A WRINKLE ON SATISFICING SEARCH PROBLEMS1

Jeffrey A. Bamett and Don Cohen

USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, Califoria 90291

Abstract

The problem of optimally ordering the execution of independent
disjuncts is explored. Only a single answer is sought, not neces-
sarily the best one. By definition, this is called satisfying search.
Since the disjuncts are independent, the total combined probabil-
ity that a solution is found does not depend on the execution or-
der. However, the ordering does affect the total expected execu-
tion time because execution ceases as soon as any solution is
discovered. Therefore, the optimal ordering is the one that min-
imizes the total expected work. The new result is an algorithm to
find this optimal ordering when the effects of executing a disjunct
must be undone before another one can be tried. The algorithm is
shown to have time complexity O(n log n), where n is the number
of disjuncts. This is the same complexity as for the original
problem where undo times are ignored.

Introduction

Many investigators have examined problems of satisficing
search: try the available methods one at a time until one of them
satisfies the stated criteria, then stop. The objective is to find a
method ordering with the least expected cost to solve the
problem. Typically, only the probability of success and the ex
pected cost are known for each method.

Method i is pairwise preferred to method j if, given only these
two methods, it is less expensive to try i first. Pairwise preference
is transitive. Therefore, if the optimal ordering of n methods is
mim2..mn and mn+1 is added, it is merely inserted somewhere in

original ordering — all original methods stay in the same posi-
tion relative to one another.

Below, the original problem is generalized: Associated with
each method is a cost that must be paid, after trying the method, if
another method is to be used. For example, the cost may be the
time to undo the changes to the problem-solving state so that
another method can be executed in the proper context.

The pairwise preference relation is no longer transitive and the
simple insertion scheme is lost for the generalized problem.
However, the criteria for optimal ordering is straightforward to
derive. An algorithm that finds the optimal ordering is given, and it
is shown to be of the same time complexity as the one for the
original problem, namely o(n log n).

1This research
Agenoy under Contract
in this repart are the authors' and should nat be interpreted as representing the

by the Defrse Advanced Research Projects

official apinion or o DARPA the US. Goverment, or ary person or agengy

MDAGR 81 C 0335. Views and condusions contained

The Original Problem

A set of methods is available, each of which has the potential to
solve the same given problem. The methods can be applied to the
problem in any order; however, they may only be tried one at a
time. If one of the methods solves the problem, the remaining
untried methods need not be used. In other words, only one solu-
tion is desired or necessary, and there is no interest in extra solu-
tions nor any other results that might be produced by method ex-
ecution.

The usual statement of problems in this class assumes that the
probability that a particular method is successful and the execu-
tion cost of the method are independent of the order of execution
and whether or not any other method is successful. Without this
independence assumption, there is no general optimal ordering
because the tradeoff between higher probability of success and
lower expected cost is an application-dependent issue; the most
general result possible then, is a partial ordering for method ex-
ecution. However, with the independence assumption it follows
that the total probability that at least one method will find a solu-
tion is independent of the order in which the methods are tried.
Therefore, the residual problem is to determine the ordering with
least expected cost.

A typical example of this class is the following: Let p be the
probability that method i solves the stated problem and define
q =I-p.. Further, let c. be the expected cost of trying method i.
For example, ¢ = ps +qu. where s is the expected cost when
successful and u is the expected cost when unsuccessful. What
is the best order in which to apply a given set of methods to find a
solution with the least expected cost?

The answer is simple:2 Define p. = p/c.. Apply first the method
with largest p; if it fails, try the method with the next largest p, etc.
The order of application among methods with the same p value is
immaterial to the total expected cost of finding a solution.

Two features of this result are noteworthy. First, a merit score
(namely p. = p./c) can be calculated for a method independent of
what other methods exist. Thus, if a new method becomes avail-
able, it can be evaluated separately and inserted into the current
ordering of previously available methods with the assurance that
the new ordering is optimal. Second, as a consequence, the pair-
wise preference ordering is transitive: Method i is preferred to
method j if, given only methods i and j, the expected cost of trying i

See Smon, H. A, and J. B Kadare, "Optimal Prabem-Solving Search: Alor-
Nore Solutions," Artificial Intelligence 6 (1975), 236247 for this and other rekat
resutts.

before j is fess than trying | first, i.e., @>p. This preference rela-
tion is surely transitive: If i is preferred to | and j is preferred to k,
then iis preferred to k.

Next, a siight peneralization of this problem is considered where
both the simple insertion property and transitivity disappear.

A Generalization

As in the original problem, p, is the prabability that method i will
solve the stated problem, q,=1-p; ang ¢, is its expected cost. In
addition, let d be the cost incurred it method i fails and another
method must be tried. For instance, if ¢, is interpreted as the time
netessary to determine whether the i'th medication combats a dis-
ease, then dI can be interpreted as the detoxification time neces-
sary belore a different medication can be tested. Angther inter-
pretation of clI is the expected cost to undo the effects of execut-
ing method | on the problem-solving state so that another method
can be tried. The goal in this prabiem is to determine the correct
medication. if any {or simply solve the problem), in the least ex-
pected time. For the original problem, alld = 0.

