
Call-Graph Caching: Transforming Programs into Networks
Mark Perlin

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract*

There are computer programs that use the same
flow of control when run on different inputs. This
redundancy in their program execution traces can
be exploited by preserving suitably abstracted
call-graphs1 for subsequent reuse. We introduce a
new programming transformation Call-Graph
Caching (CGC) which partially evaluates the con­
trol flow of sets of such programs into a network
formed from their call-graphs. CGC can
automatically generate efficient state-saving
structure-sharing incremental algorithms from
simple program specifications. As an example,
we show how a straightforward, inefficient LISP
program for conjunctive match is automatically
transformed into the RETE network algorithm.
Simple and understandable changes to elegant
functional (and other) programs are automatically
translated by CGC into new efficient incremental
network algorithms; this abstraction mechanism is
shown for a class of conjunctive matching al­
gorithms. We establish criteria for the appropriate
application of CGC to other AI methods, such as
planning, chart parsing, consistency maintenance,
and analogical reasoning.

1 Introduction

Caching is a general efficiency mechanism for exploiting
redundancy in computation by reusing previously computed
information. For example, AI systems often cache problem
solving experience learned over time, or knowledge, as a set
of programs. Intelligent interactive systems apply this
program set over repeated cycles of interaction with external
data input. We define as persistent those intelligent inter­
active systems that apply all knowledge to all data on every
cycle. Straightforward implementations of persistent sys­
tems are often inefficient, since only some programs in the
knowledge base are relevant each cycle, and potentially
reusable intermediate computations are discarded.

We have identified a key source of computational redun­
dancy: a program's flow of control, or "call-graph" struc­
ture. This control-flow redundancy can be exploited by

This work was supported in part by grant R29 LM 04707 from
the National Library of Medicine, and by the Pittsburgh NMR
Institute.

1A call-graph is a trace of an executing program's flow of
procedural control. With recursive languages like LISP, this is the
explicit tree of a program's dynamic procedure calls.

caching call-graphs.
In this paper, we present a new program transformation

Call-Graph Caching (CGC) that partially evaluates and then
reuses a program's control structure. We:

1. Provide applicability conditions for the use of
CGC.

2. Present a working prototype EVAL' which
performs partial evaluation of LISP programs
into executable call-graphs.

3. Show how CGC helps in the conceptual and
implementational derivation of efficient state-
saving structure-sharing incremental network
algorithms.

4. Illustrate how CGC exploits the fixed call-
graph structure to reverse the flow of com­
putation: data can flow up the call-graph, in­
stead of always moving top-down from the
program. Thus program execution can be
driven from incremental changes in input data,
instead of being rigidly preset.

The utility of CGC is demonstrated by:
1. Using CGC to transform a simple, inefficient

LISP program for conjunctive matching into
the classic RETE match algorithm [Forgy,
1979]. This also demonstrates the use of our
automatic transformation prototype EVAL\

2. Showing other applications of CGC in AI,
such as indicating how small changes in our
conjunctive match LISP program can
mechanically generate alternative network join
topologies. Such transformations enable
researchers to spend minutes modifying short
functional programs, instead of months
engaged in low-level network programming.

3. Suggesting that CGC is uniquely suited to AI,
in that it potentially increases the efficiency of
persistent knowledge-based systems.

CGC differs from ordinary data or instruction
caching [Baer, 1980] in that control decisions, not data or
actions, are stored Unlike function caching [Pugh, 1988],
CGC caches network traces, not computed function values.
CGC observes, records, and removes the control decisions
of a program (executing on some input), whereas program
dependence graph methods [Ferrante, 1987] do not diminish
control flexibility.

After first introducing the CGC transformation (Section
2), we show how to transform matching programs into
RETE networks (Section 3). We then present a number of
other uses of CGC in AI (Section 4).

122 Tools

2 Call-Graph Caching

Call-graph caching is a program transformation from ar-
bitrary programs2 into network programs. After defining
our notion of "program", and establishing what "network
programs" are, we motivate how the control flow of a
program can be cached into a netwoik. We then present the
mechanics of the transformation, and describe an implemen­
tation.

