
T h e I n te l l i gen t C h a n n e l : A Scheme F o r Resu l t S h a r i n g i n Log ic P r o g r a m s

Simon Kaslf and Jack Mlnker
University of Maryland

1 . I n t r o d u c t i o n

The separation of logic and control In logic pro­
grams allows the programmer to write programs whose
execution Is determined by the Interpreter. This charac­
teristic of logic programs spurred research towards
diversifying the means for controlling the execution of
logic programs, and towards understanding and explor­
ing the value of parallelism In logic programming.
Much of these efforts belong to the study of A N D / O R -
parallellsm, I.e., parallel execution of
conjunctive/disjunctive goals respectively.

A brute force approach to AND/OR-paral le l lsm,
I.e., executing every possible subgoal In a conjunctive
goal has two major drawbacks: combinatorial explosion
of processes and the need for many active binding
environments. The latter arises due to the Interaction of
shared variables In conjunctive goals.

We propose a scheme to alleviate the above
difficulties. For simplici ty, we demonstrate our approach
w i th examples where atoms share a single variable. The
approach Is applicable to Horn-clause logic programs [1].

2 . A M o d e l f o r A N D / O R P a r a l l e l i s m

We first Introduce a model that serves as a unify­
ing basis for constructing various schemes for parallel
execution of logic programs, (see [1] for details.

OR-nodes are created when a conjunctive goal of n
atoms (n > l) Is split Into n subgoals, that may be exe­
cuted In parallel. When such OR-nodes are created as
descendants of an AND-node, a new environment Is
created at each of the newly created sons. The environ­
ment of an OR-node Is a set of variable templates vi ,
where each variable template Is a pair:

vt Is a new private variable Id, ini, Is the location of the
current Instantiation of the variable vi, and outi Is the
location where the partial bindings for vt are stored.

The environment of AND-node which Is the direct
ancestor of the new OR-nodes Is modified w i th an equa­
t ion:

where v i -s are all the newly created variables (Fig. l.a).
The functional semantics of UNIF Is that of determining
If the bindings for the v,-s unify. The communication

among conjunctive nodes Is determined using the pro­
cedural specification of UNIF .

AND-nodes are created as a result of a successful
unification of a goal represented as an OR-node and
some procedure head in the program.

Analogously to OR-nodes, the environment of
AND-nodes is a set of variable templates. Let v be some
variable that occurred in an OR-node a, and let
t1 . . . , tn be the partial bindings for v and α obtained
by creating all possible sons of a. We add the equation

to the environment of α (Fig. l .b). MERGE performs a
set union of the bindings to the variable v. As before In
the case of U N I F , the operational specification of pro­
cedure MERGE Is left unspecified. MERGE-UNIF equa­
tions allow to separate the process of
resolution/reduction from the process of obtaining the
bindings for shared variables. This separation of process
control (l iteral sequencing) and communication control
(management of bindings) allows the Interpreter to
define various communication strategies among conjunc­
tive goals [l] . In particular, the communication struc­
ture may be determined by the setting of the variable
templates In the environments of an A N D / O R tree, and
enforcing lazy/eager evaluation of the equations.

3 . I n t e l l i g e n t C h a n n e l

Let P(x),Q(x) be an AND-node, and let P(x) and
Q(x) be Its two OR-sons. If 't' Is a binding for P(x),Q(x)
then there exists at least two paths I(P,P') and I(Q,Q')
such that I(P,P') and I(Q,Q') are V-compat lb le, i.e.,
the composed substitut ion along each path is unlflable
w i th ' t ' for x.

Thus, It Is possible to pursue compatible computa­
tions of P and Q In parallel unt i l they both reach the
first OR-node where a decision must be made as to
which path to pursue next. At the conflict point a bind­
ing Is performed at each of the parallel processes to Its
own private copy of the shared AND-varlable x. This
binding is reported to a channel process assigned to a
shared variable. A l l newly created nodes are suspended
unt i l a decision is made as to which part ial OR-binding
to pursue. The selection criterion is based on the com­
pat ib i l i ty of all parallel OR-computations that or i ­
ginated from the conjunctive goals w i th the shared var i -

30 S. Kasif and J. Minker

able. We refer to partial bindings so obtained as can­
didate bindings. Once a candidate binding is chosen, only
those suspended nodes whose execution is consistent w i th
this binding are fired. When some part ial binding is
established to be a failure binding, this Information is
propagated up, and all the computations contingent on
this part ial binding are terminated.

For example, consider the logic program below for
the goal

A parallel execution of the program is given in F ig. 1. In
F ig. l .b I(P,P1) Is compatible w i th I(Q,Q1), I(Q,Q2) and
I(Q,Q3). The path I(P,P2) is compatible w i th I(Q,Q1),
and I(P,P3) is compatible w i th I(Q,Q3) . The Interpreter
selects 'a ' as a candidate binding for x. In F ig. l.c 'a '
was recognized to be a failure for P and subsequently for

, Similarly, 'c' Is chosen for execution and Is
marked as a failure binding for As a result all
the computations depending on a/x and c/x are removed
yielding the snapshot In Fig. l . d . Final ly, the binding
'b'/x is selected yielding a successful parallel search,
F ig. I.e.

