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Abstract

Counterfactuals arc a form of commonsense non-mo-
notonic inference that has been of long-term interest to
philosophers. In this paper, we begin by describing some
of the impact counterfactuals can be exported to have in
artificial intelligence, and by reviewing briefly some of the
philosophical conclusions which have been drawn about
them. Philosophers have noted that the content of any
particular counterfactual is in part context-dependent; we
present a formal description of counterfactuals that is for-
mally identical to the "possible worlds" interpretation due
to David Lewis and which allows us to encode this context-
dependent information clearly in the choice of a sublan-
guage of the logical language in which we are working.
Finally, we examine the application of our ideas in the do-
main of automated diagnosis of hardware faults.

§1. Introduction

A counter factual is a statement such as, "if p, then q"
where p is expected to be false. Typical examples are, "If
the electricity hadn't failed, dinner would have been ready
on time," or "If the bedroom door were open, | could get
the widget | left in there."

From the point of view of logical semantics, counter-
factuals arc always true. Thin is in contrast with our in-
tuitive understanding of their content, which might well
accept the statements in the last paragraph while reject-
ing, for example, "If the power hadn't failed, pigs would
fly."

Indeed, the distinction between true and false coun-
terfactuals seems to underly much of our use of knowledge.
When planning the solution to a complicated problem, we
reduce it to subproblems by realizing that we can prove a
counterfactual of the form, "If only thus-and-so were true,
T would be able to solve the original problem." The origi-
nal problem reduces to proving the couuterfactual (in some
suitable sense) and to arranging for thus-and-so to be true.

Consider the problem of crossing a river if the only
boat available has no oars. The countcrfactual, "If | had
some oars, I'd be able to cross the river," suggests replac-
ing the original problem with that of finding something
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with which to row. This is a fairly general phenomenon:
counterfactuals suggest goal regressions.

Counterfactuals also enable us to describe why plans
fail. The example we have already mentioned, "If the
electricity hadn't failed, dinner would have been ready on
time," is typical. The electricity did fail. But in spite of
its lack of logical content, the statement does explain why
the soup isn't ready.

Dave Smith has pointed out that additional applica-
tions can be found in the area of design. Suppose that a
machine contains an on-line representation of the design
of a complex device. Questions of the form, "If | were to
remove the pullup resistor connected to the output of the
OR gate, would the output of the circuit change?" are
countcrfactual in nature.

Diagnosis is similar. The couuterfactual, "If the de-
vice fails in this fashion, the AND gate is not functioning,"
allows us to reason directly from the intended description of
the design of the device in question, as opposed to reason-
ing from a description that explicitly allows for the failure
of some component, as in [2]. We will also see that the
nature of countcrfactual implication is also such as to sub-
sume the minimal fault assumption.

Finally, counterfactuals will necessarily play a part in
natural language understanding. The extent to which they
pervade our communications makes it inevitable that we
will eventually need a formal description of them.

There is also a very loose connection between counter-
factuals and causality. In the planning examples we have
given, the countcrfactual "if p, then q@" corresponds to "-ip
is a cause for -q" The electricity failure is the cause of
the lateness of the dinner. The lack of oars prevents us
from crossing the river.

This connection cannot be pushed too far, however.
Suppose that after a MYCIN run [7], we want to know
why the machine asked that a certain clinical test be taken.
The response is that, "If the result had been positive, the
organism would have been rodlike." This is a useful coun-
terfactual, but the causal connection is from the conclusion
to the premise, as opposed to the reverse.

An example where there is no causal connection at all
can be found in [5]. Suppose that Olga attends a certain
party, but that Boris, who is trying to avoid Olga, does
not. If Olga has no similar aversion to Boris, we would
have that, "(Even) if Boris had come, Olga would (still)



have come." Here, the counterfactual describes the lack of
a causal connection.

My aim in this paper is twofold, Firstly, 1 would like
to describe briefly some of the existing philosophical work
that has been done on counterfactuals, although with an
eye toward eventual applications in artificial intelligence.
Secondly, 1 will present a formal description of counterfac-
tuals that is precise enough to admit a machine implemen-
tation.

§2. Properties of counterfactuals

In his excellent book on counterfactuals, Lewis [5] clar-
ifies the distinction between counterfactuals and standard
logical implications by listing some of the properties that
distinguish them. The results of this section are not new,
but may be unfamiliar to an Al audience. A fairly com-
plete treatment of this topic can also be found in [8].