2.1 Programs
Programming languages provide action constructs that
operate on input data, sequenced according to some control
organization. The actions are applied to the data by an
evaluator (such as LISP's EVAL) , which may also partially
determine the control sequencing. Program execution
proceeds by traversing the program's actions according to
the control organization, and evaluating the actions on the
data. For example, LISP's control mechanism is recursion,
which coordinates the --expression actions on data ar­
guments, such as symbols and lists. Traversal of a LISP
program's code tree recursively executes E V A L on the
X-expressions and arguments at each node in the tree.

2.2 Network Programs
There are programs that operate by traversing an acyclic
network. The actions of such programs reside and are ex­
ecuted at network nodes, while their control organization is
represented by netwoik links. The links of the directed
acyclic3 graph (DAG) encode a partial ordering of the
nodes. Programs whose netwoik traversals are guaranteed
to respect this partial ordering belong to the class NET­
WORK. Partial order enumeration is usually implemented
with some version of topological ordering [Knuth, 1973],
and assures that every DAG node is visited exactly once:
after each of its predecessors have been visited.

When input data is presented to the leaves, computations
propagate through the network. The results of local node
computations can be locally stored in node memory. A
node uses memories of predecessor nodes in bottom-up
NETWORK computation similarly to a stack frame's use of
recursive return values in usual programming languages.
Since the netwoik persists between cycles, finite
differencing [Paige, 1982] can reduce redundant computa­
tions at a node. To implement this incremental strategy,
node memory is divided into a short-term buffer and a
longer-term store, the use of which is shown below.

NETWORK programs are very efficient, with overhead at
most linear in IDAGI, the number of nodes and
edges [Hoover, 1987]. Propagating from all the leaves, and
keeping newly computed values in nodes' buffer memory,
topological ordering assures that each node is recomputed
exactly once [Perlin, 1988a]. If changes are made to only a
subset of D A G leaves, using the store memory (which per­
sists between change cycles) the computation need only be
propagated to the transitive closure DAG subset AF­
FECTED, IAFFECTEDI < IDAGI. This produces
state-saving algorithms that perform minimal recomputa-

tion, directed from just the changes to their input.4 When
coupled with finite differencing, state-saving incremental
algorithms result.

The price for this efficiency is inflexible control structure:
NETWORK program DAGs have the restricted form of
basic blocks [Aho, 1986]. Despite this limitation, NET­
WORK finds extensive application. Efficient incremental
spreadsheets use the algorithm sketched above. Conjunctive
matching programs are often cast in network form for ef­
ficiency. Other potential applications include the represen­
tation of dependency relations, multiple inheritance, consis­
tency maintenance reasoning [Doyle, 1979], and incremen­
tal attribute grammar evaluation [Reps, 1983].

2.3 Caching Control Flow
Let P(x,y) be a program in some language, having ar­
guments x and y. Suppose that P's control structure is inde­
pendent of y. Then partial evaluation [Futamura, 1971] of
P(x,y) with respect to some fixed xo wi l l yield a new
program P'x0(y) of one argument having a unique call-
graph.

An interactive program's input either depends on external
factors, or is independent of external interactions. Now sup­
pose that program P(x,y) is interactive, and its argument x is
independent of external factors. Then P \y)

1. completely characterizes P(x,y)'s interactions
with the external environment, and

2. has a unique call-graph.
We define an interactive program P(x,y) to be basic when x
is independent of external factors, and P's control structure
is independent of y.

P'(y) has a unique call-graph which can be cached as a
NETWORK program for later reuse. The program's actions
are encoded in the call-graph nodes; each node is allocated
local memory. The program's control flow decisions are
recorded as call-graph edges. Applying input data to the
call-graph leaves, a bottom-up graph traversal (respecting
the nodes' partial ordering represented by the edges) can
correctly execute the program. We therefore have a new
NETWORK program operationally equivalent to the par­
tially evaluated P, as illustrated in Figure 1.

