second major application area is a greatly
improved facility for passing partially instantiated data ob­
jects as an alternative to a backtracking-based enumera­
tion of possible bindings. These turn out to be quite easily
implemented in Prolog-with-Equality. Moreover, the effect
on efficiency in interpreted Prolog is minimal and there is
every reason to suppose that most computational overhead
that is introduced can be eliminated in compilation.

The notion of equality theorems is very similar to the para-
modulation rule found in the theorem proving literature
<Chang,Lee73>.

2. Example—Rational Number Datatype

We wil l create a rational number datatype as an example
of the use of equality theorems. Rational numbers wil l be
represented by a term made up of the functor r a t with two
arguments, the numerator and denominator respectively.
There is a distinguished predicate symbol equals which is
used to specify the equality axioms.

We add the following assertion to our database:1

(equals (rat <--numl <-denoml) (rat <-num2 «-denom2)) :-
(times «-numl <-denon2 <-intermediate)
(times <-num2 «-denoml <-intermediate)

This expresses the usual cross-multiplication rule for decid­
ing if two rationals are equal to one another.

Our augmented unification rule works as follows: When
the interpreter attempts to unify two objects Φ and Φ
using standard unification and fails, it wil l establish the
goal (EQUALS Φ). If this demonstration succeeds, the
unification succeeds with the new variable bindings. If
this fails, it wi l l attempt to prove (EQUALS Φ). An
attempt to unify (r a t 2 3) wi th (r a t «-X 3) wil l succeed
because standard unification succeeds. An attempt to unify

'Our Prolog syntax is not standard and should be briefly explained.
A term is represented as a Lisp list whose first element is the functor
and the remaining elements are the arguments. A literal prefaced by
the symbol "«-" is a variable.

W. Kornfeld 515

(r a t 2 3) wi th (r a t «-X 6) wil l cause the goal

(EQUALS (RAT 2 3) (RAT «-X 6))
to be posed by the system. This wil l succeed with the
variable «-- bound to 4. The original computation continues
with this binding and it is placed in the trail for undoing
on backtracking.

We have not yet told the system how to match rationals
with any other kind of object. We wish to express a method
to decide if a r a t is the same as an integer. The following
assertion is added:

If both the numerator and the denominator are uninstan-
tiated it succeeds by unifying the numerator with the in­
teger, otherwise it proves the multiplicative relationship
that must hold for the equality to hold.

The following litt le program wil l now succeed 3 times:

(member (r a t 4 «-x)
[2 3 (cons <-y <-z) (r a t <-r <-w) (r a t 2 7)])

<-x = 2
+r = 4, «-x = «-w
<-x = 14

We will also wish, to specify the behavior of this new data­
type for several additional relations. The > relation for
rationals is implemented with the following assertion:

This rule could of course work in a Prolog without equality
theorems when comparing two terms beginning with the
functor r a t . Now, however, if we t ry to prove the goal
(> (r a t 3 2) 1), the attempt to unify this goal with the
head of this assertion wil l cause an attempt to prove that
1 equals (r a t «-n2 «-d2) which wi l l succeed with the ap­
propriate bindings (n 2 = l , d 2 = l) , allowing the > goal to
succeed. In other languages this might be called "automatic
type conversion."

3. Extensible Datatypes and Generic Operations

Equality theorems allow us to gain the modularity advan­

tages of generic operations and class structuring as are
found in object-oriented languages like Smalltalk. The
important contributions of this class of languages are two:

1. One can specify methods for computing facts about
whole classes of objects and then have those methods auto­
matically inherited by subclasses.

2. A given operation wil l have different effects on different
data, in a manner determined by the datum's class. This
is decided at run time rather than compile time.

The paradigm of logic programming is very different from
the paradigm of message passing systems. We do not have
"objects" which receive "messages." The role of objects
are played by terms; the role of messages by relations. The
concept of "class" has no formal analog in Prolog-with-
Equality. The effect of class structuring is accomplished
by the use of equals assertions. A subclass relationship is
indicated by a single equals assertion containing terms for
the sub- and super-class. The pattern of variables between
the two terms and the body of the assertion express the
relationship between the two classes.