Contraposition is  not necessarily valid for  counter/ac-
tuals. 1If we denote the counterfactual, "if p, then q" by
## > ¢, we cannot conclude +¢ > -p from p > ¢. Returning
to our power failure example, it may well be the case that
if the power hadn't failed, dinner would have been on time:

The power didn't fail =+ dinner was on time.
It does not follow from this that the electricity would have
failed if dinner had been late—there may well be an alter-
native possible cause, such as tardiness on the part of the
chef.

Counterfactuals arc  not necessarily  transitive. From
rP>q and § > r we cannot necessarily conclude p > r.
The standard example is due to Stalnaker [9j:

If . Edgar Hoover had been bom a Russian, then he
would have been a Communist, and

If he had been a Communistt he would have been a
traitor
do not together imply

/I' Hoover had been horn a Russian, he would have
been a traitor,

Finally, counterfactuals arc non-mono tonic. Given
P > r, we cannot necessarily conclude pA g > r. In fact,
it is possible to have p > and pAg ™> -T2 The two state-
ments, "If the electricity hadn't failed, dinner would have
been ready on time," and "If the electricity hadn't failed,
but 1 had been elected president, dinner would have been
late," are completely consistent.

Glymour and Thomason |'ll seem to infer from this
last observation that the study of non-monotonic inference
generally can be subsumed to some extent under an inves-
tigation of counterfactuals, but in light of the breadth of
the non-monotonic nature of commonsense reasoning (the
frame problem, default rides, etc.), this seems to me to
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miss the mark. Counterfactuals in fact seem to be a dis-
tinct type of non-monotonic reasoning.

§3. Possible worlds

Following an idea of Stainaker's [9], most modern in-
vestigations of counterfactuals arc based on the notion of
possible worlds. Loosely speaking, we analyze a counter-
factual p =~ 1y by considering the "possible world" that is as
similar to our (real) world as possible, given that p is true
in it. The counterfactual is true or not depending upon
whether or not g holds in this world.

Lewis [5] has observed that this "most similar possible
world" may not be unique. He defines a counterfactual to
be true if and only if it holds uniformly in the most similar
possible worlds in which the premise holds.

This distinction is apparent if we consider the law of
the counterfactual excluded middle:

p>qtvip> ).

In Stalnaker's view, either g or - g will hold in the nearest
possible world where p holds, so that the disjunction above
will be valid. Lewis points out that this may not be the
case by examining the counterfactuals, "If Bizet and Verdi

had been compatriots, Bizet would have been Italian," and,
"If Bizet and Verdi had been compatriots, Bizet would not
have been lItalian." Both of these appear to be invalid.

It is possible to understand the discussion of section
2 in terms of possible worlds; we will discuss only the non-
monotonic nature of counterfactuals here. The other two
properties described earlier arc similar.

The basic reason that p > v and pA g > ~f are con-
sistent is that worlds where A ¢ hold may be much less
similar to our own than worlds where p alone holds. It is
entirely possible that * holds uniformly in the nearest of
the p-worlds while - holds uniformly in the (more dis-
tant) nearest of the p A (/-worlds. It is also possible that r
holds in some of the nearest of the pA g-worlds while -

holds in others. In this case we would have only # > * and
~{pAqr)

Returning to our power failure example, the nearest
possible worlds in which the power remained on are worlds
in which dinner was ready on time. In the nearest of the
(much) more distant worlds where 1 was elected president,
dinner was late. In still more distant worlds, such as those
where the power remained on and | was elected president,
but no one bothered to inform me, dinner will once again
be prompt.

§4. Framework

From an Al perspective, the difficulty with the pos-
sible worlds interpretation of counterfactuals is that the

notion of "similarity" is too vaguely defined. Our main
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intention in this paper is to present a sharper definition of
it.

Intuitively, there are at least two measures of the sim-
ilarity, or lack thereof, between different possible worlds.
These correspond loosely to the number of propositions
whose truth values change and to the relative importance
of the propositions involved.

The latter is the most difficult to understand in any
formal sense, since (as we will see in the next section) it is
fundamentally dependent upon context. In fact, we will be
able to do little more than to provide a way to encode in-
formation concerning the relative importance of the propo-
sitions being considered. It is of some interest to note that
the scheme we will present can be used to define a notion
of similarity that is unchanged from one possible world to
another.

