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A b s t r a c t 

In a recent paper , G insbe rg shows how a 
b a c k w a r d - c h a i n i n g ATMS can be used to con
s t ruc t a t heo rem prover for c i r c u m s c r i p t i o n . 
Here, th i s w o r k is ex tended to handle prior
itized c i r c u m s c r i p t i o n . T h e ideas to be de-
scr ibed have been i m p l e m e n t e d , and examples 
are g iven of the sys tem in use. 

1 I n t r o d u c t i o n 

Of al l the approaches to n o n m o n o t o n i c reasoning, Mc
C a r t h y ' s c i r c u m s c r i p t i o n [ M c C a r t h y , 1980, M c C a r t h y , 
1986] seems to be the mos t popu la r . A great deal of 
work has gone i n t o the deve lopmen t of new versions of 
c i r c u m s c r i p t i o n designed to address var ious p rob lems in 
commonsense reasoning. M u c h less wo rk , however, has 
gone i n t o the deve lopment o f me thods by wh i ch these 
fo rma l i sms m i g h t be i m p l e m e n t e d . In [G insberg , 1989], 
G insberg shows how a backward -cha in ing ATMS can be 
used to cons t ruc t a t h e o r e m prover for c i r c u m s c r i p t i o n . 
Here, th is w o r k is ex tended to hand le prioritized c i r cum
sc r i p t i on . 

In [G insberg , 1989], the f o l l o w i n g procedure is g iven to 
de te rm ine whe the r a p a r t i c u l a r sentence q fo l lows f r om 
the c i r c u m s c r i p t i o n a x i o m . F i r s t , you cons t ruc t a de
fau l t p r o o f d for g, where d is a f o r m u l a ob ta ined by 
con jo i n i ng and d i s j o i n i ng i ns tan t i a t i ons o f negat ions o f 
the pred ica te be ing c i r cumsc r i bed . T h e n , you a t t e m p t 
to u n d e r m i n e th i s p r o o f by cons t ruc t i ng a defau l t p roo f 
for ¬d . I f y o u canno t u n d e r m i n e the o r i g ina l p roof , then 
q is a consequence of the c i r c u m s c r i p t i o n . 

T h i s p rocedure i m p l e m e n t s para l le l c i r c u m s c r i p t i o n 
since a l l the de fau l ts are t rea ted equal ly . For a lmost 
a l l app l i ca t ions o f n o n m o n o t o n i c reasoning, however, i t 
is necessary to establ ish a p r i o r i t i z a t i o n a m o n g the de
fau l t s . In i nhe r i t ance h ierarch ies, for examp le , the gen
eral v iew is t h a t de fau l ts a b o u t a subclass shou ld over
r ide de fau l ts a b o u t i ts superclasses. So i f T w e e t y is b o t h 
a pengu in and a b i r d , the de fau l t t h a t penguins general ly 
do not f ly shou ld have a h igher p r i o r i t y t h a n the defau l t 
t h a t b i rds genera l ly do . 

In th is paper , we show t h a t the above m e t h o d for 
c o m p u t i n g para l le l c i r c u m s c r i p t i o n can be general ized 
to hand le p r i o r i t i z e d c i r c u m s c r i p t i o n by ex tend ing the 
a r g u m e n t cha in to consider a rguments against the p r o -

posed proof of ¬d. One can view the procedure as a 
dispute between a believer B and an unbeliever U. B 
begins by presenting an argument for the desired con
clusion. V then tries to rebut this argument by f inding a 
counterargument at the same or higher priority. B now 
tries to refute the counterargument by finding a counter-
counterargument at a strictly higher priority. This pro-
cess of alternating rebuttals and refutations continues 
unt i l one side cannot answer the other's last argument. 
If B gets the last word, the original sentence follows; if 
U gets the last word, the sentence does not follow. 

In the next section, Section 2, we formalize these in
tuit ions and show that this procedure does in fact cor
rectly compute priorit ized circumscription. In Section 3, 
we provide examples of the implementation at work. We 
finish in Section 4 wi th some concluding remarks. 

