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A b s t r a c t 

In a recent paper , G insbe rg shows how a 
b a c k w a r d - c h a i n i n g ATMS can be used to con­
s t ruc t a t heo rem prover for c i r c u m s c r i p t i o n . 
Here, th i s w o r k is ex tended to handle prior­
itized c i r c u m s c r i p t i o n . T h e ideas to be de-
scr ibed have been i m p l e m e n t e d , and examples 
are g iven of the sys tem in use. 

1 I n t r o d u c t i o n 

Of al l the approaches to n o n m o n o t o n i c reasoning, Mc­
C a r t h y ' s c i r c u m s c r i p t i o n [ M c C a r t h y , 1980, M c C a r t h y , 
1986] seems to be the mos t popu la r . A great deal of 
work has gone i n t o the deve lopmen t of new versions of 
c i r c u m s c r i p t i o n designed to address var ious p rob lems in 
commonsense reasoning. M u c h less wo rk , however, has 
gone i n t o the deve lopment o f me thods by wh i ch these 
fo rma l i sms m i g h t be i m p l e m e n t e d . In [G insberg , 1989], 
G insberg shows how a backward -cha in ing ATMS can be 
used to cons t ruc t a t h e o r e m prover for c i r c u m s c r i p t i o n . 
Here, th is w o r k is ex tended to hand le prioritized c i r cum­
sc r i p t i on . 

In [G insberg , 1989], the f o l l o w i n g procedure is g iven to 
de te rm ine whe the r a p a r t i c u l a r sentence q fo l lows f r om 
the c i r c u m s c r i p t i o n a x i o m . F i r s t , you cons t ruc t a de­
fau l t p r o o f d for g, where d is a f o r m u l a ob ta ined by 
con jo i n i ng and d i s j o i n i ng i ns tan t i a t i ons o f negat ions o f 
the pred ica te be ing c i r cumsc r i bed . T h e n , you a t t e m p t 
to u n d e r m i n e th i s p r o o f by cons t ruc t i ng a defau l t p roo f 
for ¬d . I f y o u canno t u n d e r m i n e the o r i g ina l p roof , then 
q is a consequence of the c i r c u m s c r i p t i o n . 

T h i s p rocedure i m p l e m e n t s para l le l c i r c u m s c r i p t i o n 
since a l l the de fau l ts are t rea ted equal ly . For a lmost 
a l l app l i ca t ions o f n o n m o n o t o n i c reasoning, however, i t 
is necessary to establ ish a p r i o r i t i z a t i o n a m o n g the de­
fau l t s . In i nhe r i t ance h ierarch ies, for examp le , the gen­
eral v iew is t h a t de fau l ts a b o u t a subclass shou ld over­
r ide de fau l ts a b o u t i ts superclasses. So i f T w e e t y is b o t h 
a pengu in and a b i r d , the de fau l t t h a t penguins general ly 
do not f ly shou ld have a h igher p r i o r i t y t h a n the defau l t 
t h a t b i rds genera l ly do . 

In th is paper , we show t h a t the above m e t h o d for 
c o m p u t i n g para l le l c i r c u m s c r i p t i o n can be general ized 
to hand le p r i o r i t i z e d c i r c u m s c r i p t i o n by ex tend ing the 
a r g u m e n t cha in to consider a rguments against the p r o -

posed proof of ¬d. One can view the procedure as a 
dispute between a believer B and an unbeliever U. B 
begins by presenting an argument for the desired con­
clusion. V then tries to rebut this argument by f inding a 
counterargument at the same or higher priority. B now 
tries to refute the counterargument by finding a counter-
counterargument at a strictly higher priority. This pro-
cess of alternating rebuttals and refutations continues 
unt i l one side cannot answer the other's last argument. 
If B gets the last word, the original sentence follows; if 
U gets the last word, the sentence does not follow. 

In the next section, Section 2, we formalize these in­
tuit ions and show that this procedure does in fact cor­
rectly compute priorit ized circumscription. In Section 3, 
we provide examples of the implementation at work. We 
finish in Section 4 wi th some concluding remarks. 

