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Abstract

The satisfiability problem for a syllogistic em-
bracing 6, E, Boolean set operations, the Ku-
ratowski topological closure operation ~, and
continuous and closed maps between topologi-
cal spaces, along with the operations of point
evaluation, set image, and inverse set image, is
solved for formulae that meet a particular syn-
tactic non-circularity property.

The unquantified interpreted language £2 to
be considered has infinitely many sorts of vari-
ables, each corresponding to a different topo-
logical space. Three kinds of variables are avail-
able, namely, individual, set, and map vari-
ables. Individual variables of a given sort are
supposed to range over the universe of that
sort, whereas set variables range over the sub-
sets of the appropriate universe. Finally, each
map variable ranges over the collection of con-
tinuous or closed maps between two appropri-
ate topological spaces.

1 Introduction

Once a decision algorithm has been found for a formal-
ized mathematical theory T, it is rewarding to discover
that the validity problem for some other theory T*, pos-
sibly related to a different branch of mathematics, re-
duces to the validity problem of T, which one is already
able to solve.

Instances of this are common in the literature. We
are therefore motivated in undertaking a quest for new
problems whose solution is amenable to 'computable set
theory', i.e. to the thick cluster of recently attained
methods regarding various portions of classical set the-
ory (see [Cantone, 1988] for an extensive bibliography
on this subject). Some indications in this direction have
been given in [Cantone et a/., 1987], where the satis-
fiability problems of two theories dealing with mono-
tone functions on totally and partially ordered sets have
been translated into MLS, or "multi-level syllogistic"
(cf. [Ferro et al., 1980]), a well-k nown decidable theory.
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Specifically, it was shown there how to reduce to MLS
the satisfiability problem for propositional combinations
of atoms of type

<y,

up(f) ,
strict.down(f) ,

y=f(z),
strictoup(f)

=y,

down(f) ,

where / stands for a monotone function.

In the same paper a decision test was provided for
the satisfiability problem of an unqualified 'extended
Tarsia' theory of reals with variables designating contin-
uous real-valued functions, based on Tarski's celebrated
result on the real field (see [Tarski, 1951]). Such theory
allows real addition and subtraction, multiplication and
division, and comparison between variables representing
real numbers; also, addition and subtraction of (contin-
uous) functions, function evaluation, positivity, mono-
tonicity and convexity predicates are allowed. More pre-
cisely, a decision test was provided for propositional com-
binations of atoms of the types

r=y+z, r=y-z, >0,
y=/[(z), f=g9+h, f=g,
>, up{f) , down(f) ,

strict.up( f) , strict_down( f) ,

convex(f, z, Y).
concave(f,z,y) ,

where x,y,z are real variables and f.g,h are
function variables, and where convex(/, x, y) [resp.
concave(/, x, y)] is true if and only if the function / is
convex [resp. concave] in the real interval [x,y].

Additionally, an extension of Tarski's theory with
multi-variate continuous functions has been considered
in the same paper (see [Bledsoe, 1977, Bledsoe, 1984,
Rabin, 1969] for other approaches on related problems).

In this note we give a further application of deci-
sion tests for set theory to theories involving elemen-
tary topological constructs. More specifically, we extend
two-level syllogistic [Ferro and Omodeo, 1978] with the
Kuratowski topological closure operation , and with
continuous or closed maps between topological spaces,
along with the operations of point evaluation, set image,
and inverse set image (cf. [Kelley, 1961]).

We will assume that formulae satisfy a syntactic non-
circularity property (to be specified below).

The language £%°° of our topological two-level syl-
logistic has countably infinitely many different sorts of
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variables, each sort corresponding to a different topo-
logical space. We will distinguish between individual,
sef, and map variables. Individual variables of a given
sort n are supposed to range over the universe of sort
n, whereas set variables range over the set of all subsets
of the appropriate universe. Finally, each map variable
ranges over the collection of continuous or closed maps
between two appropriate topological universes,

As in [Ferro and Omodeo, 1978], the language £3
does not allow quantification (either universal or exis-
tential).