As an example, we might have the class regu la r -po lygon .
Al l regular polygons have four attributes, an X and Y loca­
tion, a side length, and the number of sides. In Prolog we
might want to specify a method for computing the areas of
regular polygons. This would be done as follows:

We could then have a functor e q u i l a t e r a l - t r i a n g l e that
is defined to be equal to a regu la r -po lygon wi th three
sides:

Then if we prove the goal

(area (e q u i l a t e r a l - t r i a n g l e «- «- 100) «-ans)

the attempt to unify it w i th the head of the area assertion
wi l l result in an attempt to show the term with functor
e q u i l a t e r a l - t r i a n g l e is equal to a term with functor
regu la r -po lygon . This wi l l succeed wi th <- length bound
to 3 and the goal wi l l succeed wi th «-ans bound to 150.
Of course, since this is Prolog, we could ask the question:
"How long does the side of an equilateral triangle have to
be to have an area of 150?" This would be:

(area (e q u i l a t e r a l - t r i a n g l e «- «- <-- length) 150)

516 W. Kornfeld

This goal wi l l succeed with «-length bound to 100.

We could also have area assertions for other kinds of objects
such as ellipses:

This wil l not interfere in any way with goals asking for the
areas of triangles because there is no theorem that allows
us to show Triangles and Ellipses are equal.

We could define a circle by saying:

that wil l then allow the use of theorems about ellipses for
answering questions about circles.

There is one sense in which we have more flexibility in
Prolog-with-Equality than can be achieved with object-
oriented languages. As with other aspects of Prolog, we
are able to leave many aspects of our computation undeter­
mined and still carry out the computation. Wi th in object-
oriented languages an object's class is known at object in­
stantiation time. This is not true for terms in Prolog-with-
Equality. Suppose we have the goal:

The variable obj is unified with a regu la r -po lygon of
an indeterminate number of sides. Side-number is later
unified with 3 and p red ica te is called. If p red ica te has
assertions that will allow proofs about triangles then we
will succeed because obj wil l unify with t r i a n g l e s .

A fanciful example involves the term c l o s e d - f i g u r e with
two argument, a perimeter and an area. We can state the
following equality assertion:

expressing the fact that if the perimeter of a closed figure
is 27r and the area is nr2 for some r, then it is a circle. A
c l o s e d - f i g u r e described in this way, if instantiated to be
a circle, can be used in any proof that was defined using
the c i r c l e functor.

The code above is most unlikely to appear as part of a
practical program. When things are left so undetermined,
simple programs can take very long because there may be
very esoteric ways of doing proofs. It is important, however,
to see that such generality is available. Moreover, the uses
of equality theorems that model the class-structuring idea
are very efficiently implemented. We discuss these issues
briefly in section 7.

4. Partially Specified Objects

One of the desirable features of Prolog is its ability to deal
wi th partially instantiated data objects. One way to look
at this is that the partially instantiated data object stands
for a non-singleton subset of the Herbrand Universe cor­
responding to our Prolog program. If we were not able to
pass such objects freely in our programs the control struc­
ture of Prolog (or any logic programming language remotely
like it) would require us to successively generate bindings
of the variable to ground objects for consideration by the
remainder of the proof. This is the power that unification
gets us and also the principle difference between Prolog
and the language Micro-Planner <Sussman, et. al. 70> which
preceded it but was otherwise similar. We find that our in­
clusion of equality proofs in Prolog extends the range of
possibility for passing partially instantiated data. In some
cases this can significantly improve the efficiency of pro-
grams by replacing an otherwise expensive enumeration of
ground terms with backtracking. In other cases it makes
possible a program that would not be possible otherwise
because there is no convenient way to enumerate the space.

We define a binary functor called which wil l represent
an arbitrary partially specified object. The first argument
to an Ω term is a variable that is uninstantiated when
the term is introduced. The second argument is a relation
that must hold for all terms in the subset of the Herbrand
Universe that this Ω term represents; it is expressed in
terms of the uninstantiated variable. For example, if we
execute the goal (> <-x 3) where the variable x is at this
point uninstantiated, we wil l succeed with the binding for
x: (Ω «-num (> «-num 3)) . This represents (and wil l unify
with) all numbers that are greater than three. When this
is unified with a number (e.g. 5) the variable num is unified
with 5 and the unification succeeds of the relation succeeds
(which it does because three is greater than five).

The equals relation for Ω terms is defined as follows:

The predicate i n s t a n t i a t e succeeds if its argument is in­
stantiated, i.e. that it is neither a variable nor an uninstan­
tiated Ω term; when it succeeds the second argument is
bound to the instantiated value. The first assertion declares
that an Ω term is equal to something if the item the Ω

W. Kornfeld 517

functor represents (obj) is equal to the th ing 's instantiated
value and the constraining relation is true. The second
assertion applies if two ft terms are unified and neither
has yet been instantiated. Both ft terms are made equal
to one another and to another ft term whose relation is
the conjunct of the two previous relations. This new term
represents the intersection of the space of possible ground
terms of the two ft terms that were unified.

