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Abstract

In a recent paper, Ginsberg shows how a
backward-chaining ATMS can be used to con-
struct a theorem prover for circumscription.
Here, this work is extended to handle prior-
itized circumscription. The ideas to be de-
scribed have been implemented, and examples

are given of the system in use.

1 Introduction

Of all the approaches to nonmonotonic reasoning, Mc-
Carthy's circumscription [McCarthy, 1980, McCarthy,
1986] seems to be the most popular. A great deal of
work has gone into the development of new versions of
circumscription designed to address various problems in
commonsense reasoning. Much less work, however, has
gone into the development of methods by which these
formalisms might be implemented. In [Ginsberg, 1989],
Ginsberg shows how a backward-chaining ATMS can be
used to construct a theorem prover for circumscription.
Here, this work is extended to handle prioritized circum-
scription.

In [Ginsberg, 1989], the following procedure is given to
determine whether a particular sentence g follows from
the circumscription axiom. First, you construct a de-
fault proof d for g, where d is a formula obtained by
conjoining and disjoining instantiations of negations of
the predicate being circumscribed. Then, you attempt
to undermine this proof by constructing a default proof
for =d. If you cannot undermine the original proof, then
q is a consequence of the circumscription.

This procedure implements parallel circumscription
since all the defaults are treated equally. For almost
all applications of nonmonotonic reasoning, however, it
is necessary to establish a prioritization among the de-
faults. In inheritance hierarchies, for example, the gen-
eral view is that defaults about a subclass should over-
ride defaults about its superclasses. So if Tweety is both
a penguin and a bird, the default that penguins generally
do not fly should have a higher priority than the default
that birds generally do.

In this paper, we show that the above method for
computing parallel circumscription can be generalized
to handle prioritized circumscription by extending the
argument chain to consider arguments against the pro-

posed proof of —=d. One can view the procedure as a
dispute between a believer B and an unbeliever U. B
begins by presenting an argument for the desired con-
clusion. V then tries to rebut this argument by finding a
counterargument at the same or higher priority. B now
tries to refute the counterargument by finding a counter-
counterargument at a strictly higher priority. This pro-
cess of alternating rebuttals and refutations continues
until one side cannot answer the other's last argument.
If B gets the last word, the original sentence follows; if
U gets the last word, the sentence does not follow.

In the next section, Section 2, we formalize these in-
tuitions and show that this procedure does in fact cor-
rectly compute prioritized circumscription. In Section 3,
we provide examples of the implementation at work. We
finish in Section 4 with some concluding remarks.

2 Arguments, rebuttals, and refutations

Rather than working with the circumscription axiom, we
will work directly with a set of sentences T and sets of
sentences D;.. ., D,. T contains the certain facts, D,
contains the defaults with the highest priority, and so
on down to D4, which contains the defaults with the
lowest priority. In the partial order corresponding to
prioritized circumscription, a model M; is better than
another model M, if for one of the default sets D; the
set of sentences in D; that hold in M; is a proper superset
of the set of sentences in p; that hold in M., and if M;
and M, agree on all the the default sets that have a
higher priority than D;:

Definition 1 Let T be a consistent set of sentences, and
let D4, D,,..., D, be finite sets of sentences. Define a
partial order on models of T, writing M; > M, if the
following  condition  holds:

For some i where 1 <1< n, M |D;] O M;[D;); and for
all j wherei < j < n, M;|D,) = M,[D,).}

A model that is maximal in
called  D-maximal.

this partial order will be

Proposition 1 Let T be a set of sentences without func-
tion symbols, such that T includes domain closure and
uniqueness of names assumptions. Let P be a collection
of predicates that are prioritized into n levels such that

' M[D] denotes the set of sentences in D that are satisfied
by M. The symbol 7» indicates strict set inclusion.
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the ones in level n will be circumscribed at the highest
priority, and the ones at level 1 will be circumscribed
at the lowest priority. Let D;be the set of all proposi-
tions of the form -p(x) where p is a predicate at level i
and x is a ground instantiation of p's arguments. Now
for any sentence q, q follows from the prioritized circum-
scription of all the predicates in P in T while allowing
all other predicates to vary if and only ifq is true in all
D-maximal models of T.

Proof This is an easy consequence of Proposition 1'
in [Lifschitz, 1985]. D

The assumptions made by Proposition 1 are rather
strong. It may be possible to relax some of these as-
sumptions, but this particular issue is not the concern of
the current paper.