An Example

Define ij as the expected cost of (1) trying method i, {2) if it
fails, waiting for time d . then (3) trying method j. Itis evident that
Cllzcl+ai{di+cj) and that method i is preferred to method | if
CI.]<CjI. Suppose three methods are available with these values of
p. c, and d — e and ¢ are defined below.

i P, <, d, LF dJi

1 .4 g 14.86 17.76 .022%
2] 10 18.9 19.45 L0257
3 .6 14 20.0 23.00 .0261

Then the six possible values of C.Ij are

C,, = 23.76 €,y = 23.95
C,y = 26.95 Cyp = 27.00
C,, = 26.60 €, = 26.76

Thus, method 1 is prelerred to method 2 {C,z(Cm}, method 2 is
preferreg to method 3 (023‘(032]‘ but method 3 is preferred to
method 1 (CS1<C13). Therefore. this example shows that the pair-
wise preference order is not transitive.

Formal Definitions

Though the pairwise preference relation does not induce a total
ordering on the set of methods, the optimat ordering can be deter-
mined in the same order of time as for the original problem,
o{n log n), where & simple sort on g is sufficient, Some notation is
necessary 1o develop this result. Let S be a sequence of methods
and define F's 85 the probability that at east one method in S
solves the problem; st 1—Ps. Let Cs be the expected cost of
trying the methods in $ in the order mentioned (halting it one of
them succeeds;}. Finally, Dg is the detoxitication time necessary it
all the methods in S fail and additional methads are to be tried.

Let & be the null sequence and i any method, then P, =0,
Qu=1,Cp=0,and D,=0 P, =p, Q,=q,C,=¢, and D,=d, The

following recurrence relations hoid where S and T are sequences
of methads and ST is the seguence formed by concatenating

these two.

J. Barnett and D. Cohen 775

Pgr = 1-Qgy
Qg = Qs 0y
Cor»Cg+ QgiDg + C;] T= 2
= Cq T-0
Dy =0, T%8
=DS T=0

It is easy to see that these definitions are associative, i.e., X
)(S(TU) where X=P, Q,C, orD.

tsTIL =

Optimal Ordering

The criterion for ordering nonfinal methods is straightforward to
develop using these definitions. Let 8, 7, U, V be any sequences
of methods such that V= 3.

Ceruv = Cyirum
Cq + QglDg + C[Tu)v]

= Cg + QglDg + Cpyy + QpDyy, + Cl]
If i and j are methods, then cswgcsjw is the criterion that i come
before j. The expansion abave, first with T = and U =], then with
T=jand U =i, aliows the transtormation

Csw s Csiiv
C.+0D <C.+ 0D
n na—= n np
because all other terms cancel and Oi. = O".' Now, this form can be

elaborated vsing the abave definitions, then simplified as follows:

¢, + qjfd, + cl.] +Qgd < + qi[dj +c)+ qad,
(1-gle, + gl -a)d < (1 -gjc + ql1-q)d,
P + apd Spg + quid’
P/l + qdi<p /oc + ad)
It is convenient to define ¢, = ¢, + gd, and to note thal e, is the tatal
expected time, including detoxification, to try method | when it is
in any nonfinal position in the ordering. (For sequences S and 7,
the recurrence relation is E., =B +Q.E, and in terms of C, Q.
and D the relation is ES=CS+QSDS,) Thus, the criterion that
method i come before method | is
P, / € <p /e

Since the steps in the derivation are reversible, this is baoth a
necessary and sufficient condition. It is converient to define
® =p/e and note that ¢ plays the same role here lor nonfinal
methods that @ did for all methods in the original problem.

The optimal ordering tries the nonfinal methods in order of
decreasing & because ¢, depends only on the i'th method and
clearly induces a total orgering on these methods. Among
methods with equal &, the ordering is immaterial. The @i can be
calculated and the methods sorted on its value in time O{n log n).

However, the final mathod is not necessarily the one with lowest
¢ Letm .m_be an aordering consistent with ¢ >&. . Then far
all except one method, say method | which should be final, the
remaining methads are in this order. Therefare, the optimal order-
ing is the one of the form My...m.m, .. m, for which C is min.
imized.

Let S=m,..m_, and Tem, ..M, such that T#@. Then the
optimal ordering is the one that maximizes Csrr‘csnm- If all dif-
ferences are nonpositive, the original sorted ordering is optimal.

776 J. Barnett and D. Cohen

This difference expangds as
C Cgry = Cg + QqlDg + CiT]_[CS + QglDg + CT.I]]
= OS[CJT - CTr]
= Ogle, + gid + C;]-[C; + Q[0 + ¢]Il
OS[PTC} + q]d]-[p]C.r + Q.01
For all j, the differences are calculated and the maximal one
selected in time o(n) by the algorithm described next.