2The preponderance of the impure ins tan t ia te relation is only neces-
sary when data if to be passed to evaluablc predicates (such as l i sp->) .
As < Warren 77 > points out, most of the work in building a Prolog
is in writing the "evaluable predicates". However, our > relation is a
true Prolog predicate in that it is not required for its arguments to be
instantiated when called. Our goal is to be able to bury such impure
evaluable predicates inside logically sound relations.

The definition of t imes determines which arguments are
instantiated and takes an appropriate action. If two or
three are instantiated it executes an evaluable predicate
corresponding to a Lisp function call. Otherwise it creates
ft terms that express the arithmetic constraints on the
value of the variable. Other arithmetic functions are defined
analogously. Prolog programs written using these relations
have the property that the relations can be in any order and
the program wil l find the answer without any backtracking.
For example, the goal

wil l succeed wi th correct bindings for all the variables. This
is accomplished with sequential evaluation of the predicates
and no backtracking. Arithmetic expressed in this way can
solve systems of equations that are not simultaneous.3 It is
a very efficient way of doing arithmetic, and wil l work for
floating point as well as integer computations.4

Arithmetic expressions are an example where it is impos­
sible in a practical sense to generate each of the possible
bindings as ground terms. However there are other situa­
tions where we may wish to use ft terms as an alternative
to enumerating the bindings.

3This is equivalent in power to the constraint network formalisms
<Borning 79, Sussman, Steele 78 >.

4IC-Prolog < Clark 82 > provides arithmetic on integers by building
the integers using successor. This is very general, but not efficient for
practical problems.

518 W. Kornfeld

Consider the following goal:

(and (member «-x « -ve ry - long- l i s t)
(pred «-x))

where on entry v e r y - l o n g - l i s t is instantiated to a very
long list and x is uninstantiated. Suppose that pred is true
of only a few of those elements. In this case, using the
standard Prolog definition of member, the relation would
become a generator of succesive elements from the list. An
alternative way of writ ing member would be that, if x is
not instantiated upon entry into the member relation, the
relation would instantiate x to:

This would effectively save the constraint that x be a mem­
ber of the list until there was some item under considera­
tion. Then, and only then, would the constraint be checked.

It is far from clear how one would characterize the condi­
tions under which ft terms wil l be preferable to using a
predicate as a generator. Yet this does seem an important
tool. It is distinct from, yet compatible wi th, extralogical
control annotation as in IC-Prolog < Clark 82 >.

5. Functional Notation

Many people are uncomfortable with the flat relational
style of Prolog as opposed to the functional notation Lisp
and most other languages. Lisp syntax allows the com­
position of functions without the need to introduce tem­
porary variables to glue successive relations together as in
the above example for computing the area of a polygon.
We can straightforwardly augment Prolog wi th functional
notation by using equality theorems:

Notice that we distinguish the function %plus from the
relation p lus . It makes no sense in (logic or) Prolog to unify
a relation and a function. Using these new functors we can
define a temperature converter relation that expresses the
relationship between the Fahrenheit and centigrade scales.
The relation is a one-liner:

(temp-converter of (5 times (% difference <--f 32) (rat 5 0)))

This is like the "executable pattern" of <Nakashima 82>.

6. Equality Assertion Invocation

Prolog constructs can be understood in either a declara-
tive or procedural sense. Thus far we have not considered
the precise procedural semantics of Prolog-with-Equality.
Certain care must be exercised in defining the procedural
semantics to avoid infinite loops or otherwise unaccept-
ably wasteful searches. Our solution to this yields a sys­
tem which is far from complete in the logical sense, yet
is sufficient for the classes of examples in this paper. It
has a further desirable property that allows the compiler to
precompute certain information that wil l allow most fail­
ing unifications to fail in constant time. Such a property
is critical if this mechanism is to find its was into practical
programs.