Now let us define what we mean by an argument:

Definition 2 Letp be a sentence. We will say that p is
an argument if the following conditions hold:

Ad..
for some collection of d; E Dy U ...

2. T U {p} is satisfiable.

The priority of an argument is the least k such that the
argument contains some dij £ Dy .?

1. p is of the form

U D,, and

Definition 3 Let p and q be sentences. We will say
that p is an argument for q if p is an argument, and

Tu{p}l=q.

As discussed in the introduction, a prioritized circum-
scription proof will be viewed as a dispute between a
believer B and an unbeliever U. It is important to un-
derstand that B and U are not playing by the same rules.
B is trying to prove that some query g follows from the
available assumptions, while U is trying merely to un-
dermine B's efforts. Thus the unbeliever U does not
need to actually refute B's arguments; it is sufficient for
him to generate counterarguments that B cannot refute
himself.®> Therefore, U's arguments may be at the same
priority level as the arguments they are rebutting; B's
arguments must be at a higher level than the arguments
they are refuting:

Definition 4 Letp and g be arguments. Then, p rebuts
q if and only ifp is an argument for ~q, and the priority
of p is greater than or equal to the priority of q; p refutes
q if and only ifp is an argument for =q, and the priority
of p is strictly greater than the priority ofq.

This is really a definition of attempted rebuttals and refu-
tations. What we are most interested in is which argu-
ments ultimately survive:

’Note that p may be the empty conjunction, i.e. true; in
this case, we leave the priority undefined.

®In conventional nonmonotonic terms, B is trying to show
that g holds in all relevant extensions of some default theory,
while U is trying only to show that q does not hold in some
extension. Were it our intention to accept a conclusion valid
in any extension (as suggested by Reiter [1980]), the roles of
B and U would be reversed. This remark is made formal in
Proposition 3.
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Definition 5 Let p and q be arguments. Then, p ulti-
mately rebuts q if and only if p rebuts q, and p is not
ultimately refuted; p ultimately refutes q if and only ifp
refutes q, and p is not ultimately rebutted.

At first glance, this definition may look circular since
ultimate rebuttals and ultimate refutations are defined
in terms of one another. But since a refuting argument
must always have a higher priority than the argument
that it is refuting, we have really defined an ultimate re-
buttal at level k in terms of ultimate refutations at levels
of at least k + 1. Since there are only a finite number of
prioritization levels, the definition is well-founded.
We can now state our result:

Proposition 2 Let g be a sentence. Then g holds in
all D-maximal models of T if and only if there is an
argument for q that is not ultimately rebutted.

The proofs of Proposition 2 and of subsequent proposi-
tions are contained in Appendix A.

One might conjecture that there would be an anal-
ogous result stating that q holds in some D-maximal
model if and only if there is an argument for q that is
not ultimately refuted. The "only if" claim, however, is
incorrect. If g were a new symbol, for instance, there
would be no arguments for g, and yet q would still hold
in some maximal model (since there also would be no ar-
guments for 7q.) In order to state the correct corollary,
we define the notion of an extension:

Definition 6 Define the following equivalence relation
on D-maximal models of T: My ~ M, iffor all i where
1 <i<n, My [D] — M,[D;]; that is, if My and M,
agree on all the defaults. We will call these equivalence
classes extensions. We will say that a sentence holds in
an extension if it holds in every model in that extension.

This corresponds to the usual meaning of an extension.

Proposition 3 Let g be a sentence. Then g holds in
some extension of the default theory if and only if there
is an argument for q that is not ultimately refuted.

3 Implementation

To use Proposition 2 effectively, we need some way to
determine the various arguments for a given sentence.
Since there may be many such arguments, and since each
of them may in turn have many counterarguments, it
would be inefficient to consider each of them individu-
ally. The following proposition, however, lets us limit
our attention to the single weakest argument. This is
obtained by disjoining all the minimal conjunctive argu-
ments that have appropriate priorities.

Proposition 4 Let g be a sentence, let i be a priority
level, and assume that there is some argumentfor q with
at least this priority. Let p be the disjunction of all the
minimal conjunctive arguments for q that have priorities
of at least i. Then, (1) p is an argument for q with
priority of at least i, and (2) p is ultimately rebutted
(refuted) if and only if every argument for g with priority
of at least i is ultimately rebutted (refuted).