The other source of similarity is more syntactic. If the
truth value of a proposition changes unnecessarily, in the
sense that the possible world without the change is con-
sistent, the possible world which incorporates the change
should be deemed "more distant" from our own than the
one which doesn't.

In order to understand this, we will work in a logical
system that allows us to assign to a proposition the truth
value "unknown" (u) in addition to the more usual ones of
"true" (t) or "false" (/). We therefore let T = {¢, f,u} be
the set of allowable truth values, take L to be the set of
sentences in our language, and define a ftruth function to
be a mapping

¢: LT

Intuitively, ¢{p) = u if we are uncertain as to the truth or
falsity of p.

We will say that a truth function > is an extension
of a truth function #, writing ¢ < #, if, for all p € L,
¢{p) = ¥(p} or ¥(p) = u. We will call <f> a simple extension
if #{p) £ ¥(p) for only a single p € L.

We will also assume that we have some way of deter-
mining whether or not a truth function is consistent. In
the predicate calculus case upon which we are modelling
our analysis, however, the truth value of a compound sen-
tence is defined recursively in terms of the truth values of
its components; furthermore, the definition only applies if
the truth values of these components are t or / (as opposed
to it). The (consistent) assignment of the truth values t or
/ to all of the sentences in L constitutes an interpretation
forL.

This leads us to define a truth function ¢ to be an
interpretation  if ¢(p) # u for all p € L. If a truth function
% is an interpretation that is an extension of the truth
function ¢, we will say that ¥ is a complete extension of
¢$. Assuming that consistency is defined as a primitive
for interpretations, we will say that a truth function ¢ is

consistent  iff¢f has a consistent complete extension.-

Here are some examples. In the first two cases, is
a consistent complete extension of ¢.. Since ¢ in the third
case has no consistent complete extension, it is inconsis-
tent.

r [dz) wle) | =) w(z) | ¢a) #(2)

A bt t ! / / ]

B f f t ¢t forf) u ?
AAB f I N f t t
Lemma 1. No extension of an inconsistent truth function

is consistent.

Proof. The consistent complete extension of such an ex-
tension would be a consistent complete extension of the
original (inconsistent) truth function. a

Equivalently, any truth function with a consistent exten-
sion is consistent.

For a consistenl truth funclion ¢, the closure of ¢
will be the maximally extended iruth function ¢ such that
every consistenl commplete extension of ¢ is an extension
of ¢. 'The closure of ¢ will be denoted ci(). If ¢ =
cl(¢), ¢ will be called closed; it is not hard to see that
this corresponds precisely to logical closure.

In the example below, ¢, and $ are the only consis-
tent complete extensiona of ¢:

I ¢ -1 Pz Cl(ﬁb)
A t i i i
B u ! f u
AV ER u ¢ t ¢

Lemma 2. cl¢} < ¢.

Proof. Let {#,} be the consistent complete extensions of
$. T hep, <¢ ralli, so thatel(d} < ¢. a

Related to the notion of closure is that of reduction:
a truth function ¢ will be called reduced if all of its simple
extensions arc consistent. The idea is that a simple exten-
sion of ¢h corresponds to the acquisition of more knowledge
about some specific proposition; if every such extension
is consistent, the original truth function must have been
minimal in the sense that it had no extensions which were
"necessary" consequences of it.

Lemma 3. A consistent truth  function  is reduced if and

only if it closed.

Proof. For any p € L, if ¢{p} = u and & is reduced,
the truth function obtained by replacing ¢(p} with t (re-
spectively /) is consistent and therefore has a consistent



complefe exlension which we will denote ¢, {respectively
bpp) Since ¢p{p) == ¢ and d,y{p} = [, cl(@)(p) = u; it
follows thal ¢ is closed if it is reduced.

The reverse implication is similar. o]

§5. Similarity

The terminology introduced in the last section allows
us to make precise some of the ideas in section 3: possible
worlds correspond to consistent interpretations, and sets
of possible worlds to consistent truth functions.

The difficulty with this is that we still lack a for-
mal notion of similarity. Part of the problem is context-
dependent, as we can see from the pair of counterfactuals

If Caesar had been in command [in Korea], he would

have used the atom bomb
and

If Caesar had been in command, he would have used

catapults.