The first restriction we put on unification via equality asser­
tions is that the assertions can only be used one way.
Suppose we attempt to match (foo 1) with (bar 2) . This
will cause the unifier to generate a goal of the form:

(equals (foo 1) (bar 1))

Now suppose we had an equality theorem whose head was:
(equals (bar «-n) «-s). An attempt to unify the goal
with this assertion head would cause a recursive goal of
(equals (foo 1) (bar 1)) . This will lead to an infinite
computation. To avoid this problem we require that in
matching the first term of the equals goal with its coun­
terpart in the head of the assertion the functors must be
the same. The unification of the second argument may
recursively create new equality assertions. This allows for
chains of equality matches (but not cycles).

Unification in Prolog-with-Equality, as in standard Prolog,
is deterministic—it can only succeed once. For normal
Prolog there is no problem because there can be only one
most general unifier. However, in consideration of of models
other than the standard Herbrand model (see, for example,
a survey of equational theories <Siekmann, Saabo 82>) it is
possible for there to be no unique most general unifier.
To properly handle such cases would require introducing a
backtracking point in the unification itself. For the class of
applications I have looked at so far there does not seem to
be a compelling reason for doing so, yet this is possible route
to be taken in the future. One way this could be understood
within the class hierarchy paradigm is that there may be
more than one most general unifier because there is more
than one way to view the first as an instance of the second.

7. Efficiency Considerations

It is critically important from the efficiency point of view
that one of the functors must be explicitly present as the
first functor of an equals assertion. Thus equals asser­
tions can be grouped in much the same way that assertions
wi th the same first predicate are grouped in the implemen-

W. Kornfeld 519

tation. If one tries to match two terms, neither of which has
equals assertions for it, the match can fail quickly. In the
event that one or both have assertions associated with them
a series of equals derivations may ensue that is potentially
costly. A compiler can do much to eliminate this when­
ever the terms are not relatable by figuring the chains of
func to rs statically from the code. If neither functor can
be reached by a chain of equals assertions from the other
the two can definitely not be unified. By using hash tables
to store this information most failures can be discovered
very quickly. In particular, the use of equality to model
object-oriented languages requires no backtracking and a
small, constant, overhead to determine failure.

8. Conclusions

My experience with Prolog-with-Equality to date has been
very encouraging. The modifications necessary to the inter­
preter to make equality theorems possible was done in one
evening of programming. The basic paradigms explored
(extended datatyping, partially instantiated Ω terms) ap­
pear quite natural and general. Moreover the added fea­
tures do not impinge on the efficiency of basic Prolog. I am
hopeful that new paradigms for using equality will emerge
as more experience is gained.

I am currently developing a system in Prolog-with-Equality
for composition of musical examples of species counter-
point. This area of music theory has been studied exten­
sively over several centuries and large, precise rules systems
exists for it. The two paradigms are quite important for
developing this system. The partially instantiated term
notion is used to represent classes of pitches (when the
fully instantiated note must be one of those pitches). The
unification process for two partially instantiated pitches be­
comes a set intersect. This way expensive backtracking is
avoided.

9. Bibliography

Attardi G., M. Simi, Consistency and Completeness of
OMEGA, a Logic for Knowledge Representation, Sev­
enth International Joint Conference on Artificial Intellgence,
Vancouver, August 1981.

Borning, A., Thinglab—A Constraint-Oriented Simu­
lat ion Laboratory, Xerox PARC report SSL-79-3, July
1979.

Chang, C, R. Lee, Symbolic Logic and Mechanical Theo­
rem Proving, Academic Press, 1973.

Clark, K., IC-Prolog Language Features, in Clark & Tarn-
lund, Logic Programming, Academic Press, 1982.

Ingalls The Smalltalk-76 Programming System: Design
and Implementat ion, Fi f th Annual ACM Symposium on

Principles of Programming Languages, Tucson Arizona, Jan­
uary 1978.

Kahn, K., Unique Features of LM-Pro log, unpublished
manuscript.

Nakashima, H. Prolog K / R language feature, First Inter­
national Logic Programming Conference, Marseille, Sep­
tember, 1982.

Siekmann, J., P. Szab6, Universal Unif icat ion and a Class­
i f icat ion of Equational Theories, 6th Conference on Auto­
mated Deduction, New York, June 1982.
Sussman, G., T. Winograd, E. Charniak, Micro-Planner
Reference Manual, MIT Artificial Intelligence Laboratory
memo 203, 1970.

Sussman, G., G. Steele, Constraints MIT Artificial Intelli­
gence Laboratory memo 502, November, 1978.

Warren, D., Implementing Prolog—Compil ing Predicate
Logic Programs, University of Edinburgh Department of
Artificial Intelligence Report No. 39.