2Our initial focus in Sections 2 and 3 is on functional-style LISP
programs. In Section 4 we look at other programming language
styles, such as rules.

3Graphs with cycles are also admissible, as long as the cycles
are broken at run time; i.e., the graph acts like a DAG.

4Further efficiency gains are possible by restricting the DAG
traversal to the subgraph influencing only select node computa­
tions.

Perlin 123

2.4 The Transformation
We describe the Call-Graph Caching (CGC) transformation
in several loosely coupled steps. The first step assembles
the call-graph from its subgraph components. The second
collects a set of call-graphs into a network. The resulting
cached call-graph network structure is used (and reused) as
a data cache. Pedagogical examples on simple polynomials
are detailed in [Perlin, 1988b].

2.4.1 Building the Call-Graph
Control-Flow Caching is an algorithm which builds the

call-graph of a program on some input. The construction
takes as

• input either
1. the compile-time text of a program,

together with its partial input, or
2. the run-time program executing on its

complete input, and
• outputs the call-graph of that program.

The procedure employs an auxilliary data structure, the
Conxrol-Flow Cache, which is used in the assembly of the
final call-graph structure. There is also an optional ar­
gument specifying the key execution steps to cast into graph
nodes.

Control-flow caching proceeds as three separate steps.
First, with a program, (partial) input, and a user-definable
set of the key steps to abstract5 a trace is formed of the
program's execution. Each node in the resulting call-graph
represents one (key) step in the program's trace. The actual
formation of the call-graph is facilitated by specific control-
flow cache management strategies. One such strategy is the
above abstraction mechanism of recording only the "key"
steps as nodes. Another strategy, used in chart
parsing [Winograd, 1983], Ls exploiting the constraints
posted in the control-flow cache to help reduce the execut­
ing program's computation, i.e., dynamic programming.
Yet another, say for a LISP program, would be to passively
cache the succession of execution branches into a full call
tree. Regardless of the specific strategies, the resulting call-
graph captures (in space) the program's execution over time,
as shown in Figure 2, step 1.

(1) (2) (3)

Figure 2: Control-Row caching: assembling the call-graph.

Program P(x,y) has thus far been evaluated on input XQ,

with the partially evaluated P'(y) preserved as a call-graph.
The second step of Control-Flow Caching connects the ex­
ternal input y to the program's graph. As shown in Figure
2, step 2, the resulting call-graph of the complete program is
a DAG6.

The third step operationalizes the call-graph into a us­
able data structure. For example, graph nodes can be aug­
mented with the requisite buffer and store memory with a
system-specific representation.

At this point, saving and reusing just this single call-
graph provides a fully functional state-saving NETWORK
program. Directing input y through the graph in a partially
ordered node enumeration, with the node memories as a
data cache, will perform the computations of P(xo,y). More
efficient incremental evaluation via finite differencing is ef­
fected by using the local buffer memory to (1) record in-
tracycle computations and (2) differentially update the local
intercycle store memory.

2.4.2 Collecting Call-Graphs
The Call-Graph Caching transformation is completed by

collecting a set of P(xo,y) call-graphs, for a variety of P's
and xo's. This set is called the Call-Graph Cache, and, like
other caches, usually employs efficient cache management
strategies. For example, spreadsheets and conjunctive
matchers exploit common shared prefix structure, with
trie-like [Aho, 1983] merging of call-graphs into a single
connected network. In allocating the often limited resource
of space, another common strategy is to perform a
cost/benefit analysis, detemiining which call-graphs stay in
the cache, and which are removed.

2.43 Using the Call-Graph Cache
After building the call-graphs of {P(xiy) I ie 1} and col­

lecting them into a call-graph cache, the resulting network is
used (and reused) as a data cache. Values or sets of values
of y propagate bottom-up through the network, employing
the buffer memory within each propagation cycle, and store
memory between cycles. For efficiency and correctness, the
network traversal control mechanism is partial order
enumeration (implemented with a topological sort).

This completes the transformation of a finite set of basic
programs (in any programming language) into an efficient
state-saving NETWORK program.

