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Abs t rac t 

Arguments are presented in favor of the answer "yes". 
A quantitative approach which overcomes the usual need 
for a priori probabilities is presented. Some of the practi­
cal advantages of using probabilities in a production sys­
tem are described. 

§1. I n t roduc t i on 

The panel on uncertain reasoning at AAAI-84 con­
sidered the question of whether or not implementations of 
non-monotonic reasoning should be probabilistic. A va­
riety of (generally unsupported) claims were made to the 
effect that probabilities arc unintuitive, that the numbers 
needed arc unavailable, and that the method generally is 
inappropriate. The counterclaims that probabilities are 
intuit ive, available and appropriate were similarly unsup­
ported. 

My intention here is to present some results that deal 
wi th these questions. Let me stress that it is precisely the 
question posed in that last paragraph that interests me: 
Should probabilities be used to implement non-monotonic 
reasoning systems? The easier question of whether proba­
bilities can be used to implement some types of non-mono-
toic reasoning has been answered rather conclusively by 
M Y C I N and its offspring; more difficult questions involv­
ing the nature or definition of probability itself have been 
grappled with by philosophers for centuries, and I am con­
tent to leave them to i t . 

I wi l l attempt to address the issues of whether the 
numbers required by a probabilistic theory can in general 
be made available to a reasoning system, and whether or 
not probabilistic methods arc effective. The first of these 
is principally a theoretical issue, while the second is more 
one of pragmatics. 

§2. A p r i o r i probabi l i t ies 

A standing objection to the use of probabilities in AI 
systems corresponds to the question, "Where do the num­
bers come from?" Bayesian methods require the existence 
of init ial estimates for the probabilities in question, and 
it seems impossible to arrive at these estimates without a 
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great deal of knowledge about the domain being consid­
ered. 

I have a great deal of sympathy wi th this objection. It 
has been pointed out, however, that by considering ranges 
of probabilities instead of specific values, it is possible to 
encode information not only about the strength of our be­
lief in a given proposition, but also about our confidence 
in our estimate of that strength [1,7]. A precise formula­
tion of this observation wil l be the principle result of this 
section. 

When we think of a statement as corresponding not 
to a precise probability but to a range [x,y], we can think 
of y — x as corresponding to the uncertainty we have in our 
probabilistic estimate. Thus a specific range {x} = [x,x] 
implies total confidence in our probabilistic knowledge, 
while the maximal range [0,1] corresponds to total igno­
rance—the statement that a certain probability p lies in 
the range has no informational content at all. 

More generally, a probability range [x,y] wi th 
corresponds to partial knowledge. Furthermore, it is possi­
ble to use Dempster-Shafer theory to combine probabil ity 
ranges of this sort; an application of this to semantic nets 
is described in [4]. 

In order to see how to obtain the ranges from ob­
servational data (or the lack thereof), suppose that the 
probability of some specific default rule is p, although this 
value need not be known to us. Now fix some "gul l ibi l i ty" 

and suppose that we test the default rule ex­
perimentally t times. Then there is some such 
that the probability of our observing no more than tpmin 

successful applications of the default rule among the t t r i ­
als is equal to g. Intuitively, if the "real" probability is p, 
we require that the chance that the observed probabil i ty 
be at least pmin be at least g. Thus if we get the 
extremely cautious approximation ; 

We can define similarly. Having done so, 
if some default rule D has been tested t times wi th 8 suc­
cesses, we can approximate the overall probability to be 
assigned to the rule by s/t, and consider the probabilis­
tic range Conversely, given 
a probability range [x,y] , we can use this expression to 
recover s and t (for g fixed). 

The details of the calculation require us to solve a fa­
miliar problem from probability theory: Given a series of 
t trials in an experiment where the probability of success 
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on each tr ial is p, what is the probabil ity that the observed 
probability of success wi l l be in the range [pmin, Pmax]? 
This problem is discussed in [8], among other places; there 
is no exact solution in closed form, but results can be ob­
tained either by using Tchebychev's approximation or by 
approximating the relevant binomial distribution with a 
Gaussian. Tchebychev's approximation gives 

(1) 

(2) 

If g = 0, we get a probabil ity range of [0, l] independent of 
s and t (not very gullible at all!), as we do if s = t = 0. In 
the large t l imi t , we get the singleton s/t as expected—our 
confidence in our estimate increases as docs the amount of 
data. 