2 Arguments, rebuttals, and refutations 

Rather than working wi th the circumscription axiom, we 
wi l l work directly with a set of sentences T and sets of 
sentences D1,.. ., Dn. T contains the certain facts, Dn 

contains the defaults wi th the highest priori ty, and so 
on down to D1, which contains the defaults w i th the 
lowest priori ty. In the partial order corresponding to 
priorit ized circumscription, a model M1 is better than 
another model M2 if for one of the default sets D i the 
set of sentences in Di that hold in M1 is a proper superset 
of the set of sentences in Di that hold in M 2 , and if M1 

and M2 agree on all the the default sets that have a 
higher pr ior i ty than D i: 

D e f i n i t i o n 1 Let T be a consistent set of sentences, and 
let D1, D2,..., Dn be finite sets of sentences. Define a 
partial order on models of T, writing M1 > M2, if the 
following condition holds: 

; and for 

A model that is maximal in this partial order will be 
called D-maximal. 

P r o p o s i t i o n 1 Let T be a set of sentences without func-
tion symbols, such that T includes domain closure and 
uniqueness of names assumptions. Let P be a collection 
of predicates that are prioritized into n levels such that 

1 M[D] denotes the set of sentences in D that are satisfied 
by M. The symbol indicates strict set inclusion. 
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the ones in level n wi l l be circumscribed at the highest 
pr ior i ty , and the ones at level 1 w i l l be circumscribed 
at the lowest pr ior i ty . Let D i b e the set of al l proposi-
tions of the f o rm ¬p(x) where p is a predicate at level i 
and x is a ground instantiat ion of p's arguments. Now 
fo r any sentence q, q follows f rom the priori t ized circum­
scription of al l the predicates in P in T while allowing 
all other predicates to vary if and only if q is true in al l 
D-maximal models of T. 

P r o o f This is an easy consequence of Proposition 1' 
in [Lifschitz, 1985]. D 

The assumptions made by Proposition 1 are rather 
strong. It may be possible to relax some of these as­
sumptions, but this particular issue is not the concern of 
the current paper. 

Now let us define what we mean by an argument: 

D e f i n i t i o n 2 Let p be a sentence. We wi l l say that p is 
an argument if the fol lowing conditions hold: 

1. p is of the fo rm 

V^dij 

fo r some collection of d i j E D1 U . . . U D n , and 
2. T U {p } is satisfiable. 

The pr ior i ty of an argument is the least k such that the 
argument contains some dij £ Dk .2 

D e f i n i t i o n 3 Let p and q be sentences. We wi l l say 
that p is an argument for q if p is an argument, and 
Tu{p}I=q. 

As discussed in the introduct ion, a priorit ized circum­
scription proof wi l l be viewed as a dispute between a 
believer B and an unbeliever U. It is important to un­
derstand that B and U are not playing by the same rules. 
B is t ry ing to prove that some query q follows from the 
available assumptions, while U is t ry ing merely to un­
dermine B's efforts. Thus the unbeliever U does not 
need to actually refute B's arguments; it is sufficient for 
h im to generate counterarguments that B cannot refute 
himself.3 Therefore, U's arguments may be at the same 
pr ior i ty level as the arguments they are rebutt ing; B's 
arguments must be at a higher level than the arguments 
they are refuting: 

D e f i n i t i o n 4 Le tp and q be arguments. Then, p rebuts 
q if and only if p is an argument fo r ¬q, and the pr ior i ty 
of p is greater than or equal to the pr ior i ty of q; p refutes 
q if and only if p is an argument fo r ¬q, and the pr ior i ty 
of p is strictly greater than the pr ior i ty of q. 

This is really a definit ion of attempted rebuttals and refu­
tations. What we are most interested in is which argu­
ments ul t imately survive: 

2Note that p may be the empty conjunction, i.e. true; in 
this case, we leave the priority undefined. 

3 In conventional nonmonotonic terms, B is trying to show 
that q holds in all relevant extensions of some default theory, 
while U is trying only to show that q does not hold in some 
extension. Were it our intention to accept a conclusion valid 
in any extension (as suggested by Reiter [1980]), the roles of 
B and U would be reversed. This remark is made formal in 
Proposition 3. 