2.5 An Implementation
To demonstrate the workability of Call-Graph Caching, we
implemented in Common LISP a simple partial evaluator
EVAL\ which transforms a large class of LISP programs
into their corresponding call-graphs. The input to EVAL' is
the symbolic LISP expression representing "P(xo,y)'\ for
some P and XQ, and a set of labels denoting the key execu­
tion steps to cache. The output is a call-graph, where each
node specifies

• the label of the node type;
• a lambda expression containing all the infor­

mation required to execute the node's computa­
tion when applied to the values of its immediate
predecessor nodes;

5This user-definable set ranges from the empty set to all possible
steps.

6This is because the caching of the program's execution over
time breaks (i.e., unravels) any cycles present in the flow of con-
trol.

124 Tools

• recursively, the nodes of its immediate
predecessors.

E V A L ' performs the following computations:
1. Arrive at (the label of) a key node (i.e., LISP

function or symbol) to be abstracted.

2. Perform E V A L ' on the unevaluated arguments
to the function.

3. Substitute these values into the function, and
then execute E V A L ' on the LISP function's
code tree.

This delayed evaluation is done recursively, caching the
control structure into a call-graph. The call-graph's nodes
abstract out the set of labelled functions, preserving the lo­
cal actions required for later execution.

We have also developed a variety of network structure-
sharing programs for merging call-graphs, and a partial or­
der network traversal toolkit for executing these cached
Call-Graph networks as programs. Our working implemen­
tations have demonstrated the efficacy of transforming
simple LISP specifications into efficient incremental net­
work programs on AI examples such as RETE matching.

3 RETE Networks: An Example of Call-Graph
Caching

RETE matching is a state-saving structure-sharing in­
cremental algorithm used in OPS-5 and other production
systems for conjunctively matching many patterns against
many objects. Because it provides excellent average-case
behavior for an important NP-hard AI problem, it has been
extensively studied and varied. It is also a good example of
the Call-Graph Caching program transformation, illustrating
nontrivial usage of the Control-How Cache and the Call-
Graph Cache.

3.1 Rule Matching
Forward-chaining Rule Systems (or "production systems")
such as OPS-5 are programming languages with match as
their control element. Program data is organized into a set
of rules, having left-hand-side (LHS) tests and RHS actions.
External input (often called "working memory") comes from
a slowly varying set D of data objects. If a rule's tests
match objects, the rule becomes a candidate for firing; when
executed, its actions serve to modify D.

Following common practice, we fix the form of the rules'
LHSs to be a set of conjunctive conditions, each condition
containing tests restricting the set of matchable objects. An
instantiation of a rule having n LHS conditions is an n-tuple
of objects satisfying the rule's LHS tests. On every inter­
action cycle, the rule evaluator must try to match each rule
against all possible combinatioas of objects in D, forming
its set of instantiations

which applies a set of tests to a set of objects, producing a
filtered set of n-tuple instantiations.

Production systems are persistent, in that they
1. maintain their knowledge in a finite set of ex-

perientially derived programs (the rule set),
and

2. apply all programs to all available data on
each interactive cycle.

They are also inefficient. Consider just one rule having n
conditions matching against only two data objects- the set of
candidate instantiations Dn grows exponentially in n. In
fact, conjunctive rule matching is NP-hard [Minton, 1988].
Generally, however, only a small fraction of the object set
changes each cycle. So instead of rigidly applying all rule
programs to the data, perhaps the incremental changes to
data should drive the matching computation.

For each rule program in the rule set specifying some
tests in TESTS, Atoc/i(tests,D) is the computationally ex­
pensive subprogram. Observe that with

P = Match, x = tests, and y = D,

1.x is independent of the external data input D,
and

2. the conjunctive matcher P(x,y) is programm­
able so that P's control is independent of y
(e.g., Section 3.2).

Therefore P is basic, and Call-Graph Caching wi l l generate
an efficient state-saving structure-sharing incremental
Matching algorithm.

3.2 Transforming Rule Matching into RETE Networks
We illustrate the use of Call-Graph Caching by generating
the RETE network from a simple functional programming
specification of the matching function.

