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Abstract* 

There are computer programs that use the same 
flow of control when run on different inputs. This 
redundancy in their program execution traces can 
be exploited by preserving suitably abstracted 
call-graphs1 for subsequent reuse. We introduce a 
new programming transformation Call-Graph 
Caching (CGC) which partially evaluates the con­
trol flow of sets of such programs into a network 
formed from their call-graphs. CGC can 
automatically generate efficient state-saving 
structure-sharing incremental algorithms from 
simple program specifications. As an example, 
we show how a straightforward, inefficient LISP 
program for conjunctive match is automatically 
transformed into the RETE network algorithm. 
Simple and understandable changes to elegant 
functional (and other) programs are automatically 
translated by CGC into new efficient incremental 
network algorithms; this abstraction mechanism is 
shown for a class of conjunctive matching al­
gorithms. We establish criteria for the appropriate 
application of CGC to other AI methods, such as 
planning, chart parsing, consistency maintenance, 
and analogical reasoning. 

1 Introduction 

Caching is a general efficiency mechanism for exploiting 
redundancy in computation by reusing previously computed 
information. For example, AI systems often cache problem 
solving experience learned over time, or knowledge, as a set 
of programs. Intelligent interactive systems apply this 
program set over repeated cycles of interaction with external 
data input. We define as persistent those intelligent inter­
active systems that apply all knowledge to all data on every 
cycle. Straightforward implementations of persistent sys­
tems are often inefficient, since only some programs in the 
knowledge base are relevant each cycle, and potentially 
reusable intermediate computations are discarded. 

We have identified a key source of computational redun­
dancy: a program's flow of control, or "call-graph" struc­
ture. This control-flow redundancy can be exploited by 
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1A call-graph is a trace of an executing program's flow of 
procedural control. With recursive languages like LISP, this is the 
explicit tree of a program's dynamic procedure calls. 

caching call-graphs. 
In this paper, we present a new program transformation 

Call-Graph Caching (CGC) that partially evaluates and then 
reuses a program's control structure. We: 

1. Provide applicability conditions for the use of 
CGC. 

2. Present a working prototype EVAL' which 
performs partial evaluation of LISP programs 
into executable call-graphs. 

3. Show how CGC helps in the conceptual and 
implementational derivation of efficient state-
saving structure-sharing incremental network 
algorithms. 

4. Illustrate how CGC exploits the fixed call-
graph structure to reverse the flow of com­
putation: data can flow up the call-graph, in­
stead of always moving top-down from the 
program. Thus program execution can be 
driven from incremental changes in input data, 
instead of being rigidly preset. 

The utility of CGC is demonstrated by: 
1. Using CGC to transform a simple, inefficient 

LISP program for conjunctive matching into 
the classic RETE match algorithm [Forgy, 
1979]. This also demonstrates the use of our 
automatic transformation prototype EVAL\ 

2. Showing other applications of CGC in AI, 
such as indicating how small changes in our 
conjunctive match LISP program can 
mechanically generate alternative network join 
topologies. Such transformations enable 
researchers to spend minutes modifying short 
functional programs, instead of months 
engaged in low-level network programming. 

3. Suggesting that CGC is uniquely suited to AI, 
in that it potentially increases the efficiency of 
persistent knowledge-based systems. 

CGC differs from ordinary data or instruction 
caching [Baer, 1980] in that control decisions, not data or 
actions, are stored Unlike function caching [Pugh, 1988], 
CGC caches network traces, not computed function values. 
CGC observes, records, and removes the control decisions 
of a program (executing on some input), whereas program 
dependence graph methods [Ferrante, 1987] do not diminish 
control flexibility. 

After first introducing the CGC transformation (Section 
2), we show how to transform matching programs into 
RETE networks (Section 3). We then present a number of 
other uses of CGC in AI (Section 4). 
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2 Call-Graph Caching 

Call-graph caching is a program transformation from ar-
bitrary programs2 into network programs. After defining 
our notion of "program", and establishing what "network 
programs" are, we motivate how the control flow of a 
program can be cached into a netwoik. We then present the 
mechanics of the transformation, and describe an implemen­
tation. 