It turns out that these weakest disjunctive-normal-
form arguments correspond exactly to the labels in



an ATMS [de Kleer, 1986, Reiter and de Kleer, 1987].
Therefore, we can calculate these arguments using the
backward-chaining ATMS provided with Ginsberg's mul-
tivalued logic system, MVL [Ginsberg, 1988]. Whenever
the prioritized circumscriptive theorem prover invokes
MVL, it supplies it with the relevant priority limit. This
makes sure that default assumptions whose priorities are
not high enough will not be considered.

We now present two examples of the system at work:
the standard nonflying penguin example and Reiter's
Nixon diamond [Reiter and Criscuolo, 198]]. The output
is as produced by the program, except for minor textual
modifications. (For example, the database is maintained
in clausal form, but is displayed below using a PROLOG-
like syntax.)

3.1 Tweety the penguin
This is the database for the penguin example:

Penguin(Tweety).

Bird(x) :- Penguin(x).

Flies(x) :- Bird(x). P3 (priority 1)
Not(Flies(x)) :- Penguin(x). P4 (priority 2)

Tweety is a penguin and therefore a bird. Birds nor-
mally fly; penguins normally do not fly. The P3 and P4
tags are used by the ATMS to keep track of the default
assumptions. Note that we have assigned a higher pri-
ority to the penguin default. We ask the theorem prover
to find something that does not fly:

Not(Flies(x))?
Trying to prove Not(Flies(x)).

Invoking MVL.

Values returned are:

bindings: x = Tweety},
argument: P4 with x - Tweety.

Trying to rebut (Not(Flies(Tweety))
;- Penguin(Tweety)).
Invoking MML at priority >= 2.
Values returned are: nil.
Rebuttal fails.
Proof succeeds!
x = Tweety.

The theorem prover begins by finding a default proof
that Tweety does not fly. It then tries to rebut this
argument. But since the default that penguins do not
fly has a higher priority than the default that birds do,
the prover is unable to rebut the argument. Thus, the
proof ultimately succeeds with x bound to Tweety.

When we ask the prover to find something that flies,
we get the following:

Flies(x)?

Trying to prove Flies(x).

Invoking MVL.

Values returned are:

bindings: {x = Tweety},

argument: P3 with x = Tweety.
Trying to rebut (Flies(Tweety) :-
Bird(Tweety)).
Invoking MVL at priority >= 1.
Values returned are:
argument: P4 with x = Tweety.

Trying to refute
(Not(Flies(Tweety)) :-
Penguin(Tweety)).

Invoking MVL at priority > 2.

Values returned are: nil.

Refutation fails.

Rebuttal succeeds.
Proof fails!

At first, an argument is found that Tweety flies. But
since the argument that birds fly has a priority of only
1, it is rebutted by the argument that penguins do not
fly. Since this rebuttal cannot be refuted, the original
query has no solution.

3.2 The Nixon diamond

In the penguin example, the competing defaults were
at distinct priority levels. Here, we consider the classic
example of competing defaults with the same priority:

Republican(Nixon).
Quaker(Nixon).

Hawk(x) :- Republican(x). P7 (priority 1)
Dove(x) :- Quaker(x). P8 (priority 1)
Not(Hawk(x)) :- Dove(x).

Nixon is both a Republican and a Quaker. Repub-
licans are typically hawks, but Quakers are typically
doves, and therefore not hawks. We ask the system to
find a hawk:

Hawk(x)?
Trying to prove Hawk(x).
Invoking MVL.

Values returned are:
bindings: {x = Nixon},
argument: P7 with x = Nixon.
Trying to rebut (Hawk(Nixon) :-
Republican(Nixon)).
Invoking MVL at priority >= 1.
Values returned are:
argument: P8 with x = Nixon.
Trying to refute (Dove(Nixon)
;- Quaker(Nixon)).
Invoking MVL at priority > 1.
Values returned are: nil.
Refutation fails.
Rebuttal succeeds.
Proof fails!