1. We stan from an easily specified, though in­
efficient, set of functional programs.

2. Using an auxilliary Control-Flow Cache, par­
tial evaluation of the basic program
match(T0X>) produces a call-graph capturing
match9(D)'s control flow. This call-graph is
usable as an incremental data-driven
state-saving NETWORK program which can
store processed input data as intermediate
matching results.

3. The Call-Graph Cache merges the individual
call-graphs in order to conserve space, and
achieve some speedup. This is done by test
sharing: nodes with common test prefixes are
combined to form a single trie data structure.

We now detail this construction of the RETE network algo­
rithm.

3.2.1 Rule Matching as LISP Programs
A rule specifies a fixed set of tests T0 for its match com­

ponent. The conjunctive match program Match(T0,D) can
be formulated so that its control is independent of working
memory D. We now write such a filter Match as a
functional-style LISP program.

For efficiency on a serial processor, we first impose a
fixed ordering on the rules' conditions. Each test examines
one or more objects in a candidate n-tuple e D n ; these
objects are now ordered by the condition ordering. We now
order the test set: associate to each test the number of the

Perlin 125

last object it examines, and arrange the tests with respect to
this index. For efficiency, the match is performed by a
conditional AND, testing a candidate n-tuple against the
first test subset, then the second, and so on through the nth.
Within the kth test subset, k < n, the tests may be further
grouped into two classes:

A. alpha tests on a single object e D, and

B. beta tests on more than one object, i.e., k-
tuples € Dk.

There are many ways to write the LISP code for this
simple filter (e.g., as one function, iteratively, recursively,
etc.). While the CGC transformation is independent of pro­
gramming style, for clarity, we present Match using linear
recursion.
; Match r u l e ' s t e s t s a g a i n s t t h e d a t a ,
(d e f i n e match (t e s t s da ta)

(b e t a - j o i n
(f i r s t t e s t s)
(second t e s t s)

d a t a))
; J o i n t o g e t h e r t h e p r e c e d i n g s i f t and
; j o i n s e t s w i t h a f i l t e r i n g b e t a t e s t ,
(d e f i n e b e t a - j o i n (A B D)

(i f (n u l l A)
M O)
(f i l t e r (f i r s t B)

(s e t - p r o d u c t
(a l p h a - s i f t (f i r s t A) D)
(b e t a - j o i n

(r e s t A) (r e s t B) D)))))
; S i f t t h e o b j e c t s w i t h a l p h a t e s t s ,
(d e f i n e a l p h a - s i f t (A D)

(s e t - f i l t e r A D))
Match takes a preordered set of tests, and a set of data

objects as its arguments. The key interesting function is
beta-join, which merges the simple alpha-sift filter with fur­
ther recursive calls to beta-join; this produces a linearly
recursive call-graph. Note how the tests in match's tests
argument are deposited locally at each level of filtering, and
that no control decisions are made using the data argument.

The auxilliary function set-filter returns the subset satis­
fying some predicate tests, while the function set-product
operates similarly on a pair of sets.

3.2.2 Building the Call-Graph
STEP 1. For any mle r, calling EVAL' on

matchitcsts. ,D) with the set of labels (match, alpha-sift,
beta-join) will save the calling structure of the rule's tests.
The control-flow cache is used with the functional program
match to store to the growing call tree. As shown in Figure
3 A, the call-graph has a linear spine, with the appropriate
tests localized at each node.

STEP 2. In Figure 3 B, the free input variable data is
attached to the call-graph as an input source, turning the call
tree into a DAG.

STEP 3. The graph structure of this single rule's match
component can now be completed. Memory for the intra-
cycle buffer and the inter-cycle store (and other
information) can be specialized into a specific graph
representation. This call-graph can be reused as a bottom-
up NETWORK filtering program. In Figure 3 C, the
domains of the filtered objects are shown.