D e f i n i t i o n 5 Let p and q be arguments. Then, p u l t i ­
mately rebuts q if and only if p rebuts q, and p is not 
ultimately refuted; p ult imately refutes q if and only if p 
refutes q, and p is not ultimately rebutted. 

At first glance, this definition may look circular since 
ult imate rebuttals and ult imate refutations are defined 
in terms of one another. But since a refuting argument 
must always have a higher pr ior i ty than the argument 
that it is refuting, we have really defined an ult imate re­
buttal at level k in terms of ul t imate refutations at levels 
of at least k + 1. Since there are only a finite number of 
pr ior i t izat ion levels, the definit ion is well-founded. 

We can now state our result: 

P r o p o s i t i o n 2 Let q be a sentence. Then q holds in 
al l D-maximal models of T if and only if there is an 
argument for q that is not ultimately rebutted. 

The proofs of Proposition 2 and of subsequent proposi­
tions are contained in Appendix A. 

One might conjecture that there would be an anal­
ogous result stating that q holds in some D-maximal 
model if and only if there is an argument for q that is 
not ul t imately refuted. The "only i f " claim, however, is 
incorrect. If q were a new symbol, for instance, there 
would be no arguments for g, and yet q would sti l l hold 
in some maximal model (since there also would be no ar­
guments for ¬q.) In order to state the correct corollary, 
we define the notion of an extension: 

D e f i n i t i o n 6 Define the following equivalence relation 
on D-maximal models of T: M1 ~ M2 if fo r all i where 
1 < i < n, M1 [D i] — M 2 [ D i ] ; that is, if M1 and M2 

agree on all the defaults. We wi l l call these equivalence 
classes extensions. We wi l l say that a sentence holds in 
an extension if it holds in every model in that extension. 

This corresponds to the usual meaning of an extension. 

P r o p o s i t i o n 3 Let q be a sentence. Then q holds in 
some extension of the default theory if and only if there 
is an argument for q that is not ultimately refuted. 

3 Implementat ion 
To use Proposition 2 effectively, we need some way to 
determine the various arguments for a given sentence. 
Since there may be many such arguments, and since each 
of them may in turn have many counterarguments, it 
would be inefficient to consider each of them individu­
ally. The following proposit ion, however, lets us l im i t 
our attention to the single weakest argument. This is 
obtained by disjoining all the minimal conjunctive argu­
ments that have appropriate priorities. 

P r o p o s i t i o n 4 Let q be a sentence, let i be a pr ior i ty 
level, and assume that there is some argument for q with 
at least this pr ior i ty . Let p be the disjunction of al l the 
min imal conjunctive arguments for q that have priorit ies 
of at least i. Then, (1) p is an argument for q with 
pr ior i ty of at least i, and (2) p is ultimately rebutted 
(refuted) if and only if every argument fo r q with pr ior i ty 
of at least i is ultimately rebutted (refuted). 

It turns out that these weakest disjunctive-normal-
form arguments correspond exactly to the labels in 
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an ATMS [de Kleer, 1986, Reiter and de Kleer, 1987]. 
Therefore, we can calculate these arguments using the 
backward-chaining ATMS provided wi th Ginsberg's mul­
tivalued logic system, MVL [Ginsberg, 1988]. Whenever 
the priorit ized circumscriptive theorem prover invokes 
MVL, it supplies it wi th the relevant pr ior i ty l imi t . This 
makes sure that default assumptions whose priorities are 
not high enough wi l l not be considered. 

We now present two examples of the system at work: 
the standard nonflying penguin example and Reiter's 
Nixon diamond [Reiter and Criscuolo, 198]]. The output 
is as produced by the program, except for minor textual 
modifications. (For example, the database is maintained 
in clausal form, but is displayed below using a P R O L O G -
like syntax.) 