In the following section, we will give in detail the syn-
tax and semantics of £2*°. Also, we will specify a sub-
class of formulae of £2:°° for which, in a subsequent sec-
tion, a decision procedure for the satisfiability problem
will be produced.

2 Syntax and semantics of £¥*,
Acyclicity

£3* is a two-level multi-sorted language with func-
tions, containing for each natural number n two denu-
merable sequences of variables, called individual vari-
(z(ﬂ) (n) (n)  (n)

ables yor by WL seen €tc) and sel veriables
(xf,"’,x{"’,. . .,Y("),Yl("),. .., etc.); the constants 0(")
and 1{") (designating the empty set and a ‘universe’,
i.e. the support of a topclogical space); the unary op-
erators ‘(") (") (designating set complementation and
topological closure). The usual binary set operators U,
N, \ (designating union, intersection, and set difference)
are also available.

In addition, for each pair {(n, m) of natural numbers,
there are two denumerable sequences, one consisting of

continwous map variables (f"™ 5 ™) ) and one of

closed map variables (g(" m),gg" m} o)

Finally, the language L3 contams the usual relators
=, €, C, the propositional connectives —, &, V, —, —,
and parentheses,
Individual terms and set {terms of sort n, for each n,
are deﬁ 7? :g.s follows. If (*) is an individual term of sort
are set terms of sort n, f(™") g(".m} are g
contmuous and a closed map va.rlable of type (m,n) and
(m, m) respectively, and A(»™) stands for a continuous

or closed map variable of type (n,m), then Tl{") W] T:(,"),

Tl‘")ﬁTé"), Tl(")\Téﬂ), (Tl("))', Tl{") are set terms of sort
n, and A m(U), (A1 [T(™), glrm){T{™) are set
terms of sort m. Each individual variable of sorl n is an
individual term of sort n. Each set variable of sort n and
the constants 0("), 1(") are set. terms of sort n.

Formulae of £2° are propositional combination of
atoms of the forms

tg"} e Tl(ﬂ) :

t(“) t(“)
T.(n) T(ﬂ) 7-.1(1'1) c T'z(ﬂ) ,

where t{") t[ ) are individual terms of sort n and

T(") T( are set terms of sort n, for some natural num-
ber n.

The semantics of the language £2* is defined in the
most natural way. So, a fopological assignment M is
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any interpretation of the variables and constants of £
such that M1{®) is a non-empty set endowed with a
topology r("); M({") is the empty set; Mz(™) is an ele-
ment of Ml(" for each individual varlable z(n): M X ()
is a (possibly empty) subset of M1"); U, N, \ are
interpreted as binary set union, set intersection, and
set difference in the space M1("); ™) ig interpreted
as sel complementation in M1}, (") is interpreted
as the closure operation within the topological space
(M1} #(7)), M (") is a continuous map from the
topological space (M 1("), (")) into the topological space
(M1 +(m)) for each continuous map variable f(*™)
in £2%°; Mg»™ is a closed map from (M](") ("))
into (M10™) +(m)) for each closed map variable g{™™)
in L2,

A formula p of £% is said to be topologically satisfi-
able if there is a topological assignment M such that pM
18 true.

p is said to be topologically valid if pM
topological assignments M.

For ease of presentation, we require that all spaces are
pairwise disjoint,

To each formula p of £2:, we associate a graph G, =
(Np, Ep), where N, = {1g,41,...,ic} is the set of all sorts
of individual and set variables present 1n the formula p.
The edge ig =% 35 18 in E, if and only if either p contains
some occurrence of a continuous map variable of sort
(i, 1), or p contains some occurrence of a closed map
variable of sort (¢, 1,). Then we say that a formula p of
L2 is acyclic if its associated graph Gp is acyclic.