Using the buffer memory, partial order traversal of the
call-graph from the data computes the filtered instantiation
subset of Dn. If the nodes' longer-term store memories are
initially loaded with D (and then continually updated), only

Figure 3: CGC on a linearly recursive conjunctive matcher.

changes to the object set AD are needed for computing fur­
ther instantiations. That is, the call-graph is a incremental
state-saving data-driven NETWORK program for comput­
ing the state of a single rule's match.

This is not surprising: Figure 3 D shows the RETE net­
work beta join topology, which is isomorphic to the Match
call-graph in Figure 3 C.

3.23 Collecting Call-Graphs
A rule system is comprised of a finite set of rules; we

therefore form the corresponding set of call-graphs, one for
each rule's match component. This set is the Call-Graph
Cache. One cache management strategy for conserving
cache space (with some associated speedup) is to merge the
call-graph DAGs into one connected network. The
matcher's behavior is unchanged if, proceeding from the
data input source, nodes are merged based on prefix sharing
of tests. A succession of call-graphs merging into a com­
mon beta-join node trie is depicted in Figure 4.

When an alpha discrimination net is added to the beta join
trie, the classical RETE match network is generated. We
implemented this addition by modifying the alpha-sift LISP
function to perform its tests tail recursively. This illustrates
how CGC readily produces new desired network topologies
from small changes in LISP program specifications.

3.2.4 Using the Call-Graph Cache
Partial Order traversal of the RETE network will perform

the match of the rule set (cached as a shared set of call-
graphs) against working memory input D. The intracycle
buffer and intercycle store memories at each node are used
as a data cache to preserve the partial match computations

126 Tools

(within and between) each cycle. Working memory ele­
ments are then incrementally added or deleted from these
memories.

33 Alternate Join Topologies
Call-Graph Caching generates more than RETE networks:
one application is the generation of families of efficient con­
junctive matchers. By making simple variations in match's
LISP specification, and changing which key function names
are cached into call-graph nodes, many different join
topologies can be designed, easily specified, and automati­
cally constructed. Also, there are other Call-Graph Cache
merging strategies besides trie-based prefix sharing.

The RETE example was described above: a linearly
structured call graph. One known alternative approach is to
not cache the beta join nodes [Miranker, 1987]. Another is
to structure the call graph as binary tree [Stolfo, 1982],
reducing the long linear chains problematic in RETE. We
are currently exploring and assessing a variety of new join
topologies using CGC as a rapid prototyping tool. These
topologies can be custom tailored to task-specific require­
ments, such as learning or parallelism.

4 Other Uses

With general recursive computation, actions (e.g., floating
point arithmetic, file access) are often expensive, whereas
actions' control organization and input data can be unin­
teresting. With intelligent systems, however, actions (e.g.,
precomputed motions, user queries) are commonly mun­
dane; it is the sequencing of such actions to achieve con­
crete goals that is complex and computationally difficult.
Since the CGC method explicitly records such control deci­
sions for subsequent modification and reuse, it provides
both a conceptual framework and an implementation
strategy. In script-based planning [Schank, 1977], for ex­
ample, knowledge-based action sequences are retrieved, and
each simple action step is replayed. Analogical
reasoning [Carbonell, 1983] can extend this retrieval by
transformations of retrieved plans. Other applications of
CGC in AI are discussed below.

4.1 Control-Flow Caching
The control-flow cache may simply record the unraveling of
an execution tree over time, as in the RETE example, or
take a more active role, such as enabling constraint-directed
dynamic programming. For example, in efficient context-
free parsing, each graph node represents an individual firing

of a grammar production; the control-flow cache (or
"chart") records past firings to constrain future ones.

If rule firings are recorded as CGC nodes, the call-graph
of a rule system's problem solving instance forms a trace of
the rules' executions. This record (DAG) of the rule and
data dependencies may then aid in consistency maintenance
analysis for exploring alternative reasoning scenarios. Here
the call-graph would form a NETWORK program utilizing
its data cache, with ground instance changes incrementally
propagated via DAG traversal.