Alternatively, we can use the Gaussian approximation, 
so that we need to solve 

(3) 

To solve the inverse problem (in either case), suppose 
we are given a probabil ity range [x,y]. Then if we set 

inverting (2) gives 

(4) 

§3. Imp lementa t ion issues 

Existing formalisms of non-monotonic reasoning gen­
erally proceed by attempting to determine whether or not 
a default inference wi l l be valid before drawing i t . Thus, 
before concluding that the bird Tweety can fly, we first 
t ry to prove that he can't; if the proof fails, we draw the 
inference that he can. 

There are well known difficulties with this. The first 
is that the problem of proving that Twccty can't fly is only 
semi-decidable, and implementations of this scheme there­
fore tend to be painstakingly slow (at best!). The second is 
that the need to use the appearance of a new datum, such 
as the fact that Twccty is an ostrich, to reverse an earlier 
conclusion requires the introduction of a new formalism, 
such as t ruth maintenance [2]. Probabilities provide a way 
around both of these difficulties by marking the conclusion 
of a proof to indicate that it may be subsequently reversed 
in the presence of stronger contradictory evidence. We are 
not claiming here that they can replace a t ru th mainte­
nance system; it wil l sti l l be necessary to store information 
regarding either the use to which information has been put 
(in a forward-chaining system) or the source from which 
information was obtained (in a backward-chaining one). 

In the presence of an adequate rule for probabilistic 
combination, many of the attractive properties of a reason 
maintenance system can be incorporated into a probabilis­
tic one. When the t ruth value of some conclusion changes 
as a result of the appearance of new evidence, earlier infer­
ences made using this conclusion can be repeated, with the 
change in probability therefore propagating to the results 
that were derived from it. 

3.1 Tags 

Suppose that we are in fact considering ranges of prob­
abilities instead of specific values, and let P be the set of 
all closed subintcrvals of [0,1]. Then there are six natural 
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mappings from P to [0,1], given by: 

Intuit ively, t corresponds to the extent to which a given 
statement is confirmed by the available evidence, and nil 
to the extent to which it is discontinued, mass reflects the 
completeness of our probabilistic information, and unc the 
incompleteness of i t . Finally, poss and poss-not correspond 
to the degrees to which the statement might be true or false 
respectively. 

We wil l refer to these six functions as tags; they pro­
vide a natural and uniform framework in which to consider 
either the truth or falsity of any given proposition, or the 
extent of our knowledge about i t , 

3.2 Use o f p r o b a b i l i t y to l i m i t in ference 

Non-numerical inference techniques must of necessity 
run to completion; there seems to be no way to use quali­
tative information to terminate the inference process. This 
can be avoided if quantitative methods are used. 

There are two ways in which a probabilistic inference 
can be shortened. Suppose that we arc trying to prove 
some proposition p; the first cutoff can be implemented 
by not including in our analysis any inferences which wi l l 
affect the eventual probability of p by Jess than some small 
value C1. For example, it never rains in southern California 
(or at least only very rarely) [6j; if we are trying to show 
that our beach party wil l be a success, we do not need to 
consider rain as a reason for it not to be. 

A second and independent way to shorten a proba­
bilistic inference is to assume that if the probability ex­
ceeds some value c2 (alternatively, if the result of applying 
some tag to the probability range exceeds c2), the infer­
ence is complete. If the All-Star game is being played in 
Los Angeles on the same day as our beach party and we 
have a friend who is giving away tickets to i t , then we are 
probably better off picking another day for the party than 
looking for an esoteric proof that it wi l l be successful after 
al l . 

It is worth considering the effects on the inference pro­
cedure if we select extremal values for c1 or c3. Taking 
c1 = 0 allows allows all relevant information to be con­
sidered, while c2 = 1 ensures that the entire deduction 
wi l l not be stopped early. This combination therefore re­
sults in all attempted derivations running to their eventual 
conclusions as described at the beginning of this section. 

(And as such, is no more efficient than any of the more 
conventional techniques for non-monotonic reasoning.) If 
we select c1 — 1, then only monotonic inferences wi l l be 
considered, while c2 = 0 results in the rather preemptive 
strategy of considering only the first bit of applicable in­
formation. Finally, the combination C1 = c2 = 1 allows us 
to perform standard monotonic reasoning using a proba­
bilistic database. 

3.3 P robab i l i s t i c reso lu t ion 

The inference technique of resolution can be extended 
to deal wi th probabilistic information. Consider the deri­
vation of flies (Twcety) from bird(Tweety) and bird[x) 
flies(x): 

Unifying the above two expressions by substituting Tweety 
for x and resolving the results gives flies(Tweety). 