2 Arguments, rebuttals, and refutations 

Rather than working wi th the circumscription axiom, we 
wi l l work directly with a set of sentences T and sets of 
sentences D1,.. ., Dn. T contains the certain facts, Dn 

contains the defaults wi th the highest priori ty, and so 
on down to D1, which contains the defaults w i th the 
lowest priori ty. In the partial order corresponding to 
priorit ized circumscription, a model M1 is better than 
another model M2 if for one of the default sets D i the 
set of sentences in Di that hold in M1 is a proper superset 
of the set of sentences in Di that hold in M 2 , and if M1 

and M2 agree on all the the default sets that have a 
higher pr ior i ty than D i: 

D e f i n i t i o n 1 Let T be a consistent set of sentences, and 
let D1, D2,..., Dn be finite sets of sentences. Define a 
partial order on models of T, writing M1 > M2, if the 
following condition holds: 

; and for 

A model that is maximal in this partial order will be 
called D-maximal. 

P r o p o s i t i o n 1 Let T be a set of sentences without func-
tion symbols, such that T includes domain closure and 
uniqueness of names assumptions. Let P be a collection 
of predicates that are prioritized into n levels such that 

1 M[D] denotes the set of sentences in D that are satisfied 
by M. The symbol indicates strict set inclusion. 
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the ones in level n wi l l be circumscribed at the highest 
pr ior i ty , and the ones at level 1 w i l l be circumscribed 
at the lowest pr ior i ty . Let D i b e the set of al l proposi-
tions of the f o rm ¬p(x) where p is a predicate at level i 
and x is a ground instantiat ion of p's arguments. Now 
fo r any sentence q, q follows f rom the priori t ized circum
scription of al l the predicates in P in T while allowing 
all other predicates to vary if and only if q is true in al l 
D-maximal models of T. 

P r o o f This is an easy consequence of Proposition 1' 
in [Lifschitz, 1985]. D 

The assumptions made by Proposition 1 are rather 
strong. It may be possible to relax some of these as
sumptions, but this particular issue is not the concern of 
the current paper. 

Now let us define what we mean by an argument: 

D e f i n i t i o n 2 Let p be a sentence. We wi l l say that p is 
an argument if the fol lowing conditions hold: 

1. p is of the fo rm 

V^dij 

fo r some collection of d i j E D1 U . . . U D n , and 
2. T U {p } is satisfiable. 

The pr ior i ty of an argument is the least k such that the 
argument contains some dij £ Dk .2 

D e f i n i t i o n 3 Let p and q be sentences. We wi l l say 
that p is an argument for q if p is an argument, and 
Tu{p}I=q. 

As discussed in the introduct ion, a priorit ized circum
scription proof wi l l be viewed as a dispute between a 
believer B and an unbeliever U. It is important to un
derstand that B and U are not playing by the same rules. 
B is t ry ing to prove that some query q follows from the 
available assumptions, while U is t ry ing merely to un
dermine B's efforts. Thus the unbeliever U does not 
need to actually refute B's arguments; it is sufficient for 
h im to generate counterarguments that B cannot refute 
himself.3 Therefore, U's arguments may be at the same 
pr ior i ty level as the arguments they are rebutt ing; B's 
arguments must be at a higher level than the arguments 
they are refuting: 

D e f i n i t i o n 4 Le tp and q be arguments. Then, p rebuts 
q if and only if p is an argument fo r ¬q, and the pr ior i ty 
of p is greater than or equal to the pr ior i ty of q; p refutes 
q if and only if p is an argument fo r ¬q, and the pr ior i ty 
of p is strictly greater than the pr ior i ty of q. 

This is really a definit ion of attempted rebuttals and refu
tations. What we are most interested in is which argu
ments ul t imately survive: 

2Note that p may be the empty conjunction, i.e. true; in 
this case, we leave the priority undefined. 

3 In conventional nonmonotonic terms, B is trying to show 
that q holds in all relevant extensions of some default theory, 
while U is trying only to show that q does not hold in some 
extension. Were it our intention to accept a conclusion valid 
in any extension (as suggested by Reiter [1980]), the roles of 
B and U would be reversed. This remark is made formal in 
Proposition 3. 

D e f i n i t i o n 5 Let p and q be arguments. Then, p u l t i 
mately rebuts q if and only if p rebuts q, and p is not 
ultimately refuted; p ult imately refutes q if and only if p 
refutes q, and p is not ultimately rebutted. 