The Algorithm

The algorithm in Figure 1 is written in SIMULA as the class,
method_ordering. There are n methods stored in the array m.
Each method has the defined attributes id (a method identifier)
and p, ¢, and d as described above. The derived attributes of a
method are q, e. and phi, where phi=p/e. The procedure,
sort_on _phi, is not shown explicitly; it may be any sorting algo-
rithm that orders m on nonincreasing values of phi in tme
o(n log n).

Procedure order uses sor!_on_ph then finds an optimal order-
ing. The steps are (1) find Qs for each S= m,..m, by noting that
Qg=0,".."0; (2) starting with T=m_, iterate backwards unti
T= m,..m_and find the maximal difference. and {3} if the maximal
difference is positive, rearrange m into the optimal ordering. In all
cases. Dy =d . However. Q; and C, must be updated using C)jT =
c|lCrT and C.'r:C,*q](dﬂ‘Cr) 80 the iteration simulates T: =T at
each step.

T ET)

If order is applied to the numerical example above, these steps
occeur.

1. The methods are sorted into the order {321} by their
& values.

2. Two iterations are performed with the result that
dif= 076 when j- 2 and dil--.25 when \= 1. These
iterations represent, respectively, the ordenngs {312}
and {213}.

3. Since the maximal difference occurs when j=2 and is
positive, m is rearranged into the optimal ordering

{312}.

For reference, the six values of C._jk are
Cyp, * 32.580 €,y = 32.750
€, = 32.504 €73 = 33.830
5213 = 32.8B30D C132 = 33,880

Conclusion

It is noted above that the transitivity property of the pairwise
preference relation is lost in the generalized problem. Further, the
simple insertion property is lost too. In the original problem, a new
method could be evaluated separately, i.e., ¢ =p/c is calculated
and does not depend on what other methods exist, then the new
methdo® is inserted into the existing optimal ordering of other
methods so that p values are nonincreasing. The new ordering is
then known to be optimal. In the new problem, this is not possible
because the current optimal ordering may have an arbitrary
method as the final method.

The reason that both transitivity and the simple insertion
sproperty are lost is easy to see — the expected cost of a method
depends on its place in the ordering: If a method is in a nonfinal
position, its cost is e; but if it is the final method, its cost is c.

Another possible generalization of this class of ordering
problems suggests itself; suppose the detoxification time between
method i and method j is d.., i.e., d depends upon both the preced-
ing and succeeding methods. Now the computation of the optimal
ordering becomes at least as hard as the version of the traveling
salesman problem where the salesman must visit each city once
but does not need to return to his starting point. To see this,
assume that p and c are the same for all n methods and q = 1p is
very nearly equal 1. Then the cost of an ordering j=j4...jn, where
is a permutation of the first n natural numbers is

C|= c[1+ g+ a%+ ..+ qn4]

+ad +q%d o+ .. +g™'d
iz 2% I 1in

=nc+ Id
J#n1

The approximation is justified singe g is very nearly equal to 1.
Minimizing CJ reduces to minimizing the summation over the per-
mutations. j, and this is the traveling salesman problem.

CLASS method ordering{n): IKRTEGIR n;
BEGIN
CLASS method({io.p.c.o); TEXT id;
REAL p.c,d;
BEGIN KEAL FROCEDURE g q:=1-p;:
REAL FROCEDURE w; w:+c+Q®d:
REAL PROCEDURE phr; phi:=p/a;
END method;

REF(method) ARRAY m[1:n];
PROCEDURE sort_pn_phi;;

PROCEDURE order;
BEGIN REAL ARRAY qs[0:n]:
INTEGER j.best_j:
REAL dif best_gif,.gt.ct,dt;
REF{mathod) a;
sari_on_phi;
gs[0}:=1.0;
FOR j:=1 STEP 1 UNTIL n
D0 qs{j):=as(j-11*m(j]. q:
qt:=m{n].q:
ct:=m{nj.c:
at:*m{nj).d;
FOR j:=n-~1 STEF -1 UNTIL 1 DD
BEGIN dif:ngs[3-1]
*{{i-qti*m[i].c
*m[j].q*m{j].d
-(m[j].p*ctrgtedt)};
1F dif>pest_arf THEN
BEGIN best_dif:=aif;
best_j:tj:
END;
ctzam[j].comly).q°
(m{j]}.d+ct):
qt:=m[j].q*qt:
ENG;
1F pest_dif 0.0 THEK
BEGIN x:-m{best_j]:
FOR jiwbest_j+)
STEP 1 UNTIL n
DO m[j-1]:-m[j]:
min}:-x:
END:
END order;
END method_ordering:

Figure 1: SIMULA program that finds the optimal ordaring