2.1 Programs 
Programming languages provide action constructs that 
operate on input data, sequenced according to some control 
organization. The actions are applied to the data by an 
evaluator (such as LISP's EVAL) , which may also partially 
determine the control sequencing. Program execution 
proceeds by traversing the program's actions according to 
the control organization, and evaluating the actions on the 
data. For example, LISP's control mechanism is recursion, 
which coordinates the --expression actions on data ar­
guments, such as symbols and lists. Traversal of a LISP 
program's code tree recursively executes E V A L on the 
X-expressions and arguments at each node in the tree. 

2.2 Network Programs 
There are programs that operate by traversing an acyclic 
network. The actions of such programs reside and are ex­
ecuted at network nodes, while their control organization is 
represented by netwoik links. The links of the directed 
acyclic3 graph (DAG) encode a partial ordering of the 
nodes. Programs whose netwoik traversals are guaranteed 
to respect this partial ordering belong to the class NET­
WORK. Partial order enumeration is usually implemented 
with some version of topological ordering [Knuth, 1973], 
and assures that every DAG node is visited exactly once: 
after each of its predecessors have been visited. 

When input data is presented to the leaves, computations 
propagate through the network. The results of local node 
computations can be locally stored in node memory. A 
node uses memories of predecessor nodes in bottom-up 
NETWORK computation similarly to a stack frame's use of 
recursive return values in usual programming languages. 
Since the netwoik persists between cycles, finite 
differencing [Paige, 1982] can reduce redundant computa­
tions at a node. To implement this incremental strategy, 
node memory is divided into a short-term buffer and a 
longer-term store, the use of which is shown below. 

NETWORK programs are very efficient, with overhead at 
most linear in IDAGI, the number of nodes and 
edges [Hoover, 1987]. Propagating from all the leaves, and 
keeping newly computed values in nodes' buffer memory, 
topological ordering assures that each node is recomputed 
exactly once [Perlin, 1988a]. If changes are made to only a 
subset of D A G leaves, using the store memory (which per­
sists between change cycles) the computation need only be 
propagated to the transitive closure DAG subset AF­
FECTED, IAFFECTEDI < IDAGI. This produces 
state-saving algorithms that perform minimal recomputa-

tion, directed from just the changes to their input.4 When 
coupled with finite differencing, state-saving incremental 
algorithms result. 

The price for this efficiency is inflexible control structure: 
NETWORK program DAGs have the restricted form of 
basic blocks [Aho, 1986]. Despite this limitation, NET­
WORK finds extensive application. Efficient incremental 
spreadsheets use the algorithm sketched above. Conjunctive 
matching programs are often cast in network form for ef­
ficiency. Other potential applications include the represen­
tation of dependency relations, multiple inheritance, consis­
tency maintenance reasoning [Doyle, 1979], and incremen­
tal attribute grammar evaluation [Reps, 1983]. 

2.3 Caching Control Flow 
Let P(x,y) be a program in some language, having ar­
guments x and y. Suppose that P's control structure is inde­
pendent of y. Then partial evaluation [Futamura, 1971] of 
P(x,y) with respect to some fixed xo wi l l yield a new 
program P'x0(y) of one argument having a unique call-
graph. 

An interactive program's input either depends on external 
factors, or is independent of external interactions. Now sup­
pose that program P(x,y) is interactive, and its argument x is 
independent of external factors. Then P \y ) 

1. completely characterizes P(x,y)'s interactions 
with the external environment, and 

2. has a unique call-graph. 
We define an interactive program P(x,y) to be basic when x 
is independent of external factors, and P's control structure 
is independent of y. 

P'(y) has a unique call-graph which can be cached as a 
NETWORK program for later reuse. The program's actions 
are encoded in the call-graph nodes; each node is allocated 
local memory. The program's control flow decisions are 
recorded as call-graph edges. Applying input data to the 
call-graph leaves, a bottom-up graph traversal (respecting 
the nodes' partial ordering represented by the edges) can 
correctly execute the program. We therefore have a new 
NETWORK program operationally equivalent to the par­
tially evaluated P, as illustrated in Figure 1. 

2Our initial focus in Sections 2 and 3 is on functional-style LISP 
programs. In Section 4 we look at other programming language 
styles, such as rules. 