3.1 T w e e t y t h e p e n g u i n 

This is the database for the penguin example: 

Penguin(Tweety). 
B i rd(x) : - Penguin(x). 
F l ies (x ) :- B i r d ( x ) . P3 ( p r i o r i t y 1) 
Not (F l ies(x) ) :- Penguin(x). P4 ( p r i o r i t y 2) 

Tweety is a penguin and therefore a bird. Birds nor­
mally fly; penguins normally do not fly. The P3 and P4 
tags are used by the ATMS to keep track of the default 
assumptions. Note that we have assigned a higher pr i ­
ority to the penguin default. We ask the theorem prover 
to find something that does not fly: 

N o t ( F l i e s ( x ) ) ? 
Trying to prove No t (F l i es (x ) ) . 
Invoking MVL. 
Values returned are: 
b indings: -[x = Tweety}, 
argument: P4 wi th x - Tweety. 

Trying to rebut (Not(Fl ies(Tweety)) 
:- Penguin(Tweety)). 

Invoking MVL at p r i o r i t y >= 2. 
Values returned are: n i l . 
Rebuttal f a i l s . 

Proof succeeds! 
x = Tweety. 

The theorem prover begins by f inding a default proof 
that Tweety does not fly. It then tries to rebut this 
argument. But since the default that penguins do not 
fly has a higher pr ior i ty than the default that birds do, 
the prover is unable to rebut the argument. Thus, the 
proof ult imately succeeds with x bound to Tweety. 

When we ask the prover to find something that flies, 
we get the following: 

F l i e s ( x ) ? 
T r y i n g t o prove F l i e s ( x ) . 
I n v o k i n g MVL. 
Values r e t u r n e d a r e : 

b i n d i n g s : {x = Tweety } , 
argument: P3 w i t h x = Tweety. 

T r y i n g to r ebu t (F l i es (Twee ty ) : -
B i r d ( T w e e t y ) ) . 

I n v o k i n g MVL at p r i o r i t y >= 1. 
Values r e t u r n e d a r e : 

argument: P4 w i t h x = Tweety. 

T r y i n g t o r e f u t e 
( N o t ( F l i e s ( T w e e t y ) ) : -
Pengu in (Tweety ) ) . 

I nvok ing MVL at p r i o r i t y > 2. 
Values r e t u r n e d a r e : n i l . 
R e f u t a t i o n f a i l s . 

Rebu t ta l succeeds. 
Proof f a i l s ! 

At first, an argument is found that Tweety flies. But 
since the argument that birds fly has a prior i ty of only 
1, it is rebutted by the argument that penguins do not 
fly. Since this rebuttal cannot be refuted, the original 
query has no solution. 

3.2 T h e N i x o n d i a m o n d 

In the penguin example, the competing defaults were 
at distinct priori ty levels. Here, we consider the classic 
example of competing defaults wi th the same prior i ty: 

Republican(Nixon). 
Quaker(Nixon). 
Hawk(x) :- Republican(x). P7 ( p r i o r i t y 1) 
Dove(x) :- Quaker(x). P8 ( p r i o r i t y 1) 
Not(Hawk(x)) :- Dove(x). 

Nixon is both a Republican and a Quaker. Repub­
licans are typically hawks, but Quakers are typically 
doves, and therefore not hawks. We ask the system to 
find a hawk: 

Hawk(x)? 
T r y i n g to prove Hawk(x). 
I nvok ing MVL. 
Values re tu rned a r e : 

b i n d i n g s : {x = N i x o n } , 
argument: P7 w i t h x = N ixon . 

T r y i n g to rebu t (Hawk(Nixon) : -
Repub l i can (N ixon ) ) . 

I nvok ing MVL at p r i o r i t y >= 1. 
Values r e t u r n e d a r e : 

argument: P8 w i t h x = N ixon . 
T r y i ng t o r e f u t e (Dove(Nixon) 

: - Quaker (N ixon) ) . 
I nvok ing MVL at p r i o r i t y > 1. 
Values r e t u r n e d a r e : n i l . 
R e f u t a t i o n f a i l s . 

Rebu t ta l succeeds. 
Proof f a i l s ! 