In general, we wi l l view resolution as the combination 
of expressions of the form 

(5) 

to obtain 

where p and s are either positive literals or conjunctions 
thereof, and r and t are either positive literals or disjunc­
tions thereof. 

Intuitively, if p and s hold, then from the first rule be­
ing resolved in (5), either r holds (in which case the conclu­
sion of the resolution is valid), or q holds, in which case the 
second rule can be applied to conclude that t holds. The 
likelihood of the conclusion being probabilistically valid is 
therefore at least the product of the likelihoods of each of 
the original rides being valid. 

The situation is complicated in the probabilistic case 
by the need to treat negation in a uniform fashion. The 
reason for this is that the probability range assigned to the 
statement bird(x) flies(x) will also contain information 
about the likelihood of a randomly selected bird not be­
ing able to fly—in other words, about the validity of the 
statement bird{x) flies(x). 

Since the bird(x) flies(x) can be rewritten as 
the effect of this is that it is possible 

to resolve pairs in which the same clause appears in each 
conclusion. In general, the the implication 
implies and we can resolve this wi th 
to get It follows that given the pair of rules 
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there wi l l be two contributions to the confirmation of 
given by the product of the confirmation of 

and the disconfirmation of (as above), 
and by the product of the disconfirmation of and 
the confirmation of 

3.4 I m p l e m e n t a t i o n resu l ts 

The ideas described in this paper have been imple­
mented in the expert system building tool MRS at Stan­
ford. We wil l conclude by describing some of the details 
of this implementation. Addit ional details can be found in 
[51. 

MRS [3] is a logic-based expert system building tool. 
It supports a variety of inference methods, including for­
ward- and backward-chaining. Information is currently en­
tered into MRS on two "levels". The meta-level is used 
to store information regarding control of inference or pro­
cedural attachments for the various MRS primitives (a 
demon is a procedural attachment to the primit ive that 
stashes an item in the database, for example). The base 
level is used to store more conventional expert system-type 
information about the domain in question. Although the 
inference methods for the two levels are distinct, all of the 
information is stored in a single database. 

The probabilistic implementation associates to each 
fact in the database a pair (c . d) corresponding to the 
probabil i ty range [c, 1 - d\. The probabil i ty ranges are 
thought of as the " t ru th values" of the propositions, and 
are combined using Dempster's rule as described in [4], 

Tags arc used to reduce the probabil i ty ranges to spe­
cific values, as described in section 4.1. This has the im­
mediate advantage of unifying the treatment of negation 
wi th in MRS itself—where the two propositions (not (os­
t r i c h f r e d ) ) and ( o s t r i c h f r e d ) had previously been 
considered to be unrelated, they arc now simply differing 
apects of the same object, and interact more conveniently 
w i th , for example, (known ( o s t r i c h f r e d ) ) or (unknown 
( o s t r i c h f r e d ) ) . 

Reason maintanrnce facilities have been implemented 
in the forward chainer only. When a rule of inference is 
invoked, the t ruth value of the instantiated version of the 
premise is stored, along wi th information concerning the 
instantiation itself. The next time the rule is invoked, if the 
mass of the difference between the previous t ru th value and 
the current one is no greater than the inference cutoff c1, no 
action is taken. The effect of this is to avoid propagating 
a change in the database to a point where it wi l l have 
no significant effect on the probabilities of the statements 
involved. 

The backward chainer litis been implemented using 
the pair of cutoffs described in the previous section. T im­
ing tests done wi th c1 = c2 = 1 (standard monotonic in-

ference only) indicate that the incorporation of the-prob­
abilistic facilities has at most a small effect (perhaps 5%) 
on the system's monotonic performance. 

The most important experiment remains. Compara­
ble implementations of a large-scale non-monotonic prob­
lem using both probabilistic and non-probabilistic methods 
are needed; it is only when comparisons can be made that 
it wi l l be possible to draw secure conclusions. 

§4. Conclusion 

The efficacy of using probabilities in a non-monotonic 
inference system is both a theoretical and an experimental 
question, and we have attempted to address both issues in 
this paper. Our theoretical arguments dealt wi th the pos­
sibil ity of using probabil i ty ranges and Dempster-Shafer 
theory to sidestep the Bayesian need for a priori probabil­
ities. 

The experimental question may well be more interest­
ing, but cannot be settled unti l a great deal more work 
is done on full-size non-monotonic systems that do and do 
not use probabilistic inference methods. The work we have 
completed at Stanford seems to support the arguments we 
have presented, but no hard and fast conclusion can be 
drawn without a great deal more experimental evidence. 
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