3Graphs with cycles are also admissible, as long as the cycles 
are broken at run time; i.e., the graph acts like a DAG. 

4Further efficiency gains are possible by restricting the DAG 
traversal to the subgraph influencing only select node computa­
tions. 
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2.4 The Transformation 
We describe the Call-Graph Caching (CGC) transformation 
in several loosely coupled steps. The first step assembles 
the call-graph from its subgraph components. The second 
collects a set of call-graphs into a network. The resulting 
cached call-graph network structure is used (and reused) as 
a data cache. Pedagogical examples on simple polynomials 
are detailed in [Perlin, 1988b]. 

2.4.1 Building the Call-Graph 
Control-Flow Caching is an algorithm which builds the 

call-graph of a program on some input. The construction 
takes as 

• input either 
1. the compile-time text of a program, 

together with its partial input, or 
2. the run-time program executing on its 

complete input, and 
• outputs the call-graph of that program. 

The procedure employs an auxilliary data structure, the 
Conxrol-Flow Cache, which is used in the assembly of the 
final call-graph structure. There is also an optional ar­
gument specifying the key execution steps to cast into graph 
nodes. 

Control-flow caching proceeds as three separate steps. 
First, with a program, (partial) input, and a user-definable 
set of the key steps to abstract5 a trace is formed of the 
program's execution. Each node in the resulting call-graph 
represents one (key) step in the program's trace. The actual 
formation of the call-graph is facilitated by specific control-
flow cache management strategies. One such strategy is the 
above abstraction mechanism of recording only the "key" 
steps as nodes. Another strategy, used in chart 
parsing [Winograd, 1983], Ls exploiting the constraints 
posted in the control-flow cache to help reduce the execut­
ing program's computation, i.e., dynamic programming. 
Yet another, say for a LISP program, would be to passively 
cache the succession of execution branches into a full call 
tree. Regardless of the specific strategies, the resulting call-
graph captures (in space) the program's execution over time, 
as shown in Figure 2, step 1. 

( 1 ) ( 2 ) ( 3 ) 

Figure 2: Control-Row caching: assembling the call-graph. 

Program P(x,y) has thus far been evaluated on input XQ, 

with the partially evaluated P'(y) preserved as a call-graph. 
The second step of Control-Flow Caching connects the ex­
ternal input y to the program's graph. As shown in Figure 
2, step 2, the resulting call-graph of the complete program is 
a DAG6. 

The third step operationalizes the call-graph into a us­
able data structure. For example, graph nodes can be aug­
mented with the requisite buffer and store memory with a 
system-specific representation. 

At this point, saving and reusing just this single call-
graph provides a fully functional state-saving NETWORK 
program. Directing input y through the graph in a partially 
ordered node enumeration, with the node memories as a 
data cache, will perform the computations of P(xo,y). More 
efficient incremental evaluation via finite differencing is ef­
fected by using the local buffer memory to (1) record in-
tracycle computations and (2) differentially update the local 
intercycle store memory. 

2.4.2 Collecting Call-Graphs 
The Call-Graph Caching transformation is completed by 

collecting a set of P(xo,y) call-graphs, for a variety of P's 
and xo's. This set is called the Call-Graph Cache, and, like 
other caches, usually employs efficient cache management 
strategies. For example, spreadsheets and conjunctive 
matchers exploit common shared prefix structure, with 
trie-like [Aho, 1983] merging of call-graphs into a single 
connected network. In allocating the often limited resource 
of space, another common strategy is to perform a 
cost/benefit analysis, detemiining which call-graphs stay in 
the cache, and which are removed. 

2.43 Using the Call-Graph Cache 
After building the call-graphs of {P(xiy) I ie 1} and col­

lecting them into a call-graph cache, the resulting network is 
used (and reused) as a data cache. Values or sets of values 
of y propagate bottom-up through the network, employing 
the buffer memory within each propagation cycle, and store 
memory between cycles. For efficiency and correctness, the 
network traversal control mechanism is partial order 
enumeration (implemented with a topological sort). 

This completes the transformation of a finite set of basic 
programs (in any programming language) into an efficient 
state-saving NETWORK program. 