Since P7 and P8 have the same priority, the argument 
that Nixon should be a hawk is rebutted by the argument 
that he should be a dove. Thus, there is no solution to 
the original query. (If the priorities had been different, 
this would not be the case. Thus, for example, if P7 had 
a higher priority than P8, we would be able to conclude 
that Nixon is a hawk.) It should be noted that since de­
fault P8 has the same priority as default P7, P8 can rebut 
P7, but it cannot refute i t . That is, P8 has enough force 
to prevent P7 from being accepted as a conclusion, but 
it does not have enough force to stop P7 from interfering 
wi th other arguments. In particular, if we considered the 
argument that Nixon is a dove, then P7 would ult imately 
rebut this argument. 
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T h i n g s w o u l d no t wo rk as s m o o t h l y i f we a l lowed a rgu ­
ments to refute o ther a r g u m e n t s w i t h the same p r i o r i t y . 
B m i g h t s ta r t by asser t ing an a r g u m e n t p. U m i g h t re­
b u t w i t h some a r g u m e n t q a t the same leve l . A t th is 
p o i n t , B cou ld s i m p l y repeat his o r ig ina l a r g u m e n t ! ( I f 
TU {q} (=: ¬p , t h e n Tu { p } I= ¬q . ) A n d so the d i spu te 
w o u l d con t inue i n t e r m i n a b l y . 

4 Conclusion 
In th i s paper , we have presented a m e t h o d of c o m p u t ­
i n g p r i o r i t i zed c i r c u m s c r i p t i o n (for theor ies t h a t con ta i n 
uniqueness o f names and d o m a i n closure a x i o m s ) . Some 
compar isons to o ther wo rk shou ld be m e n t i o n e d . 

Us ing ideas f r o m [Ge l fond et a/., 1989], P r z y m u s i n s k i 
[1989] also presents an a l g o r i t h m for p r i o r i t i z e d c i r c u m ­
s c r i p t i o n , b u t i t does no t make f u l l use o f the p r io r i t i es o f 
the re levant a r g u m e n t s . Regardless o f the query , P rzy -
mus insk i ' s a l g o r i t h m steps mechan ica l l y t h r o u g h each 
p r i o r i t i z a t i o n leve l , i n v o k i n g his para l le l c i r c u m s c r i p t i v e 
theo rem prover a t each stage. T h i s w o u l d be ra the r i n ­
eff ic ient i f the de fau l t t heo ry had m a n y p r i o r i t i z a t i o n 
levels, b u t on ly a few of these levels con ta ined a rgu ­
ments t h a t were re levant to the g iven query . Fu r t he r ­
more , P rzymus insk i ' s a l g o r i t h m is descr ibed in t e rms of a 
specific f i rs t -o rder inference a l g o r i t h m : M lLO- reso lu t i on , 
a va r i an t o f ordered reso lu t i on . O u r s , on the o ther h a n d , 
can use an a r b i t r a r y f i rs t -order t heo rem prover . T h i s de­
compos i t i on o f the p r o b l e m makes our m e t h o d easier to 
u n d e r s t a n d , and i t p u t s us in a pos i t i on to benef i t more 
easi ly f r o m f u t u r e advances i n t h e o r e m - p r o v i n g techno l ­
ogy. 

M u c h of the i n te res t i ng research on defeasible rea­
son ing has been descr ibed in p r o c e d u r a l , ra the r t h a n 
mode l - t heo re t i ca l , t e rms . Us ing P r o p o s i t i o n 2 , we can 
now make some compar isons between th i s p rocedu ra l l y 
o r ien ted wo rk and p r i o r i t i z e d c i r c u m s c r i p t i o n . 

L o u i [1987], for examp le , discusses the genera l ques­
t i o n : W h e n is a defeater defeater a re ins ta te r? In o ther 
words , i f p is an a r g u m e n t against q, and q rebu ts r, 
under w h a t c i rcumstances does p a l low us to conc lude r 
af ter al l? For p r i o r i t i z e d c i r c u m s c r i p t i o n , we can give a 
sharp answer to th is ques t i on : p re ins ta tes r i f and on l y 
i f p u l t i m a t e l y refutes q as def ined in D e f i n i t i o n 5; i t is 
no t suf f ic ient for p mere ly to u l t i m a t e l y rebu t q. 

