
A W R I N K L E ON S A T I S F I C I N G S E A R C H PROBLEMS1

Jeffrey A. Barnett and Don Cohen
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, California 90291

A b s t r a c t
The problem of optimally ordering the execution of independent

disjuncts is explored. Only a single answer is sought, not neces­
sarily the best one. By definition, this is called satisfying search.
Since the disjuncts are independent, the total combined probabil­
ity that a solution is found does not depend on the execution or­
der. However, the ordering does affect the total expected execu­
tion time because execution ceases as soon as any solution is
discovered. Therefore, the optimal ordering is the one that min­
imizes the total expected work. The new result is an algorithm to
find this optimal ordering when the effects of executing a disjunct
must be undone before another one can be tried. The algorithm is
shown to have time complexity 0(n log n), where n is the number
of disjuncts. This is the same complexity as for the original
problem where undo times are ignored.

I n t r o d u c t i o n
Many investigators have examined problems of satisficing

search: try the available methods one at a time until one of them
satisfies the stated criteria, then stop. The objective is to find a
method ordering with the least expected cost to solve the
problem. Typically, only the probability of success and the ex­
pected cost are known for each method.

Method i is pairwise preferred to method j if, given only these
two methods, it is less expensive to try i first. Pairwise preference
is transitive. Therefore, if the optimal ordering of n methods is
m1m2....mn and mn+1 is added, it is merely inserted somewhere in

original ordering — all original methods stay in the same posi­
tion relative to one another.

Below, the original problem is generalized: Associated with
each method is a cost that must be paid, after trying the method, if
another method is to be used. For example, the cost may be the
time to undo the changes to the problem-solving state so that
another method can be executed in the proper context.

The pairwise preference relation is no longer transitive and the
simple insertion scheme is lost for the generalized problem.
However, the criteria for optimal ordering is straightforward to
derive. An algorithm that finds the optimal ordering is given, and it
is shown to be of the same time complexity as the one for the
original problem, namely o(n log n).

1This research is supported by the Defense Advanced Research Projects
Agency under Contract No. MDA903 81 C 0335. Views and conclusions contained
in this report are the authors' and should not be interpreted as representing the
official opinion or policy of DARPA, the U.S. Government, or any person or agency
connected with them.

T h e O r i g i n a l P r o b l e m
A set of methods is available, each of which has the potential to

solve the same given problem. The methods can be applied to the
problem in any order; however, they may only be tried one at a
time. If one of the methods solves the problem, the remaining
untried methods need not be used. In other words, only one solu­
tion is desired or necessary, and there is no interest in extra solu­
tions nor any other results that might be produced by method ex­
ecution.

The usual statement of problems in this class assumes that the
probability that a particular method is successful and the execu­
tion cost of the method are independent of the order of execution
and whether or not any other method is successful. Without this
independence assumption, there is no general optimal ordering
because the tradeoff between higher probability of success and
lower expected cost is an application-dependent issue; the most
general result possible then, is a partial ordering for method ex­
ecution. However, with the independence assumption it follows
that the total probability that at least one method will find a solu­
tion is independent of the order in which the methods are tried.
Therefore, the residual problem is to determine the ordering with
least expected cost.

A typical example of this class is the following: Let p be the
probability that method i solves the stated problem and define
q = l-p.. Further, let c. be the expected cost of trying method i.
For example, c = p.s + qu. where s is the expected cost when
successful and u is the expected cost when unsuccessful. What
is the best order in which to apply a given set of methods to find a
solution with the least expected cost?

The answer is simple:2 Define p. = p /c.. Apply first the method
with largest p; if it fails, try the method with the next largest p, etc.
The order of application among methods with the same p value is
immaterial to the total expected cost of finding a solution.

Two features of this result are noteworthy. First, a merit score
(namely p. = p./c) can be calculated for a method independent of
what other methods exist. Thus, if a new method becomes avail­
able, it can be evaluated separately and inserted into the current
ordering of previously available methods with the assurance that
the new ordering is optimal. Second, as a consequence, the pair-
wise preference ordering is transitive: Method i is preferred to
method j if, given only methods i and j, the expected cost of trying i

See Simon, H. A., and J. B Kadane, "Optimal Problem-Solving Search: All-or-
None Solutions," Artificial Intelligence 6 (1975), 235-247 for this and other related
results.

J. Barnett and D. Cohen 775

776 J. Barnett and D. Cohen

Another possible generalization of this class of ordering
problems suggests itself; suppose the detoxification time between
method i and method j is d.., i.e., d depends upon both the preced­
ing and succeeding methods. Now the computation of the optimal
ordering becomes at least as hard as the version of the traveling
salesman problem where the salesman must visit each city once
but does not need to return to his starting point. To see this,
assume that p and c are the same for all n methods and q = 1-p is
very nearly equal 1. Then the cost of an ordering j = j1...jn, where j
is a permutation of the first n natural numbers is

For all j, the differences are calculated and the maximal one
selected in time o(n) by the algorithm described next.

T h e A l g o r i t h m
The algorithm in Figure 1 is written in SIMULA as the class,

method_ordering. There are n methods stored in the array m.
Each method has the defined attributes id (a method identifier)
and p, c, and d as described above. The derived attributes of a
method are q, e. and phi, where phi = p/e. The procedure,
sort_on_phi, is not shown explicitly; it may be any sorting algo­
rithm that orders m on nonincreasing values of phi in time
o(n log n).

If order is applied to the numerical example above, these steps
occur.

1. The methods are sorted into the order {321} by their
values.

2. Two iterations are performed with the result that
dif = .076 when j - 2 and dil - -.25 when \ = 1. These
iterations represent, respectively, the ordenngs {312}
and {213}.

3. Since the maximal difference occurs when j = 2 and is
positive, m is rearranged into the optimal ordering
{312}.

C o n c l u s i o n
It is noted above that the transitivity property of the pairwise

preference relation is lost in the generalized problem. Further, the
simple insertion property is lost too. In the original problem, a new
method could be evaluated separately, i.e., is calculated
and does not depend on what other methods exist, then the new
methdo* is inserted into the existing optimal ordering of other
methods so that p values are nonincreasing. The new ordering is
then known to be optimal. In the new problem, this is not possible
because the current optimal ordering may have an arbitrary
method as the final method.

The reason that both transitivity and the simple insertion
•property are lost is easy to see — the expected cost of a method
depends on its place in the ordering: If a method is in a nonfinal
position, its cost is ej but if it is the final method, its cost is c.