2.5 An Implementation 
To demonstrate the workability of Call-Graph Caching, we 
implemented in Common LISP a simple partial evaluator 
EVAL\ which transforms a large class of LISP programs 
into their corresponding call-graphs. The input to EVAL' is 
the symbolic LISP expression representing "P(xo,y)'\ for 
some P and XQ, and a set of labels denoting the key execu­
tion steps to cache. The output is a call-graph, where each 
node specifies 

• the label of the node type; 
• a lambda expression containing all the infor­

mation required to execute the node's computa­
tion when applied to the values of its immediate 
predecessor nodes; 

5This user-definable set ranges from the empty set to all possible 
steps. 

6This is because the caching of the program's execution over 
time breaks (i.e., unravels) any cycles present in the flow of con-
trol. 
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• recursively, the nodes of its immediate 
predecessors. 

E V A L ' performs the following computations: 
1. Arrive at (the label of) a key node (i.e., LISP 

function or symbol) to be abstracted. 

2. Perform E V A L ' on the unevaluated arguments 
to the function. 

3. Substitute these values into the function, and 
then execute E V A L ' on the LISP function's 
code tree. 

This delayed evaluation is done recursively, caching the 
control structure into a call-graph. The call-graph's nodes 
abstract out the set of labelled functions, preserving the lo­
cal actions required for later execution. 

We have also developed a variety of network structure-
sharing programs for merging call-graphs, and a partial or­
der network traversal toolkit for executing these cached 
Call-Graph networks as programs. Our working implemen­
tations have demonstrated the efficacy of transforming 
simple LISP specifications into efficient incremental net­
work programs on AI examples such as RETE matching. 

3 RETE Networks: An Example of Call-Graph 
Caching 

RETE matching is a state-saving structure-sharing in­
cremental algorithm used in OPS-5 and other production 
systems for conjunctively matching many patterns against 
many objects. Because it provides excellent average-case 
behavior for an important NP-hard AI problem, it has been 
extensively studied and varied. It is also a good example of 
the Call-Graph Caching program transformation, illustrating 
nontrivial usage of the Control-How Cache and the Call-
Graph Cache. 

3.1 Rule Matching 
Forward-chaining Rule Systems (or "production systems") 
such as OPS-5 are programming languages with match as 
their control element. Program data is organized into a set 
of rules, having left-hand-side (LHS) tests and RHS actions. 
External input (often called "working memory") comes from 
a slowly varying set D of data objects. If a rule's tests 
match objects, the rule becomes a candidate for firing; when 
executed, its actions serve to modify D. 

Following common practice, we fix the form of the rules' 
LHSs to be a set of conjunctive conditions, each condition 
containing tests restricting the set of matchable objects. An 
instantiation of a rule having n LHS conditions is an n-tuple 
of objects satisfying the rule's LHS tests. On every inter­
action cycle, the rule evaluator must try to match each rule 
against all possible combinatioas of objects in D, forming 
its set of instantiations 

which applies a set of tests to a set of objects, producing a 
filtered set of n-tuple instantiations. 

Production systems are persistent, in that they 
1. maintain their knowledge in a finite set of ex-

perientially derived programs (the rule set), 
and 

2. apply all programs to all available data on 
each interactive cycle. 

They are also inefficient. Consider just one rule having n 
conditions matching against only two data objects- the set of 
candidate instantiations Dn grows exponentially in n. In 
fact, conjunctive rule matching is NP-hard [Minton, 1988]. 
Generally, however, only a small fraction of the object set 
changes each cycle. So instead of rigidly applying all rule 
programs to the data, perhaps the incremental changes to 
data should drive the matching computation. 

For each rule program in the rule set specifying some 
tests in TESTS, Atoc/i(tests,D) is the computationally ex­
pensive subprogram. Observe that with 

P = Match, x = tests, and y = D, 

1.x is independent of the external data input D, 
and 

2. the conjunctive matcher P(x,y) is programm­
able so that P's control is independent of y 
(e.g., Section 3.2). 

Therefore P is basic, and Call-Graph Caching wi l l generate 
an efficient state-saving structure-sharing incremental 
Matching algorithm. 