This example is Quinc's [6]. Either counterfactual may well
be true (although not both); if the first, Caesar's character
is important to our notion of similarity; if the second, it is
the tools he had available which arc relevant.

It is clearly impossible to select between these two
counterfactuals in advance; the best we can do is to present
a method for encoding in our semantic machinery the in-
formation leading to the choice. In order to do this, let
V be a subset of L, and suppose that ¢ is a fixed truth
function defined on L — //. We can now define a truth
function # on V to be consistent if and only if the truth
function

¢'(P) — { '16(”)- forpe L::
#(p), forp¢L
is consistent. The effect of this is to fix the truth values
outside of L', so that any consistent truth function on V
must be consistent with them.

In the above example, if V includes "Caesar was a
ruthless military leader," but not, "Caesar's military tools
were those of the Roman Empire at its height," we will
have to accept Caesar's use of catapults without question,
regardless of the weapons available at the time of the en-
gagement, resulting in the validity of the counterfactual
which concludes that he would have used catapults. If the
situation were reversed, the other counterfactual would
be valid. If V includes both of the statements describ-
ing Caesar, the construction we will present will ambigu-
ously select either of the counterfactuals, while if both of
the descriptions arc relegated to L, both counterfactuals
will be vacuously true because no truth function > with
¢(Caesar in command) = t will have a consistent exten-
sion to all of L.

Given the choice of a (possibly restricted) language
/1, let p be a sentence in V and ¢ a closed truth function
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wilh ¢(p) = f. We will investigate the consequences of the
counterfactual premise p be delining a new truth Funclion,
to be denoted ¢, and corresponding to ¢ with the truth
value ul p replaced by .

Througheut this section, we will follow the Caesarian
example carefully,. We have the [ollowing propositions in
L'

- Caesar in command in Korea

= Caesar was ruthless

= Caesar's tools were those of the Romans

K
r
R
a = the atom bomb was used in Korea

¢ == catapults were used in Korea,

In L are the axions:

Kar—oa
KAR ¢
ﬁ(anc].

The last of these is equivalent to ~(# Ar A R). Our initial
truth assignment is given by:

af ke om
e B A

Of interest to us is the trath lunclion ¢)yc; what if Cacuar
had been in command in Korea?

The general difficalty is that simply changing ¢(p) to
t may well produce an inconsistent iruth [unclion. We
begin therefore by replacing #(p) not wiltl ¢, but with u.
Thiy truth function ¢’ must be consistent (since ¢ is an
exiension of it), bul need not be closed.

| ¢ ¢ d@)
K ! u ]
r ¢ 14 ¢
R ¢ ¢ H
8 I /
¢ T | /

Assuine now that there is at least one reduced truth
function ¥ of which ¢’ is an extension. (We can genearlly
take for 3 the closure of the truth function which assigns u
te every p ¢ L.) The set of all such 14’s is partially ordered
undier exlension; let ¢ be a minimal element of it.
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| ¢ ¢  dlypica) &7 4
K f u U u u
r t t i ] u
R ¢ 4 u u t
a f Fi N u f
¢ f I u f u

The result of replacing ¢"(p) with ¢ is necessarily con-
sistent, since ¢” is reduced and ¢”(p) — u initially. Let &
be the truth fuznction obtained by making this replacement,
and take §{, to be cl(#). We also define ¢(p > g) - &,.(g).

] 8 dlx $7 8 Pla

K v t v t

r t ot t v w f
R u u f L t

a U u t f

¢ I f 7 v u f
K>a t I
K»>c¢ f t

The construction we have given works through the
construction of the “intermediate” truth function ¢". This
ig in somec sense a set of the most similar possible worlds
in which we might have 4(p) being either truc or false.
The reason we have done this is because it seems to be
technically casier to define similarity for a world of which
ours is an extension (¢ in the above construction) than
for one which is not dircctly comparable with it (a3 ¢ with
#{p) replaced by ¢ would be).

Taving constructed siniilar worlds where p might hold,
it Is straightforward to invesligale Lle consequences if we
adguine Lhat it does hold. This is the content of our taking
&|p Lo be the closure of ¢ with ¢"(p) replaced by t.