At first glance, this definition may look circular since 
ult imate rebuttals and ult imate refutations are defined 
in terms of one another. But since a refuting argument 
must always have a higher pr ior i ty than the argument 
that it is refuting, we have really defined an ult imate re
buttal at level k in terms of ul t imate refutations at levels 
of at least k + 1. Since there are only a finite number of 
pr ior i t izat ion levels, the definit ion is well-founded. 

We can now state our result: 

P r o p o s i t i o n 2 Let q be a sentence. Then q holds in 
al l D-maximal models of T if and only if there is an 
argument for q that is not ultimately rebutted. 

The proofs of Proposition 2 and of subsequent proposi
tions are contained in Appendix A. 

One might conjecture that there would be an anal
ogous result stating that q holds in some D-maximal 
model if and only if there is an argument for q that is 
not ul t imately refuted. The "only i f " claim, however, is 
incorrect. If q were a new symbol, for instance, there 
would be no arguments for g, and yet q would sti l l hold 
in some maximal model (since there also would be no ar
guments for ¬q.) In order to state the correct corollary, 
we define the notion of an extension: 

D e f i n i t i o n 6 Define the following equivalence relation 
on D-maximal models of T: M1 ~ M2 if fo r all i where 
1 < i < n, M1 [D i] — M 2 [ D i ] ; that is, if M1 and M2 

agree on all the defaults. We wi l l call these equivalence 
classes extensions. We wi l l say that a sentence holds in 
an extension if it holds in every model in that extension. 

This corresponds to the usual meaning of an extension. 

P r o p o s i t i o n 3 Let q be a sentence. Then q holds in 
some extension of the default theory if and only if there 
is an argument for q that is not ultimately refuted. 

3 Implementat ion 
To use Proposition 2 effectively, we need some way to 
determine the various arguments for a given sentence. 
Since there may be many such arguments, and since each 
of them may in turn have many counterarguments, it 
would be inefficient to consider each of them individu
ally. The following proposit ion, however, lets us l im i t 
our attention to the single weakest argument. This is 
obtained by disjoining all the minimal conjunctive argu
ments that have appropriate priorities. 

P r o p o s i t i o n 4 Let q be a sentence, let i be a pr ior i ty 
level, and assume that there is some argument for q with 
at least this pr ior i ty . Let p be the disjunction of al l the 
min imal conjunctive arguments for q that have priorit ies 
of at least i. Then, (1) p is an argument for q with 
pr ior i ty of at least i, and (2) p is ultimately rebutted 
(refuted) if and only if every argument fo r q with pr ior i ty 
of at least i is ultimately rebutted (refuted). 

It turns out that these weakest disjunctive-normal-
form arguments correspond exactly to the labels in 
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an ATMS [de Kleer, 1986, Reiter and de Kleer, 1987]. 
Therefore, we can calculate these arguments using the 
backward-chaining ATMS provided wi th Ginsberg's mul
tivalued logic system, MVL [Ginsberg, 1988]. Whenever 
the priorit ized circumscriptive theorem prover invokes 
MVL, it supplies it wi th the relevant pr ior i ty l imi t . This 
makes sure that default assumptions whose priorities are 
not high enough wi l l not be considered. 

We now present two examples of the system at work: 
the standard nonflying penguin example and Reiter's 
Nixon diamond [Reiter and Criscuolo, 198]]. The output 
is as produced by the program, except for minor textual 
modifications. (For example, the database is maintained 
in clausal form, but is displayed below using a P R O L O G -
like syntax.) 

3.1 T w e e t y t h e p e n g u i n 

This is the database for the penguin example: 

Penguin(Tweety). 
B i rd(x) : - Penguin(x). 
F l ies (x ) :- B i r d ( x ) . P3 ( p r i o r i t y 1) 
Not (F l ies(x) ) :- Penguin(x). P4 ( p r i o r i t y 2) 

Tweety is a penguin and therefore a bird. Birds nor
mally fly; penguins normally do not fly. The P3 and P4 
tags are used by the ATMS to keep track of the default 
assumptions. Note that we have assigned a higher pr i 
ority to the penguin default. We ask the theorem prover 
to find something that does not fly: 

N o t ( F l i e s ( x ) ) ? 
Trying to prove No t (F l i es (x ) ) . 
Invoking MVL. 
Values returned are: 
b indings: -[x = Tweety}, 
argument: P4 wi th x - Tweety. 

Trying to rebut (Not(Fl ies(Tweety)) 
:- Penguin(Tweety)). 