3.2 Transforming Rule Matching into RETE Networks 
We illustrate the use of Call-Graph Caching by generating 
the RETE network from a simple functional programming 
specification of the matching function. 

1. We stan from an easily specified, though in­
efficient, set of functional programs. 

2. Using an auxilliary Control-Flow Cache, par­
tial evaluation of the basic program 
match(T0X>) produces a call-graph capturing 
match9(D)'s control flow. This call-graph is 
usable as an incremental data-driven 
state-saving NETWORK program which can 
store processed input data as intermediate 
matching results. 

3. The Call-Graph Cache merges the individual 
call-graphs in order to conserve space, and 
achieve some speedup. This is done by test 
sharing: nodes with common test prefixes are 
combined to form a single trie data structure. 

We now detail this construction of the RETE network algo­
rithm. 

3.2.1 Rule Matching as LISP Programs 
A rule specifies a fixed set of tests T0 for its match com­

ponent. The conjunctive match program Match(T0,D) can 
be formulated so that its control is independent of working 
memory D. We now write such a filter Match as a 
functional-style LISP program. 

For efficiency on a serial processor, we first impose a 
fixed ordering on the rules' conditions. Each test examines 
one or more objects in a candidate n-tuple e D n ; these 
objects are now ordered by the condition ordering. We now 
order the test set: associate to each test the number of the 
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last object it examines, and arrange the tests with respect to 
this index. For efficiency, the match is performed by a 
conditional AND, testing a candidate n-tuple against the 
first test subset, then the second, and so on through the nth. 
Within the kth test subset, k < n, the tests may be further 
grouped into two classes: 

A. alpha tests on a single object e D, and 

B. beta tests on more than one object, i.e., k-
tuples € Dk. 

There are many ways to write the LISP code for this 
simple filter (e.g., as one function, iteratively, recursively, 
etc.). While the CGC transformation is independent of pro­
gramming style, for clarity, we present Match using linear 
recursion. 
; Match r u l e ' s t e s t s a g a i n s t t h e d a t a , 
( d e f i n e match ( t e s t s da ta ) 

( b e t a - j o i n 
( f i r s t t e s t s ) 
(second t e s t s ) 

d a t a ) ) 
; J o i n t o g e t h e r t h e p r e c e d i n g s i f t and 
; j o i n s e t s w i t h a f i l t e r i n g b e t a t e s t , 
( d e f i n e b e t a - j o i n (A B D) 

( i f ( n u l l A ) 
M O ) 
( f i l t e r ( f i r s t B ) 

( s e t - p r o d u c t 
( a l p h a - s i f t ( f i r s t A) D) 
( b e t a - j o i n 

( r e s t A) ( r e s t B) D ) ) ) ) ) 
; S i f t t h e o b j e c t s w i t h a l p h a t e s t s , 
( d e f i n e a l p h a - s i f t (A D) 

( s e t - f i l t e r A D)) 
Match takes a preordered set of tests, and a set of data 

objects as its arguments. The key interesting function is 
beta-join, which merges the simple alpha-sift filter with fur­
ther recursive calls to beta-join; this produces a linearly 
recursive call-graph. Note how the tests in match's tests 
argument are deposited locally at each level of filtering, and 
that no control decisions are made using the data argument. 

The auxilliary function set-filter returns the subset satis­
fying some predicate tests, while the function set-product 
operates similarly on a pair of sets. 

3.2.2 Building the Call-Graph 
STEP 1. For any mle r, calling EVAL' on 

matchitcsts. ,D) with the set of labels (match, alpha-sift, 
beta-join) will save the calling structure of the rule's tests. 
The control-flow cache is used with the functional program 
match to store to the growing call tree. As shown in Figure 
3 A, the call-graph has a linear spine, with the appropriate 
tests localized at each node. 

STEP 2. In Figure 3 B, the free input variable data is 
attached to the call-graph as an input source, turning the call 
tree into a DAG. 

STEP 3. The graph structure of this single rule's match 
component can now be completed. Memory for the intra-
cycle buffer and the inter-cycle store (and other 
information) can be specialized into a specific graph 
representation. This call-graph can be reused as a bottom-
up NETWORK filtering program. In Figure 3 C, the 
domains of the filtered objects are shown. 