The choice of truth funciion ¢” corresponds to choos-
ing a subset of Lhe possible worlds in which #(p) = t. In
our military exammple, assuning Cacsar to be in command
in Kerea required onr abandoning the truth of vither r or
It, amnd the choice of which Lo discard corresponded to our
choice of ¢".

An alternative would be to assume that the worlds
where we abandon one description are just as similar to our
own as those in which we abandon another. Lewis might
well make this choice; il corresponds to delining ¢(p > g)
ta be ¢ or [ i it takes this value independent of Lhe choice
of ¢", and lo be u otherwise.

Theorem 4. With the above definition, our construction
is formally identical to Lewis* possible world interpreta-
tion.

Proof. See [3]. a

§6. Example: diagnosis

6.1 Setting

Genesercth has proposed [2] that it is possible for ma-
chines to be used in automated diagnosis, provided that the
machines are given both a design for the device in ques-
tion, and the ability to manipulate the device by varying
its inputs and observing the results. He investigates the
diagnosis of a full adder (top of next page) in considerable
detail.

Genesereth describes the design of the full adder in a
variant of prefix predicate calculus. Quoting him:

SD1:  (XORG XI)
SD2:  (XORG X2)
SD3:  (ANDG A1)
SD4:  (ANDG A2)
SD5:  (ORG 01)

SD6:  (CONN (IN 1 F1) (IN 1 X1))
SD7:  (CONN (IN 1 FI) (IN 1 Al))
SD8: (CONN (IN 2 FI) (IN 2 X1))
SD9:  (CONN (IN 2 FI) (IN 2 A1))
SD10: (CONN (IN 3 FI) (IN 2 X2))
SD11: (CONN (IN 3 FI) (IN 1 A2))

SD12: (CONN (OUT 1 X1) (IN 1 X2))

SD13: (CONN (OUT 1 X1) (IN 2 A2))

SD14: (CONN (OUT 1 Al) (IN 2 01))

SD15: (CONN (OUT 1 A2) (IN 1 01))

SD16: (CONN (OUT 1 X2) (OUT 1 FI))

SD17: (CONN (OUT 1 01) (OUT 2 Fl))
These axioms describe the structural description of the full
adder. SD1, for example, states that X1 is an exclusive-or
gate. SD 13 states that the first output of X1 is connected
to the second input of A2.

Cenesercth also states in a similar form results de-
scribing the behavior of the various sorts of gates, and de-
scribing what it means for two points in the circuit to be
connected. Using these additional axioms, it is possible to
prove that if, for example, the first input to the full adder
is on while the other two arc off, the first output should
be on while the second should be off.

6.2 Diagnosis using predicate calculus

The situation of interest, of course, is that in which
the outputs of the adder arc not as predicted by the design.
Gcnesercth assumes that we have:

AC1: (VAL (IN 1 Fl) ON)
AC2: (VAL (IN 2 FI) OFF)
AC3: (VAL (IN 3 FI) OFF)

OBI: (VAL (OUT 1 FI) OFF)
0B2: (VAL (OUT 2 FI) OFF)
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A full adder is essentially a one bit adder with carry in and carry out, and it is
usually used as one of n elements in an n bit adder. A graphical representation
of its design is given [above]. It has three inputs and two outputs and consists of
two "xor" gates (X1 and X2), two "and" gates (Al and A2), and an "or" gate
(Ol) ... In normal operation, the first output (the "sum" line) is "on" if and

only if an odd number of inputs is

"o

n"; the second output (the "carry" line) is

"on" if and only if at least two inputs are "on". [4]

In other words, the values of the three inputs to the adder
are as described at the end of the last subsection, but both
of the outputs are off.

The observed behavior characterized by OB1 OB2 is
inconsistent with the design given by SD1 SD17 and the
inputs AC1-AC3. Diagnosis is a matter of resolving this
inconsistency.

To do so using predicate calculus, Gcnesereth assumes
(correctly!) that the device in question does not satisfy
the design description given earlier, but instead satisfies
some weaker "device assumptions”. In the example we are
considering, he assumes that:

(1) The connections are all as described in the design, and
(2) At most one of the gates is broken (the single fault
assumption).