Notice that an acyclic formula cannot contain any oc-
currence of map variables of sort (n,n).

In the next seclion we will give some evidence that Lhe
language £% is quite expressive. In fact, most of the
elementary concepts and properties that can be typically
found in the first chapters of introductory textbooks on
general topology are expressible in £2°° (and therefore,
as will be shown in the following, automaltically verifi-
able).

In the subsequent section, we will skelch a decision
procedure to solve the satisfiability problem for the sub-
class of acyclic formulae of £2*. By virtue of the
acyclicity assumption we will be able to eliminale map
constructs quite smoothly. This fact coupled with a tech-
nique for eliminating also the closure operator = will al-
low us to reduce the satisfiability problem for acyclic
L3> _formulae to the problem of testing ordinary satis-
fiability of two-level syllogistic formulae. Therefore our
deci(iability result will follow from [Ferro and Omodeo,
1978|.

is true for all

3 Some examples

Several basic notions of general topology can be formu-
lated in the language £%°°. Some operators immediately
expressible are:

o Int(A) =per (A’) (the interior of A);
e Ext(A) =per Int{A’) (the ezterior of A);
o 8(A) =per A\ Int(A) (the boundary of A).



Also, the following topological predicates are expressible
in the language £

o open(A) =per A= Int(A) (A is an open set);
o closed(A) =per A=A (A is a closed set);

o open_domain(A) =pe A = Ini(4) (A is an open
domain; see [Kuratowski, 1922]);

e neighborhood(A,a) =per a € Int(A) (A is a neigh-
borhood of a};

o dense(A) Sper A =1 (A is dense in the space 1);

o co_dense(A) =per dense(A’) (A is co_dense in the
space 1);

o nowhere_dense(A) =Def co-dense(ﬁ) (A is

nowhere.dense in the space 1).

Observe that, in gen-
eral, for each formula ¢(z,,...,z,) with free variables
Zy,...,Zq, the following are equivalent

o ¢(z1,...,2,) is satisfiable;

o (Jzy)...(3z,)d(z1,. .., 2n) is valid;
e =(Vz).. . (Vz,)-d(z;, ..

Therefore, any satisfiability test for an unquantified the-
ory T closed with respect to negation provides a validity
test for the universal and the existential closures of the
formulae in T .

Since the class of acyclic formulae of £ is closed
under negation, it follows that the validity of the follow-
ing statements can be recognized by a salisfiability test
for acyclic formulae of £2:%°:

., ZTp) 18 valid.

(a) the intersection of two open domains is an open do-
main;

(b) the union of two open domains need not be an open
domain;

(¢} if A and I} are open domains, then
ACB~ACTBH,;
(d) ® = @, and for all A and B
ACA,A=A,A08 = AUB

(Kuratowski’s closure azioms);

{(e) if A is co-dense and B is nowhere dense, then AU B
is co-dense;

(f) the union of two co-dense sets is not necessarily a
co-dense set;

(g) for all subsets A of a Lopological space U,
Int{(AYudAUInt(A") = U;
(h) for each continuous map f and each set B,
S Int(B)) € Int(f~'(B));
(i) for all A,
Int(A) C Ext(Exi(A)) ;

(3) every continuous map is locally continuous, i.e., for
all z, if B is a neighborhood of f(r), then f~!{B] is
a neighborhood of 2. '
It will turn out that the decision test to be described
in the next section is “constructive”, in the sense that
whenever a formula is recognized satisfiable, a model for
it can be effectively constructed. In other words, our
test can provide counter-examples for unvalid universal
formulae. So, for instance, in the case of statement {b)
above, our procedure besides proving its validity, can
actually exhibit a topological space with two open do-
mains whose union is not an open domain. Analogously
for statement (f),

4 The decision method

(iiven any acyclic formula p, we can assume without loss
of generality that (a) the set N, = {{, 45,...,0z} of
all sorts of individual and set variables occurring in p
coincides with {1,2,...,k}; (8) if the edge i = j is in
Gp, then 1 < §.