Using the buffer memory, partial order traversal of the 
call-graph from the data computes the filtered instantiation 
subset of Dn. If the nodes' longer-term store memories are 
initially loaded with D (and then continually updated), only 

Figure 3: CGC on a linearly recursive conjunctive matcher. 

changes to the object set AD are needed for computing fur­
ther instantiations. That is, the call-graph is a incremental 
state-saving data-driven NETWORK program for comput­
ing the state of a single rule's match. 

This is not surprising: Figure 3 D shows the RETE net­
work beta join topology, which is isomorphic to the Match 
call-graph in Figure 3 C. 

3.23 Collecting Call-Graphs 
A rule system is comprised of a finite set of rules; we 

therefore form the corresponding set of call-graphs, one for 
each rule's match component. This set is the Call-Graph 
Cache. One cache management strategy for conserving 
cache space (with some associated speedup) is to merge the 
call-graph DAGs into one connected network. The 
matcher's behavior is unchanged if, proceeding from the 
data input source, nodes are merged based on prefix sharing 
of tests. A succession of call-graphs merging into a com­
mon beta-join node trie is depicted in Figure 4. 

When an alpha discrimination net is added to the beta join 
trie, the classical RETE match network is generated. We 
implemented this addition by modifying the alpha-sift LISP 
function to perform its tests tail recursively. This illustrates 
how CGC readily produces new desired network topologies 
from small changes in LISP program specifications. 

3.2.4 Using the Call-Graph Cache 
Partial Order traversal of the RETE network will perform 

the match of the rule set (cached as a shared set of call-
graphs) against working memory input D. The intracycle 
buffer and intercycle store memories at each node are used 
as a data cache to preserve the partial match computations 
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(within and between) each cycle. Working memory ele­
ments are then incrementally added or deleted from these 
memories. 

33 Alternate Join Topologies 
Call-Graph Caching generates more than RETE networks: 
one application is the generation of families of efficient con­
junctive matchers. By making simple variations in match's 
LISP specification, and changing which key function names 
are cached into call-graph nodes, many different join 
topologies can be designed, easily specified, and automati­
cally constructed. Also, there are other Call-Graph Cache 
merging strategies besides trie-based prefix sharing. 

The RETE example was described above: a linearly 
structured call graph. One known alternative approach is to 
not cache the beta join nodes [Miranker, 1987]. Another is 
to structure the call graph as binary tree [Stolfo, 1982], 
reducing the long linear chains problematic in RETE. We 
are currently exploring and assessing a variety of new join 
topologies using CGC as a rapid prototyping tool. These 
topologies can be custom tailored to task-specific require­
ments, such as learning or parallelism. 

4 Other Uses 

With general recursive computation, actions (e.g., floating 
point arithmetic, file access) are often expensive, whereas 
actions' control organization and input data can be unin­
teresting. With intelligent systems, however, actions (e.g., 
precomputed motions, user queries) are commonly mun­
dane; it is the sequencing of such actions to achieve con­
crete goals that is complex and computationally difficult. 
Since the CGC method explicitly records such control deci­
sions for subsequent modification and reuse, it provides 
both a conceptual framework and an implementation 
strategy. In script-based planning [Schank, 1977], for ex­
ample, knowledge-based action sequences are retrieved, and 
each simple action step is replayed. Analogical 
reasoning [Carbonell, 1983] can extend this retrieval by 
transformations of retrieved plans. Other applications of 
CGC in AI are discussed below. 

4.1 Control-Flow Caching 
The control-flow cache may simply record the unraveling of 
an execution tree over time, as in the RETE example, or 
take a more active role, such as enabling constraint-directed 
dynamic programming. For example, in efficient context-
free parsing, each graph node represents an individual firing 

of a grammar production; the control-flow cache (or 
"chart") records past firings to constrain future ones. 

If rule firings are recorded as CGC nodes, the call-graph 
of a rule system's problem solving instance forms a trace of 
the rules' executions. This record (DAG) of the rule and 
data dependencies may then aid in consistency maintenance 
analysis for exploring alternative reasoning scenarios. Here 
the call-graph would form a NETWORK program utilizing 
its data cache, with ground instance changes incrementally 
propagated via DAG traversal. 