4.2 Call-Graph Caching
Persistent processes maintain their knowledge in a program
cache; this cache is augmented or modified as the
knowledge changes over time. When the cached programs
have call-graphs with sufficient redundancy (e.g., are basic),
the knowledge may be compiled into an efficient Call-
Graph Cache network. For example, consider the rule trace
discussed above: DAGs representing arbitrary rule execu­
tion are not likely to share similar morphology, and, there­
fore, they are not usually cached as networks. Rather, such
call-graphs are abstracted into networks having a single in­
ner node (or "chunk") using EBG [Mitchell, 1986] or some
other execution trace generalization method. These
reformed networks have sufficient operationality to then be
reused in the program cache, resulting in potential efficiency
improvements. (In some systems [Laird, 1986], they may
be compiled into RETE networks at a lower level of abstrac­
tion for further efficiency gains.)

There are many common persistent processes comprised
of basic programs. For example, a (multiple) inheritance
network will be automatically generated as the cached call-
graph set from the process of successive subset classifica­
tion on some input set. As another example, window sys­
tems may be thought of as caching an inefficient "painter's
algorithm" redisplay execution into a call-graph based on
the in-front-of relation. Efficiencies accrue since, in
general, the data inside the windows is independent of win­
dow redisplay.

4.3 Extensions
CGC is applicable when persistent interactive intelligent
systems are comprised of basic programs. Since not all
programs are basic, we consider how to use CGC under
weaker assumptions.

As in Section 2.3, let P'(y) be a partially evaluated
program. P\y) need not have a unique call-graph for CGC
to be useful. As long as its set of call-graphs is manageable,
some caching strategy could succeed. For instance, P'(y)
might have only a small finite number of call-graphs. Alter­
natively, a skewed distribution of P'(y)'s call-graphs could
probabilistically ensure manageability. Extending the
RETE match example, when disjunction (i.e., choice) is in­
troduced into primarily conjunctive rules, there is still much
redundancy in control flow. Though weaker, this redun­
dancy is effectively exploited in RETE-based OPS-5 via
copying and conflict resolution.

4.4 Future Work
The CGC transfonnation lets us reexamine many network
algorithms impartially evaluated programs which have their
call-graphs preserved. Further, as with RETE, it may be the
case that reformulation of the network into a new program
in some appropriate language leads to clearer specification
of the algorithm. Since NETWORK-like efficiency is
guaranteed by the CGC transfonnation, improvements can

Perlin 127

then be effected in the abstracted programming language,
rather than in the low-level NETWORK language.

Conversely, given a clear specification of a set of
programs in some language, when control-flow redundancy
is present (whether guaranteed by the "basic" property, or
simply empirically observed) CGC becomes another route
for improving performance. Possibilities include:

1. Refining classic state-saving incremental net­
work algorithms where call-graph redundancy
has already been observed

2. Reexamining inefficient AI architectures for
reusable redundancy in control-flow.

3. Developing new and efficient persistent inter­
active processes by starting from precise, in­
efficient programs that have sufficient control-
flow redundancy for the CGC transformation
to succeed.

5 Conclusion

The Call-Graph Caching program transformation is simpler
than many modem compilation techniques. Nonetheless,
CGC can mechanically transform programs having suf­
ficient control-flow redundancy into highly efficient in­
cremental counterparts. CGC's chief practical use is in
rapidly specifying (and testing) complex network algorithms
as simple programs in ordinary programming languages.
This was demonstrated with the RETE matching example.

Intelligent systems, unlike fully general computation,
must often rely on viable sequences of actions in order to
solve their problems. To the extent that such systems ex­
ploit redundancies in their control (i.e., sequencing) deci­
sions as they evolve over time, CGC can help in the analysis
and implementation of this aspect of intelligence. We there­
fore suggest that the caching and reuse of call-graphs could
prove applicable to a broad range of problem areas and tech­
niques in AI.

Acknowledgments

Jaime CarboneU provided much assistance in the initial for­
mulation of these ideas. Peter Lee, David Steier, and Milind
Tambe also contributed to the ideas' evolutioa

References

[Aho, 1983] Aho, A.V., Hopcroft, J.E., and Ullman, J.D.
Data Structures and Algorithms. Addison-Wesley, Read­
ing, Massachusetts, 1983.

