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A b s t r a c t 
The problem of optimally ordering the execution of independent 

disjuncts is explored. Only a single answer is sought, not neces­
sarily the best one. By definition, this is called satisfying search. 
Since the disjuncts are independent, the total combined probabil­
ity that a solution is found does not depend on the execution or­
der. However, the ordering does affect the total expected execu­
tion time because execution ceases as soon as any solution is 
discovered. Therefore, the optimal ordering is the one that min­
imizes the total expected work. The new result is an algorithm to 
find this optimal ordering when the effects of executing a disjunct 
must be undone before another one can be tried. The algorithm is 
shown to have time complexity 0(n log n), where n is the number 
of disjuncts. This is the same complexity as for the original 
problem where undo times are ignored. 

I n t r o d u c t i o n 
Many investigators have examined problems of satisficing 

search: try the available methods one at a time until one of them 
satisfies the stated criteria, then stop. The objective is to find a 
method ordering with the least expected cost to solve the 
problem. Typically, only the probability of success and the ex­
pected cost are known for each method. 

Method i is pairwise preferred to method j if, given only these 
two methods, it is less expensive to try i first. Pairwise preference 
is transitive. Therefore, if the optimal ordering of n methods is 
m1m2....mn and mn+1 is added, it is merely inserted somewhere in 

original ordering — all original methods stay in the same posi­
tion relative to one another. 

Below, the original problem is generalized: Associated with 
each method is a cost that must be paid, after trying the method, if 
another method is to be used. For example, the cost may be the 
time to undo the changes to the problem-solving state so that 
another method can be executed in the proper context. 

The pairwise preference relation is no longer transitive and the 
simple insertion scheme is lost for the generalized problem. 
However, the criteria for optimal ordering is straightforward to 
derive. An algorithm that finds the optimal ordering is given, and it 
is shown to be of the same time complexity as the one for the 
original problem, namely o(n log n). 
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T h e O r i g i n a l P r o b l e m 
A set of methods is available, each of which has the potential to 

solve the same given problem. The methods can be applied to the 
problem in any order; however, they may only be tried one at a 
time. If one of the methods solves the problem, the remaining 
untried methods need not be used. In other words, only one solu­
tion is desired or necessary, and there is no interest in extra solu­
tions nor any other results that might be produced by method ex­
ecution. 

The usual statement of problems in this class assumes that the 
probability that a particular method is successful and the execu­
tion cost of the method are independent of the order of execution 
and whether or not any other method is successful. Without this 
independence assumption, there is no general optimal ordering 
because the tradeoff between higher probability of success and 
lower expected cost is an application-dependent issue; the most 
general result possible then, is a partial ordering for method ex­
ecution. However, with the independence assumption it follows 
that the total probability that at least one method will find a solu­
tion is independent of the order in which the methods are tried. 
Therefore, the residual problem is to determine the ordering with 
least expected cost. 

A typical example of this class is the following: Let p be the 
probability that method i solves the stated problem and define 
q = l-p.. Further, let c. be the expected cost of trying method i. 
For example, c = p.s + qu. where s is the expected cost when 
successful and u is the expected cost when unsuccessful. What 
is the best order in which to apply a given set of methods to find a 
solution with the least expected cost? 

The answer is simple:2 Define p. = p /c.. Apply first the method 
with largest p; if it fails, try the method with the next largest p, etc. 
The order of application among methods with the same p value is 
immaterial to the total expected cost of finding a solution. 

Two features of this result are noteworthy. First, a merit score 
(namely p. = p./c) can be calculated for a method independent of 
what other methods exist. Thus, if a new method becomes avail­
able, it can be evaluated separately and inserted into the current 
ordering of previously available methods with the assurance that 
the new ordering is optimal. Second, as a consequence, the pair-
wise preference ordering is transitive: Method i is preferred to 
method j if, given only methods i and j, the expected cost of trying i 
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Another possible generalization of this class of ordering 
problems suggests itself; suppose the detoxification time between 
method i and method j is d.., i.e., d depends upon both the preced­
ing and succeeding methods. Now the computation of the optimal 
ordering becomes at least as hard as the version of the traveling 
salesman problem where the salesman must visit each city once 
but does not need to return to his starting point. To see this, 
assume that p and c are the same for all n methods and q = 1-p is 
very nearly equal 1. Then the cost of an ordering j = j1...jn, where j 
is a permutation of the first n natural numbers is 

For all j, the differences are calculated and the maximal one 
selected in time o(n) by the algorithm described next. 

T h e A l g o r i t h m 
The algorithm in Figure 1 is written in SIMULA as the class, 

method_ordering. There are n methods stored in the array m. 
Each method has the defined attributes id (a method identifier) 
and p, c, and d as described above. The derived attributes of a 
method are q, e. and phi, where phi = p/e. The procedure, 
sort_on_phi, is not shown explicitly; it may be any sorting algo­
rithm that orders m on nonincreasing values of phi in time 
o(n log n). 

If order is applied to the numerical example above, these steps 
occur. 

1. The methods are sorted into the order {321} by their 
values. 

2. Two iterations are performed with the result that 
dif = .076 when j - 2 and dil - -.25 when \ = 1. These 
iterations represent, respectively, the ordenngs {312} 
and {213}. 

3. Since the maximal difference occurs when j = 2 and is 
positive, m is rearranged into the optimal ordering 
{312}. 

C o n c l u s i o n 
It is noted above that the transitivity property of the pairwise 

preference relation is lost in the generalized problem. Further, the 
simple insertion property is lost too. In the original problem, a new 
method could be evaluated separately, i.e., is calculated 
and does not depend on what other methods exist, then the new 
methdo* is inserted into the existing optimal ordering of other 
methods so that p values are nonincreasing. The new ordering is 
then known to be optimal. In the new problem, this is not possible 
because the current optimal ordering may have an arbitrary 
method as the final method. 

The reason that both transitivity and the simple insertion 
•property are lost is easy to see — the expected cost of a method 
depends on its place in the ordering: If a method is in a nonfinal 
position, its cost is ej but if it is the final method, its cost is c. 