4.2 Call-Graph Caching 
Persistent processes maintain their knowledge in a program 
cache; this cache is augmented or modified as the 
knowledge changes over time. When the cached programs 
have call-graphs with sufficient redundancy (e.g., are basic), 
the knowledge may be compiled into an efficient Call-
Graph Cache network. For example, consider the rule trace 
discussed above: DAGs representing arbitrary rule execu­
tion are not likely to share similar morphology, and, there­
fore, they are not usually cached as networks. Rather, such 
call-graphs are abstracted into networks having a single in­
ner node (or "chunk") using EBG [Mitchell, 1986] or some 
other execution trace generalization method. These 
reformed networks have sufficient operationality to then be 
reused in the program cache, resulting in potential efficiency 
improvements. (In some systems [Laird, 1986], they may 
be compiled into RETE networks at a lower level of abstrac­
tion for further efficiency gains.) 

There are many common persistent processes comprised 
of basic programs. For example, a (multiple) inheritance 
network will be automatically generated as the cached call-
graph set from the process of successive subset classifica­
tion on some input set. As another example, window sys­
tems may be thought of as caching an inefficient "painter's 
algorithm" redisplay execution into a call-graph based on 
the in-front-of relation. Efficiencies accrue since, in 
general, the data inside the windows is independent of win­
dow redisplay. 

4.3 Extensions 
CGC is applicable when persistent interactive intelligent 
systems are comprised of basic programs. Since not all 
programs are basic, we consider how to use CGC under 
weaker assumptions. 

As in Section 2.3, let P'(y) be a partially evaluated 
program. P\y) need not have a unique call-graph for CGC 
to be useful. As long as its set of call-graphs is manageable, 
some caching strategy could succeed. For instance, P'(y) 
might have only a small finite number of call-graphs. Alter­
natively, a skewed distribution of P'(y)'s call-graphs could 
probabilistically ensure manageability. Extending the 
RETE match example, when disjunction (i.e., choice) is in­
troduced into primarily conjunctive rules, there is still much 
redundancy in control flow. Though weaker, this redun­
dancy is effectively exploited in RETE-based OPS-5 via 
copying and conflict resolution. 

4.4 Future Work 
The CGC transfonnation lets us reexamine many network 
algorithms impartially evaluated programs which have their 
call-graphs preserved. Further, as with RETE, it may be the 
case that reformulation of the network into a new program 
in some appropriate language leads to clearer specification 
of the algorithm. Since NETWORK-like efficiency is 
guaranteed by the CGC transfonnation, improvements can 
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then be effected in the abstracted programming language, 
rather than in the low-level NETWORK language. 

Conversely, given a clear specification of a set of 
programs in some language, when control-flow redundancy 
is present (whether guaranteed by the "basic" property, or 
simply empirically observed) CGC becomes another route 
for improving performance. Possibilities include: 

1. Refining classic state-saving incremental net­
work algorithms where call-graph redundancy 
has already been observed 

2. Reexamining inefficient AI architectures for 
reusable redundancy in control-flow. 

3. Developing new and efficient persistent inter­
active processes by starting from precise, in­
efficient programs that have sufficient control-
flow redundancy for the CGC transformation 
to succeed. 

5 Conclusion 

The Call-Graph Caching program transformation is simpler 
than many modem compilation techniques. Nonetheless, 
CGC can mechanically transform programs having suf­
ficient control-flow redundancy into highly efficient in­
cremental counterparts. CGC's chief practical use is in 
rapidly specifying (and testing) complex network algorithms 
as simple programs in ordinary programming languages. 
This was demonstrated with the RETE matching example. 

Intelligent systems, unlike fully general computation, 
must often rely on viable sequences of actions in order to 
solve their problems. To the extent that such systems ex­
ploit redundancies in their control (i.e., sequencing) deci­
sions as they evolve over time, CGC can help in the analysis 
and implementation of this aspect of intelligence. We there­
fore suggest that the caching and reuse of call-graphs could 
prove applicable to a broad range of problem areas and tech­
niques in AI. 
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