In addition, by using a simple normalization proce-
dure, it 1s easy to see that the problem of topological
satisfiability for acyclic formulae of £#*° can be reduced
to the problem of testing for topological satisfiability
acyclic conjunctions of literals of type

r=y, £y, y=J(z),
y=glz), ze X, X=0, \
X=1, X=sp], v=gx, O
X=¥, X=YuzZ, X=VY\Z,

where z,y stand for individual variables, f and ¢ for a
continuous and a closed map variable respectively, and
XY for set variables. In fact, for example, terms of type
T and T3 NT, can be replaced by 1\T and T3\ (T2 \ T2),
respectively.

Any acyclic conjunction of literals of type {1) satisfy-
ing properties {(a) and (b) above is called a normalized
acyclic formula.

We describe an effective procedure that given a nor-
malized acyclic formula p of £ produces a formula p**
in the multi-sorted sublanguage £** of £** in which nei-
ther map terms of type h(t), 1T, ¢[T7], nor topological
terms of type T can occur and such that p is topologically
salisfiable if and only if p** is (topologically) satisfiable.

Let p be a normalized acyclic formula of £2%° and let
k be the largest sort of any variable in p (i.e, Np =
{1,2,....k}).

Below is the procedure for eliminatling map and topo-
logical terms from p. (Throughout the following proce-
dure, calligraphic capital letters are used to denote sets
of variables or sels of scts of variables.)

ELIMINATION PROCEDURE
1. Initialize ¢ to the empty conjunction.

2. Initialize CLOSED(7) to the empty set, for each i =
L,....k

3. FORi=1TOk DO

3.1. Let. V) be the collection of set variables of sort
i present in p and in the auxiliary conjunction

q.

Cantone and Omodeo 427



3.2.

3.3.

34.

3.5.

3.6.

3.7.

3.8

3.9

3.10.

3.11.

428

For each 8() ¢ Pow(V(")), introduce a brand

new set variable C‘(;) (of sort f); also, for each

X®) in Y0 introduce the shorthand notation
K% =vet Ciixy)-

(K‘(‘:‘) i3 intended 1o denote the closure of X,
whereas the Cg) ‘s will be the closed sels of the
topology over 103,)
For each S0} C Pouw(V()) add to ¢ the formula
CgJ = ﬂ U Kf‘i},

QES Xe@
where, f Q =0, Uy o KE,;) stands for the con-
stant 00 and, if $¢) = @, the right-hand side
stands for the constant 1)
For each X{*} in V() add to ¢ the formula

x® ¢ kY.

For each X) in V() and $¢) C Pow(V()) add
to g the formula

x® e o kP cod,

Put _ ) . .
K© = (K : x® is in YO}
and
W) = v 4 xc),
For each QU} C W) introduce a brand new set

variable Pg) of sort i (Pg) is tntended lo rep-
resent a region of the Venn diagram associaled
with W as ezpressed by the following three
formulae),
For all @V, @7 c W, Q) 2 @) add to g
the formula
() (6) _ pley
Py NPy =0,

] 4

For all W) in W) add to ¢ the formula
wo= ] PY.

egwin
LQaw

For each S C Pow(V()) add 1o ¢ the formula

U po

agwis)
(YO, ESNAXNEQ J(K x €Q)

Cg) =

where, if there is no @ € WX) such that (VQ, €
SY3X € Q1) Kx € @), the right-hand side
stands for the constant 0¢). (Tn view of 3.8
and 3.9, this formula 1s equivalent {0 3.3.)
For each X in CLOSED(:), add to ¢ the for-
mula .

X® = g©,
{See comment lo step 3.2; see also sleps 9.16,
.19 below.)