Invoking MVL at p r i o r i t y >= 2. 
Values returned are: n i l . 
Rebuttal f a i l s . 

Proof succeeds! 
x = Tweety. 

The theorem prover begins by f inding a default proof 
that Tweety does not fly. It then tries to rebut this 
argument. But since the default that penguins do not 
fly has a higher pr ior i ty than the default that birds do, 
the prover is unable to rebut the argument. Thus, the 
proof ult imately succeeds with x bound to Tweety. 

When we ask the prover to find something that flies, 
we get the following: 

F l i e s ( x ) ? 
T r y i n g t o prove F l i e s ( x ) . 
I n v o k i n g MVL. 
Values r e t u r n e d a r e : 

b i n d i n g s : {x = Tweety } , 
argument: P3 w i t h x = Tweety. 

T r y i n g to r ebu t (F l i es (Twee ty ) : -
B i r d ( T w e e t y ) ) . 

I n v o k i n g MVL at p r i o r i t y >= 1. 
Values r e t u r n e d a r e : 

argument: P4 w i t h x = Tweety. 

T r y i n g t o r e f u t e 
( N o t ( F l i e s ( T w e e t y ) ) : -
Pengu in (Tweety ) ) . 

I nvok ing MVL at p r i o r i t y > 2. 
Values r e t u r n e d a r e : n i l . 
R e f u t a t i o n f a i l s . 

Rebu t ta l succeeds. 
Proof f a i l s ! 

At first, an argument is found that Tweety flies. But 
since the argument that birds fly has a prior i ty of only 
1, it is rebutted by the argument that penguins do not 
fly. Since this rebuttal cannot be refuted, the original 
query has no solution. 

3.2 T h e N i x o n d i a m o n d 

In the penguin example, the competing defaults were 
at distinct priori ty levels. Here, we consider the classic 
example of competing defaults wi th the same prior i ty: 

Republican(Nixon). 
Quaker(Nixon). 
Hawk(x) :- Republican(x). P7 ( p r i o r i t y 1) 
Dove(x) :- Quaker(x). P8 ( p r i o r i t y 1) 
Not(Hawk(x)) :- Dove(x). 

Nixon is both a Republican and a Quaker. Repub
licans are typically hawks, but Quakers are typically 
doves, and therefore not hawks. We ask the system to 
find a hawk: 

Hawk(x)? 
T r y i n g to prove Hawk(x). 
I nvok ing MVL. 
Values re tu rned a r e : 

b i n d i n g s : {x = N i x o n } , 
argument: P7 w i t h x = N ixon . 

T r y i n g to rebu t (Hawk(Nixon) : -
Repub l i can (N ixon ) ) . 

I nvok ing MVL at p r i o r i t y >= 1. 
Values r e t u r n e d a r e : 

argument: P8 w i t h x = N ixon . 
T r y i ng t o r e f u t e (Dove(Nixon) 

: - Quaker (N ixon) ) . 
I nvok ing MVL at p r i o r i t y > 1. 
Values r e t u r n e d a r e : n i l . 
R e f u t a t i o n f a i l s . 

Rebu t ta l succeeds. 
Proof f a i l s ! 

Since P7 and P8 have the same priority, the argument 
that Nixon should be a hawk is rebutted by the argument 
that he should be a dove. Thus, there is no solution to 
the original query. (If the priorities had been different, 
this would not be the case. Thus, for example, if P7 had 
a higher priority than P8, we would be able to conclude 
that Nixon is a hawk.) It should be noted that since de
fault P8 has the same priority as default P7, P8 can rebut 
P7, but it cannot refute i t . That is, P8 has enough force 
to prevent P7 from being accepted as a conclusion, but 
it does not have enough force to stop P7 from interfering 
wi th other arguments. In particular, if we considered the 
argument that Nixon is a dove, then P7 would ult imately 
rebut this argument. 
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T h i n g s w o u l d no t wo rk as s m o o t h l y i f we a l lowed a rgu 
ments to refute o ther a r g u m e n t s w i t h the same p r i o r i t y . 
B m i g h t s ta r t by asser t ing an a r g u m e n t p. U m i g h t re
b u t w i t h some a r g u m e n t q a t the same leve l . A t th is 
p o i n t , B cou ld s i m p l y repeat his o r ig ina l a r g u m e n t ! ( I f 
TU {q} (=: ¬p , t h e n Tu { p } I= ¬q . ) A n d so the d i spu te 
w o u l d con t inue i n t e r m i n a b l y . 