The evident benefits that stem from maintaining
compatibi l i ty of parallel executions of OR-paths are not
Immediately lmplementable w i th in the framework of
existing control constructs. Below we present an algo­
r i thm, termed Intell igent Channel that com­
bines AND-paral lel ism w i th backtracking on part ial
bindings. I C - l is based on a new control construct,
SELECT BINDING that restricts the parallel execution
of mult iple branches in an A N D / O R tree to the branches
compatible w i t h the selected binding.

A l g o r i t h m I n t e l l i g e n t C h a n n e l 1 (I C - l)

To clarify the presentation of the algori thm we
present a semi-synchronous algorithm In which expan­
sions of an OR-node are obtained simultaneously.

I C - l consists of three parts: OR/AND-node execu­
t ion and Channel Process execution. The creation of
A N D / O R nodes is as described in Section 2.
OR/AND-node executions extend the creation of
AND/OR-nodes w i t h communication among conjunctive
goals, and w i t h pruning branches based on failure bind­
ings. The Channel Process is delegated to the solution of
MERGE-UNEF equations accumulated during a part ial
execution of a program and to the selection of candidate
bindings. I C - l follows:

O R - n o d e execu t i on

1. If the node is nul l or solved report success to
the parent and terminate. Otherwise:

2. If the node is enabled, expand It by generating
A L L possible successors. The enabling criteria for
A N D / O R nodes is the selection of a candidate binding
which is consistent w i th the composed substi tut ion used
to derive the node. The successors are generated as

usual, by unifying the node w i th the set of axioms In the
program. However, the instantiat ion of free variables in
the node is determined by the candidate binding selected
by the C H A N N E L assigned to the free variable, and is
obtained by accessing the "ln" field of the variable tem­
plate. This is how communication takes place among
conjunctive goals

3. Suspend ail newly created sons unt i l the Channel
process selects a candidate binding which is consistent
w i th the composed substi tut ion used to generate the new
sons.

4. Report A L L newly computed part ial bindings to
the Channel Process; I.e., all partial bindings obtained
by a subst i tut ion of the form: are reported to the
C H A N N E L x. For simplici ty, in the first version we
insisted on mutual exclusion in Step 4 among all active
AND-node processes, I.e., only one AND-node at a t ime
communicates Its part ial bindings to the C H A N N E L .

A N D - n o d e execu t i on

1. If a node is enabled, create all its OR-sons, other­
wise, suspend. Sons of an AND-node are created by
spl i t t ing the conjunctive goal associated wi th the node
into Independent subgoals that Interface through the
U N I F equation.

2. For each new shared variable x create a shared
channel data-structure denoted as C H A N N E L x, and a
Channel process that monitors the nondetermlnlstlc exe­
cution of its sons. This is achieved by setting the vari­
able template of for all such
variables v t that emerged from the variable x. Thus, all
v i s that emerge from x share the same current Instan­
t ia t ion.

3. Propagate up final/failure bindings for the node.
C h a n n e l Process E x e c u t i o n

1. For each C H A N N E L check newly computed par­
t ia l bindings against the set of candidate-bindings, thus,
performing a part ial solution of the MERGE-UNIF equa­
tions.

2. Whenever a failure binding is discovered, ter­
minate the failure paths.

3. Whenever the set of candidate bindings is empty,
SELECT a new candidate binding and activate all
AND-nodes suspended on this binding.

A L G O R I T H M I C - l

Assign goal to AND-process and enable I t .

Repeat unt i l the goal is solved:

Execute all active AND-node processes.

Execute all active OR-node processes.

Execute all Channel processes.

4 . D iscuss ion

The major advantages of our approach are that only
compatible computational paths are executed simultane­
ously, I.e., several branches of an A N D / O R tree are
explored In parallel while maintaining only one active

S. Kasif and J. Minker 31

environment; The degree of parallelism may be moni­
tored by modifying Step 1 in the Channel process to
select mult iple bindings. The combinatorial explosion
that arises as a result of expanding the complete
A N D / O R tree is reduced, and many useless computa­
tions are eliminated.
Step 1 in the Channel Process is the key to complete­
ness and efficiency of 1C-1. Analogous to procedure
Select node in a conventional logic programming inter­
preter [2], select b i n d i n g is the control component of
1C-1. It is not difficult to verify that if we select bind­
ings in a breadth-first fashion, IC-1 is a complete search

strategy. However, If a "depth- f l rs f - l l ke selection stra­
tegy Is used completeness is not guaranteed.

References

[1] Kasif, S., Analysis of Parallelism in Logic Pro­
grams, Ph.D. Thesis, Computer Science
Dept., Unlv.of Md. , 1984.

[2] Kowalskl , R. A., Logic for Problem Solving,
North-Hol land, 1979.

(e) C a n d i d a t e b i n d i n g = 'b '

F i g u r e 1 : I n t e l l i g e n t C h a n n e l E x e c u t i o n .