Automated Deduction

3.12,

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

For each Q("? C W0 and each continuous map
variable fU+#) of sort (j,i) in p (witl_l j> i)
introduce a brand new set variable PQ"J of sort
j and add to g the formula

() _ i () _ U
PY =09 — pY) =0V

(Pg} will stend Jor the
set term (f(j"'))(‘l)[Pg)], as erpressed by the
following three formulae).

For each @\, 0% ¢ w®), @i 2 04 and
each continuous map variable fU+} of sort (j, )
add to g the formula

(5 Uy _ gt
PGl NPy, , =070
For each W{) in W) and each continuous map

variable fU9 of sort (j,7) in p introduce a

brand new set variable W’}j) of sort j and add
to ¢ the formula

7 _ (i)
W! - U PQ.!
agwid
Q3w

(W}j) will stand for the set  lerm
(fENDIA ]},

For each continuous map variable fU+) of sori
(7,1) in p add to ¢ the formula

1= |

QCwo)

{1
PQJA

For each S} C Pouw(V{")) and each continuous
map variable f7%) of sort (j,4) in p introduce a
brand new set variable Cg} of sort 7 and add
to g the formula

cg) = U

egwin)
LIYQESHINEL HE x EQ)

{5l
Pays

where, if there is no Q € W) such that (VQ, €
S)3IX € ) Ax € Q), the right-hand side
stands for the constant 003!,

Also, add €} to CLOSED(j).

(Cé"} stand  for the sel
(SIRYDICEN.)

For each Q'Y C W) and each closed map vari-
able g'*7) of sort (4, ) in p (with j > {) intro-
duce a brand new set variable Ps[?”v
and add to ¢ Lhe formula

will term

of sort j

(i) _ (i) 5y _ nts)

(Pg,; will stand for the set term g“'j)[PS)]).

For each W) in W) and each closed map vari-
able g(4) of sort (i, j) in p introduce a brand



new set variable WF )

of sort j and add to ¢ the
formula

i) — ()
wi= U Pa,
egwiv
&EQ3W

(VV,U) will stand for the sel term gl [W()]),
For each S) C Pow(V)) and each closed map
variable g} of sort (i,7) in p introduce a
brand new set variable Cgi of sorl j and add
to ¢ the formula

{i}y _ U ()
Cs-s - PQJ’
qgwli
E(VQ ESAXNEQ KX €Q)

where, if there is no @ € W) such that (VQ, €
SY3X € Q)(Kx € Q), the right-hand side
stands for the constant 004).
Also, add C§) to CLOSED(j).
(Cg_: will stand for the set term (g0-3)[CV).)
4., END FOR.
5. For each literal yl) = g0 (z()) in p and each Q C
W, 1 <i<j<k, add to g the formula
29 € P s i) € P,
6. For each literal i) = f(.3)(2()) in p and each Q C
W) 1 <i<j<k, add to ¢ the formula

yepry —9ery)

3.19.

7. For each pair of literalshyhr?) = h("""}(x(li}), yﬁf’ =
A6 (2) in p, with RU9) a continuous or closed
map variable, 1 < i, j < k, add to ¢ the formula

(3)

A )l < )

8. Let p* be obtained from p by substituting
each term Y in p by I\'gf),
each term (fU:))-1[y()] by Yfm,
each term gt X ()] by x$,
and by dropping from p all literals of type y = A(z),
with z, y individual variables and h a map variable.
9. Let p** be the conjunction p* & q.
10. Return p**.

Qur satisfiability result is an immediate consequence
of the following lemmas,

LEMMA 4.1 p is topologically satisfiabie if and only if

P is satisfiable.

Proof. Clearly, any topological model M for p can be
naturally extended to an ordinary model M** for p**,
by putting, for instance,

MW" =pg (MfEN)MWE,
Mt-}‘.»‘(;) =Def M*=X(® ,

M..C‘(;] =Der n U M-- I{(Af) ,
QES XeQ

etc, .
At this point, it is an easy matter to show thai M**
is indeed a model for p**.