4 Conclusion 
In th i s paper , we have presented a m e t h o d of c o m p u t 
i n g p r i o r i t i zed c i r c u m s c r i p t i o n (for theor ies t h a t con ta i n 
uniqueness o f names and d o m a i n closure a x i o m s ) . Some 
compar isons to o ther wo rk shou ld be m e n t i o n e d . 

Us ing ideas f r o m [Ge l fond et a/., 1989], P r z y m u s i n s k i 
[1989] also presents an a l g o r i t h m for p r i o r i t i z e d c i r c u m 
s c r i p t i o n , b u t i t does no t make f u l l use o f the p r io r i t i es o f 
the re levant a r g u m e n t s . Regardless o f the query , P rzy -
mus insk i ' s a l g o r i t h m steps mechan ica l l y t h r o u g h each 
p r i o r i t i z a t i o n leve l , i n v o k i n g his para l le l c i r c u m s c r i p t i v e 
theo rem prover a t each stage. T h i s w o u l d be ra the r i n 
eff ic ient i f the de fau l t t heo ry had m a n y p r i o r i t i z a t i o n 
levels, b u t on ly a few of these levels con ta ined a rgu 
ments t h a t were re levant to the g iven query . Fu r t he r 
more , P rzymus insk i ' s a l g o r i t h m is descr ibed in t e rms of a 
specific f i rs t -o rder inference a l g o r i t h m : M lLO- reso lu t i on , 
a va r i an t o f ordered reso lu t i on . O u r s , on the o ther h a n d , 
can use an a r b i t r a r y f i rs t -order t heo rem prover . T h i s de
compos i t i on o f the p r o b l e m makes our m e t h o d easier to 
u n d e r s t a n d , and i t p u t s us in a pos i t i on to benef i t more 
easi ly f r o m f u t u r e advances i n t h e o r e m - p r o v i n g techno l 
ogy. 

M u c h of the i n te res t i ng research on defeasible rea
son ing has been descr ibed in p r o c e d u r a l , ra the r t h a n 
mode l - t heo re t i ca l , t e rms . Us ing P r o p o s i t i o n 2 , we can 
now make some compar isons between th i s p rocedu ra l l y 
o r ien ted wo rk and p r i o r i t i z e d c i r c u m s c r i p t i o n . 

L o u i [1987], for examp le , discusses the genera l ques
t i o n : W h e n is a defeater defeater a re ins ta te r? In o ther 
words , i f p is an a r g u m e n t against q, and q rebu ts r, 
under w h a t c i rcumstances does p a l low us to conc lude r 
af ter al l? For p r i o r i t i z e d c i r c u m s c r i p t i o n , we can give a 
sharp answer to th is ques t i on : p re ins ta tes r i f and on l y 
i f p u l t i m a t e l y refutes q as def ined in D e f i n i t i o n 5; i t is 
no t suf f ic ient for p mere ly to u l t i m a t e l y rebu t q. 

Our p roo f p rocedure is also s im i l a r to some of the 
w o r k by H o r t y and T h o m a s o n on i nhe r i t ance h ierarchies 
[Ho r t y and T h o m a s o n , 1988]. T h e y present a recurs ive 
de f i n i t i on o f e n t a i l m e n t t h a t accepts any a r g u m e n t a l l o f 
whose rebu t te rs are themselves defeated by acceptable 
a rguments . The re are a number of d i f ferences, however , 
between the proposa ls ; we w i l l l is t on l y a few of these 
dif ferences. F i r s t , since our sys tem uses f i r s t -o rder logic 
ins tead of a graph-based f o r m a l i s m , i t can hand le dis
j u n c t i v e a rgumen ts . Cons ider , for examp le , G insberg 's 
ex tens ion to the N i x o n d i a m o n d where i t i s k n o w n t h a t 
b o t h hawks and doves are " p o l i t i c a l l y m o t i v a t e d . " C i r 
c u m s c r i p t i o n w i l l conc lude t h a t N i x o n i s p o l i t i c a l l y mo
t i va ted since Hawk(Nixon) V Dove(Nixon) canno t be 
r e b u t t e d ; H o r t y and T h o m a s o n w i l l n o t reach th i s con
c lus ion since there is no single p a t h in the i nhe r i t ance 
ne two rk t h a t sanct ions i t . 