[Aho, 1986] Aho, A.V., Sethi, R., and Ullman, J.D.
Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading, Massachusetts, 1986.

[Baer, 1980] Baer, J. Computer Systems Architecture. Com­
puter Science Press, Rockville, Maryland, 1980.

[CarboneU, 1983] CaiboneU, J. G. Learning by Analogy:
Formulating and Generalizing Plans from Past Ex­
perience. In R. S. Michalski, J. G. CaiboneU and
T. M. MitcheU (editors), Machine Learning, An Artificial
Intelligence Approach. Tioga Press, Palo Alto, CA, 1983.

[Doyle, 1979] Doyle, J. A Truth Maintenance System.
Artificial Intelligence, 12:231-272,1979.

[Ferrante, 1987] Ferrante, J., Ottenstein, K.J., and Warren,
J.D. The Program Dependence Graph and Its Use in
Optimization. ACM Transactions on Programming Lan­
guages and Systems, 9(3):319-349, July 1987.

[Forgy, 1979] Forgy, C.L. On the Efficient Implementation
of Production Systems. PhD thesis, Department of Com­
puter Science, Carnegie Mellon University, February,
1979.

[Futamura, 1971] Futamura, Y. Partial evaluation of com­
putation process - an approach to a compiler-compiler.
Computer Systems Controls, 2(5):45-50, 1971.

[Hoover, 1987] Hoover, R. Incremental Graph Evaluation.
PhD thesis, Cornell University, May, 1987.

[Knuth, 1973]Knuth,D.E. Fundamental Algorithms.
Addison-Wesley, Reading, Massachusetts, 1973.

[Laird, 1986] Land, J. E., Rosenbloom, P. S. and Newell,
A. Chunking in SOAR: The Anatomy of a General Learn­
ing Mechanism. Machine Learning, 1,1986.

[Minton, 1988] Minton, Steven M. Learning effective
search control knowledge: An explanation-based
approach. PhD thesis, Carnegie MeUon University,
February, 1988.

[Miranker, 1987] Miranker, D.P. TREAT: A New and Ef­
ficient Match Algorithm. PhD thesis, Columbia Univer­
sity, January, 1987.

[MitcheU, 1986] Mitchell, T. M., Keller, R. M. and Kedar-
CabeUi, S. T. Explanation-Based Generalization: A
Unifying View. Machine Learning, 1:47-80,1986.

[Paige, 1982] Paige, R., and Koenig, S. Finite Differencing
of Computable Expressions. ACM Transactions on Pro­
gramming Languages and Systems, 4(3):402-454, 1982.

[Perlin, 1988a] Perlin, M.W. Reducing Computation by In­
tegrating Inference and User Interface. Technical Report
CMU-CS-88-150, Carnegie MeUon University, Pitts­
burgh, PA, June, 1988.

[Perlin, 1988b] Perlin, M.W, Transforming Programs into
Networks: Call-Graph Caching, Applications and Ex­
amples. Technical Report CMU-CS-88-202, Carnegie
MeUon University, Pittsburgh, PA, December, 1988.

[Pugh, 1988] Pugh, W.W. Incremental Computation and
the Incremental Evaluation of Function Programs. PhD
thesis, Comell University, August, 1988.

[Reps, 1983] Reps, T., Teitelbaum, T., and Demers,
A. Incremental context-dependent analysis for language-
based editors. ACM Trans. Prog. Lang. Sys.,
5(3):449-477, July 1983.

[Schank, 1977] Schank, R. C. and Abelson, R. P. Scripts,
Goals, Plans and Understanding. HiUside, NJ: Lawrence
Eiibaum, 1977.

[Stolfo, 1982] Stolfo, S.J., and Shaw, D.E. DADO: A Tree-
structuied Machine Architecture for Production Systems.
In Proceedings of National Conference on Artificial
Intelligence, pages 369-388, August, 1982. AAAI.

[Winograd, 1983] Winograd, T. Language as a Cognitive
Process, Volume I: Syntax. Addison-Wesley, 1983.

128 Tools