These device assumptions can be encoded by replacing the

structural description axioms SD1-SD5 with axioms such

as:

(IF (NOT (XORG X1)) (AND (XORG X2) (ANDG Al)

(ANDG A2) (ORG 01)))
These new axioms are consistent with the observed

behavior of the adder, and lead to the conclusions that

(OR (NOT (XORG X1)) (NOT (XORG X2)))  (10)

and
(AND (ANDG Al) (ANDG A2) (ORG Ol). (111

In other words, one of the exclusive-or gates is broken, and
the remaining components arc functioning satisfactorily.

The information about the functionality of the AND and
OR gates is useful because it enables us to generate a test
to determine which of the two exclusivc-or gates is in fact
faulty.

The difficulty with this approach is that it requires us
to generate device assumptions to replace the structural
description SD1-SD17. It is possible that the fatilt(s) in
the device are such that these assumptions are invalid, in
which case the system will be unable to diagnose the device
without a replacement set of device assumptions.

6.3 Diagnosis using counterfactuals

The device assumptions in the last subsection were in-
troduced to encode our belief that the wiring in the adder
was correct, and to enable us to take advantage of the sim-
plifying assumption that only one of the remaining compo-
nents was damaged. Both of these conditions can be recast
naturally in the framework of counterfactuals.

To perform the diagnosis using the methods we have
presented, we will assume the structural description DS 1-
DS17 and the inputs achieved by ACI AC3, and examine
the count erf actual consequences of the observed outputs
OB1-0OB2. There are three possible explanations for the
fault:

(J) One or more of the components is faulty.

(2) The wiring is faulty.

(3) The inputs were not as expected.

We eliminate all but the first from our countcrfactual rea-
soning by including only the component assumptions SD1-
SD5 in our restricted language V. The wiring and input
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assumptions SD6 -SD17 and AC1-AC3 are therefore as-
sumed to be independent of the counterfactual assump-
tions corresponding to the observed misbehavior of the
device.

The conclusion (10) that one of the two exclusive-or
gates must be faulty is in fact a logical consequence of the
behavior of the device:

OB1 AQOD2 — (DR (NOT (XORG X1)) {NOT (XORG X2})).

Meanwhile, because the remaining components need not
be contributing to the observed fault, their continued per-
formance is counterfactually implied by the observed be-
havior:

OB1 A OB2 > (AND {ANDG A1) (ANDG A2) (ORG 01)).

This reappearance of (11) is especially useful. Because
of the non-monotonic nature of countcrfactual reasoning, it
is of course possible that additional observations appended
to the lefthand side of the above equation will invalidate
its conclusion; this will happen whenever the single fault
assumption is violated. In this case, however, rather than
generating a contradiction, the counterfactual analysis will
automatically produce a new diagnosis which once again
involves failure for a minimal set of components.

It is possible, however, for a counterfactual analysis to
suggest a violation of the single fault assumption when one
is not required. If the observed behavior can be explained
either by the failure of a single component, or by the failure
of a pair of different components, both will be proposed.
There is nothing counterintuitive about this, however—it
is quite normal to assume that a group of normally unde-
pendable components has failed before questioning a single
part of proven reliability. In any event, we can if neces-
sary retain the single fault assumption by using it to select
among the possible ¢"*s in the counterfactual construction
itself.

§7. Conclusion

Our aim in this paper has been to present a formal
description of counterfactuals, describing them in terms
of existing logical operators instead of following the usual
practice of developing a "countcrfactual calculus" to de-
scribe their behavior.

The construction we have presented seems to meet this
objective. It has indeed described coun]terfactuals in terms
of existing logical primitives, and reduces to the "possible
worlds" interpretation of counterfactuals that is accepted
by philosophers.

Our construction also distinguishes clearly between
the context dependent and context independent features

of countcrfactual implication. It provides us with a pre-
cise method for selecting those aspects of our world which
are to be considered inviolable even under a counterfac-
tual assumption; having made such a choice, we proceed
to generate possible worlds which respect it.

The biggest difficulty with the approach we have de-
scribed is the rather heavy-handed nature of the choice
described in the last paragraph. Although it is possible
to clearly recognize ambiguities remaining in the analysis
of any particular counterfactual (they correspond to the
choice of " in our construction), we have no method for
choosing consistently between them. In any specific imple-
mentation, it will of course be possible to select a ¢" when
one is needed, but we have not considered the nature of
the formalism that should govern this choice.
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