Conversely, given a model M** for p**, we can assume
that

M= PS| > 1M P§)L, (2)

for all @ C W(*) and for all closed map variables g}
of sort (4, j) occurring in p, 1 € ¢ < j < k (otherwise a
suitable “enlargement” procedure could be used to force
(2)).

By (2), one can then define M=*g03) as any map G

from M**1) into M**1U) such that
wo i)y _ 3 pee pli)
GM™ Py =M P3g
for all Q) C W(‘}: '

Likewise, M"f("-f) can be defined as any map F from
M**1®) into M**119) such that

-1 we plil _ agus pli)
FIM™Pi’ =M Poy s
for all Q) - wi),

In addition, it can easily be verified that

T(t} - {M..I[‘)\M“Cg) . Lg‘(l‘] g Pou(vf!})}
is a topology over M**10) for1 < i< k.

By inspecting the Elimination Procedure, it is easy to
see that the assignment A ** so extended is a topological
model for p. For instance, if X = Y6} is a literal
in p, then by step 8 of the Elimination Procedure, p*
contains the literal X0 = I\'{f}. Hence, Af** X)) =
M* R}, and since M™K}) = M**C[\,, is dosed,
one only needs to show that if Af**Y ) C M""Cg) then

M XD ¢ M=CE for all 8O C Pow(VH). But this
follows at once from clauses added to ¢ at step 3.5 of the
Elimination Procedure.

This concludes the proofl of the lemma. [ ]

So far, the topological satisfiability problem for the
class of acyclic formulae of £2™ has been reduced to
the ordinary satisfiability problem for the class of for-
mulae in the sublanguage £**. To further reduce this
latter problem to the satisfiability of the two-level syllo-
gistic language (2.5 in short) considered in {Ferro and
Omodeo, 1978, the following simiple procedure can be
used 1.,

Let p** be a formula of £** and assume that p** in-
volves individual and set variables of sortsin {1,2,..., &}
only. Let 1 and 0 be the constants of 2LS language (de-
noting the universe and the empty set, respectively).

-

1. For each 1 < i <k, introduce a brand new 2LS set
variable U/; (which will denote the constant 1y,

2. For each set variable X) [resp. individual variable
20)} of sort i in p**, introduce a brand new 2LS set
[resp. individual] variable X; [resp. z;] of 2LS.

tsee also [Cantone et al., 1988] for a reduction of the satis-

fiability problem for 225 to the same problem for the multi-
level syllogistic langnage MLS.
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3'. Let p be the 2LS-formula resulting by substituting
in P-ﬂ
each occurrence of 1) by U;, for 1 < ¢ < k,
each oceurrence of 0() by 0, for 1 < i < &,
each occurrence of X() by X;, for 1 <i <k,
each occurrence of z{*) by z;, for 1 < i <k,

and by adding the conjunctions
(&15.‘51; Ui#0) & (&19'(;'5& U;nt; =0)

(which expresses that the universes U;’s are non-
empty and pairwise disjoint) and

(&X(l) in P X" g Ul) & (&,(i] in P Is E U|)

(which expresses that the variasbles X; and x; are of
sort i, 1 < i< k).

Then we have

LEMMA 4.2 p** is satisfiable if and only if p is salis-
fiable. ]

Thus, by [Ferro and Omodeo, 1978}, we obtain

THEOREM 4.3 The class of acycelic formulae in the
language £ has a solvable satisfiability problem. O

Slight modifications of the Elimination Procedure al-
low one to add the map predicates injective and surjec-
tive, without disrupting the decidability of the satisfia-
bility problem for acyclic formulae.

Facing slightly harder technicalities, one could also al-
low in the language C?°° the predicate

",

X is an accumulation point of X "

and the operator Der(X) (where Der(X) stands for the
set of all accumulation points of X, i.e. the derived set
of X) without undermining decidability.

An interesting open problem is if one could relax the
requirement of acyclicity, without losing decidability.
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