Since P7 and P8 have the same priority, the argument
that Nixon should be a hawk is rebutted by the argument
that he should be a dove. Thus, there is no solution to
the original query. (If the priorities had been different,
this would not be the case. Thus, for example, if P7 had
a higher priority than P8, we would be able to conclude
that Nixon is a hawk.) It should be noted that since de-
fault P8 has the same priority as default P7, P8 can rebut
P7, but it cannot refute it. That is, P8 has enough force
to prevent P7 from being accepted as a conclusion, but
it does not have enough force to stop P7 from interfering
with other arguments. In particular, if we considered the
argument that Nixon is a dove, then P7 would ultimately
rebut this argument.
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Things would not work as smoothly if we allowed argu-
ments to refute other arguments with the same priority.
B might start by asserting an argument p. U might re-
but with some argument g at the same level. At this
point, B could simply repeat his original argument! (If
TU {g} (= -p, then Tu {p} I= —~q.) And so the dispute
would continue interminably.

4 Conclusion

In this paper, we have presented a method of comput-
ing prioritized circumscription (for theories that contain
uniqueness of names and domain closure axioms). Some
comparisons to other work should be mentioned.

Using ideas from [Gelfond et a/., 1989], Przymusinski
[1989] also presents an algorithm for prioritized circum-
scription, but it does not make full use of the priorities of
the relevant arguments. Regardless of the query, Przy-
musinski's algorithm steps mechanically through each
prioritization level, invoking his parallel circumscriptive
theorem prover at each stage. This would be rather in-
efficient if the default theory had many prioritization
levels, but only a few of these levels contained argu-
ments that were relevant to the given query. Further-
more, Przymusinski's algorithm is described in terms of a
specific first-order inference algorithm: MILO-resolution,
a variant of ordered resolution. Ours, on the other hand,
can use an arbitrary first-order theorem prover. This de-
composition of the problem makes our method easier to
understand, and it puts us in a position to benefit more
easily from future advances in theorem-proving technol-
ogy.

Much of the interesting research on defeasible rea-
soning has been described in procedural, rather than
model-theoretical, terms. Using Proposition 2, we can
now make some comparisons between this procedurally
oriented work and prioritized circumscription.

Loui [1987], for example, discusses the general ques-
tion: When is a defeater defeater a reinstater? In other
words, if p is an argument against q, and g rebuts r,
under what circumstances does p allow us to conclude r
after all? For prioritized circumscription, we can give a
sharp answer to this question: p reinstates r if and only
if p ultimately refutes q as defined in Definition 5; it is
not sufficient for p merely to ultimately rebut q.

Our proof procedure is also similar to some of the
work by Horty and Thomason on inheritance hierarchies
[Horty and Thomason, 1988]. They present a recursive
definition of entailment that accepts any argument all of
whose rebutters are themselves defeated by acceptable
arguments. There are a number of differences, however,
between the proposals; we will list only a few of these
differences. First, since our system uses first-order logic
instead of a graph-based formalism, it can handle dis-
junctive arguments. Consider, for example, Ginsberg's
extension to the Nixon diamond where it is known that
both hawks and doves are "politically motivated." Cir-
cumscription will conclude that Nixon is politically mo-
tivated Hawk(Nixon) 'V  Dove(Nixon)  cannot be
rebutted; Horty and Thomason will not reach this con-
clusion since there is no single path in the inheritance
network that sanctions it.

since
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Second, it appears that Horty and Thomason's graph-
based formalism can support a richer structure of default
orderings than can prioritized circumscription; for many
of their hierarchies, there is no obvious way of assign-
ing priorities to the default links in order to translate
the hierarchy into prioritized circumscription. Third,
and most importantly, they derive priorities based on
specificity while we have to state the priorities explicitly.
Therefore, the whole class of issues related to specificity
is simply not addressed by our work. One intriguing
possibility would be some kind of "dynamic circumscrip-
tion" in which the theorem prover could be recursively
invoked to determine whether one argument had a higher
priority than another. This prioritization could be based
on specificity or perhaps some more general scheme. We
have implemented a primitive version of such a system
although its formal properties are not entirely clear.

Finally, it is interesting that the proofs generated by
our prioritized circumscriptive theorem prover resemble
the way a person might reason: first tentatively drawing
a conclusion, then thinking of possible objections to this
conclusion, and finally trying to dispose of these objec-
tions. We find it encouraging that the proofs have this
intuitive quality.
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A Proofs

It will be convenient to describe the D-maximal models
of T in terms of the defaults holding in them. Given a
D-maximal model M, let pl be the conjunction of all
the defaults of priority at least i that hold in M.*

The following lemma will be useful in proving Propo-
sitions 2 and 3.

Lemma 1 Let q be an argument. Then, (1) q holds in
some D-maximal model of T if and only if it is not ulti-
mately refuted; and (2) q holds in all D-maximal models
of T if and only if it is not ultimately rebutted.