Second, i t appears t h a t H o r t y and Thomason ' s g r a p h -
based f o r m a l i s m can s u p p o r t a r icher s t r u c t u r e of de fau l t 
o rder ings t h a n can p r i o r i t i z e d c i r c u m s c r i p t i o n ; for m a n y 
of t he i r h ie rarch ies , there is no obv ious way of assign
i n g p r i o r i t i es to the de fau l t l i nks in order to t rans la te 
the h ie ra rchy i n t o p r i o r i t i zed c i r c u m s c r i p t i o n . T h i r d , 
and mos t i m p o r t a n t l y , t hey der ive p r io r i t i es based on 
spec i f i c i ty wh i l e we have to state the p r io r i t i es exp l i c i t l y . 
The re fo re , the whole class of issues re la ted to spec i f ic i ty 
is s i m p l y no t addressed by our w o r k . One i n t r i g u i n g 
poss ib i l i t y w o u l d be some k i n d o f " d y n a m i c c i r cumscr ip 
t i o n " i n w h i c h the t heo rem prover cou ld be recurs ive ly 
i nvoked to de te rm ine whe the r one a r g u m e n t had a h igher 
p r i o r i t y t h a n ano the r . T h i s p r i o r i t i z a t i o n cou ld be based 
on spec i f i c i t y or perhaps some more general scheme. We 
have i m p l e m e n t e d a p r i m i t i v e vers ion of such a sys tem 
a l t h o u g h i t s f o r m a l p roper t ies are no t en t i re ly clear. 

F i n a l l y , i t i s i n te res t i ng t h a t the proofs generated by 
our p r i o r i t i z e d c i r c u m s c r i p t i v e theo rem prover resemble 
the way a person m i g h t reason: f i rs t t en ta t i ve l y d r a w i n g 
a conc lus ion , t hen t h i n k i n g of possible ob jec t ions to th is 
conc lus ion , and f ina l ly t r y i n g to dispose o f these objec
t i ons . We f ind i t encourag ing t h a t the proofs have th is 
i n t u i t i v e qua l i t y . 
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A Proofs 

I t w i l l be conven ien t to descr ibe the D - m a x i m a l models 
of T in t e r m s of the defau l ts h o l d i n g in t h e m . G i v e n a 
D - m a x i m a l m o d e l M, le t pl

M be the c o n j u n c t i o n o f a l l 
the defau l ts o f p r i o r i t y a t least i t h a t ho ld in M . 4 

T h e f o l l o w i n g l e m m a w i l l be useful i n p r o v i n g P ropo 
s i t ions 2 and 3. 

L e m m a 1 Let q be an argument. Then, (1) q holds in 
some D-maximal model of T if and only if it is not ulti
mately refuted; and (2) q holds in all D-maximal models 
of T if and only if it is not ultimately rebutted. 

P r o o f W e w i l l p rove th is b y i n d u c t i o n o n the p r i o r i t y 
i of q. Spec i f ica l ly , when p r o v i n g p a r t (1) of the l e m m a 
for an a r g u m e n t o f p r i o r i t y i , we w i l l assume t h a t b o t h 
pa r ts o f the l e m m a ho ld for a r g u m e n t s w i t h p r io r i t ies 
greater t h a n t ; when p r o v i n g p a r t (2) for an a rgumen t o f 
p r i o r i t y i , we w i l l assume t h a t b o t h pa r ts o f the l e m m a 
ho ld for a r g u m e n t s w i t h p r i o r i t i es greater t han z , and 
t h a t p a r t (1) ho lds for a rgumen ts w i t h p r io r i t i es equal 
t o i . 

(1 ) (=>) If q is u l t i m a t e l y re fu ted by p, t hen p has a 
h igher p r i o r i t y t h a n q , , and p i s no t u l t i m a t e l y r e b u t t e d . 
By our i n d u c t i v e a s s u m p t i o n , p ho lds in al l D - m a x i m a l 
mode ls , and hence q does no t ho ld in any D - m a x i m a l 
mode ls . 

4 Th is def ini t ion and the fol lowing proofs are based on less 
general versions in [Ginsberg, 1989]. 
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