Proof We will prove this by induction on the priority
i of q. Specifically, when proving part (1) of the lemma
for an argument of priority i, we will assume that both
parts of the lemma hold for arguments with priorities
greater than t; when proving part (2) for an argument of
priority i, we will assume that both parts of the lemma
hold for arguments with priorities greater than z, and
that part (1) holds for arguments with priorities equal
to i.

(1)(=>) If g is ultimately refuted by p, then p has a
higher priority than q,, and p is not ultimately rebutted.
By our inductive assumption, p holds in all D-maximal
models, and hence q does not hold in any D-maximal
models.

“This definition and the following proofs are based on less
general versions in [Ginsberg, 1989].



(1)(<«=) Assume that ¢ is false in every D-maximal
model. If ¢ were to have priority n (the highest priority),
then for any mode]l M in which ¢ held, there would be
some D-maximal model M’ such that M[D,] C M'[D,].
But then g would hold in M’ as well; thus the priority
of ¢ must be less than =, _

Let p be the disjunction of all the p}}' for the various
D-maximal models M. By our inductive assumption,
p is not ultimately rebutted. Now, consider an arbi-
trary model M in which p holds. There will be some
D-maximal model M’ such that M[D,] = M’'[D,] for
i+ 1< j<nand M[D;] C M'[D,]. Since g is false in
M’, and since ¢ consists solely of positive defaults of lev-
els ¢ and above, ¢ must be false in M as well. Therefore,
p ultimately refutes g.

(2})(=) If ¢ is ulimately rebutied by p, then p has
a priority greater than or equal to that of ¢, and p is
not ultimately refuted. By our inductive assumption, p
holds in some D-maximal model, and hence g 1s false in
this model.

(2)(«=) Assume that g is false in the D-maximal model
M. Then, consider the argument ph,. By our inductive
assumption, pj, 1s not ultimately refuted. Furthermore,
Py must rebut g, or else M would not be D-maximal.

Therefore, p), ultimately rebuts ¢, O

Proposition 2 Let ¢ be a senience. Then ¢ holds in
all D-mazimal models of T if and only if there is an
argument for ¢ that is not ultimalely rebutled.

Proof (=) Let p be the disjunction of all the p}, for
the various D-maximal models M. Since p holds in all of
the D-maximal models, by Lemma 1 it is not ultimately
rebutted. Furthermore, p holds only in the D-maximal
models; therefore pis an argument for g.

(<) i there is an argument for g that is not ultimately
rebutted, then by Lemma 1, this argument (and thus g¢)
must hold in all D-maximal models.

Proposition 3 Lel ¢ be o senlence. Then ¢ holds in
some eziension of the defaull theory if and only if there
15 an argument for g that is not uliimately refuied.

Proof (=) Suppose ¢ holds in the extension defined by
some conjunction of defaults p. By Lemma 1, p is not
ultimately refuted. Since g holds in every model that p
does, p must be an argument for .

(«=) If there is an argument for ¢ that is not ultimately
refuted, then by Lemma 1, this argument must hold in
some D-maximal model. Clearly, ¢ holds in the exten-
sion defined by this argument. O

Proposition 4 Lel ¢ be a senience, lel i be a priorily
level, and assume thal there is some argument for g with
at least this priorily. Lel p be the disjunction of all the
manimal conjunclive arguments for ¢ thot have priorities
of at least i. Then, (1} p 15 an argument for ¢ with
priority of at least i, and (2) p is ultimelely rebuiled
{refuted) if and only if every argument for g with priority
of at least 1 s ullirnalely rebutled (refuted).

Proof The first claim is obvious, as is the (<=} half
of the second claim. For the (=) half of the second
claim, assume that p is ultimately rebutted (refuted) by
some argument r, but there is some argument p’ for ¢

with priority of at least 4 that is not ultimately rebutied
(refuted). Each of the disjuncts in p’ will be subsumed
by a disjunct in p; hence, if TU{r} &= -p, then TU{r} &
—p’. Therefore, if r does not rebut (refute) p’, this must
mean that the priority of p’ is greater than (greater than
or equal to) the priority of r. But then since TU{p'} &
-7, and since p’ i1s not ultimately rebutted (refuted),
il must be the case p’ ultimate refutes (rebuts) », and
hence r cannot ultimate rebut (refute) anything, which
coniradicts our assumption. O
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