Our p roo f p rocedure is also s im i l a r to some of the 
w o r k by H o r t y and T h o m a s o n on i nhe r i t ance h ierarchies 
[Ho r t y and T h o m a s o n , 1988]. T h e y present a recurs ive 
de f i n i t i on o f e n t a i l m e n t t h a t accepts any a r g u m e n t a l l o f 
whose rebu t te rs are themselves defeated by acceptable 
a rguments . The re are a number of d i f ferences, however , 
between the proposa ls ; we w i l l l is t on l y a few of these 
dif ferences. F i r s t , since our sys tem uses f i r s t -o rder logic 
ins tead of a graph-based f o r m a l i s m , i t can hand le dis­
j u n c t i v e a rgumen ts . Cons ider , for examp le , G insberg 's 
ex tens ion to the N i x o n d i a m o n d where i t i s k n o w n t h a t 
b o t h hawks and doves are " p o l i t i c a l l y m o t i v a t e d . " C i r ­
c u m s c r i p t i o n w i l l conc lude t h a t N i x o n i s p o l i t i c a l l y mo­
t i va ted since Hawk(Nixon) V Dove(Nixon) canno t be 
r e b u t t e d ; H o r t y and T h o m a s o n w i l l n o t reach th i s con­
c lus ion since there is no single p a t h in the i nhe r i t ance 
ne two rk t h a t sanct ions i t . 

Second, i t appears t h a t H o r t y and Thomason ' s g r a p h -
based f o r m a l i s m can s u p p o r t a r icher s t r u c t u r e of de fau l t 
o rder ings t h a n can p r i o r i t i z e d c i r c u m s c r i p t i o n ; for m a n y 
of t he i r h ie rarch ies , there is no obv ious way of assign­
i n g p r i o r i t i es to the de fau l t l i nks in order to t rans la te 
the h ie ra rchy i n t o p r i o r i t i zed c i r c u m s c r i p t i o n . T h i r d , 
and mos t i m p o r t a n t l y , t hey der ive p r io r i t i es based on 
spec i f i c i ty wh i l e we have to state the p r io r i t i es exp l i c i t l y . 
The re fo re , the whole class of issues re la ted to spec i f ic i ty 
is s i m p l y no t addressed by our w o r k . One i n t r i g u i n g 
poss ib i l i t y w o u l d be some k i n d o f " d y n a m i c c i r cumscr ip ­
t i o n " i n w h i c h the t heo rem prover cou ld be recurs ive ly 
i nvoked to de te rm ine whe the r one a r g u m e n t had a h igher 
p r i o r i t y t h a n ano the r . T h i s p r i o r i t i z a t i o n cou ld be based 
on spec i f i c i t y or perhaps some more general scheme. We 
have i m p l e m e n t e d a p r i m i t i v e vers ion of such a sys tem 
a l t h o u g h i t s f o r m a l p roper t ies are no t en t i re ly clear. 

F i n a l l y , i t i s i n te res t i ng t h a t the proofs generated by 
our p r i o r i t i z e d c i r c u m s c r i p t i v e theo rem prover resemble 
the way a person m i g h t reason: f i rs t t en ta t i ve l y d r a w i n g 
a conc lus ion , t hen t h i n k i n g of possible ob jec t ions to th is 
conc lus ion , and f ina l ly t r y i n g to dispose o f these objec­
t i ons . We f ind i t encourag ing t h a t the proofs have th is 
i n t u i t i v e qua l i t y . 
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A Proofs 

I t w i l l be conven ien t to descr ibe the D - m a x i m a l models 
of T in t e r m s of the defau l ts h o l d i n g in t h e m . G i v e n a 
D - m a x i m a l m o d e l M, le t pl

M be the c o n j u n c t i o n o f a l l 
the defau l ts o f p r i o r i t y a t least i t h a t ho ld in M . 4 

T h e f o l l o w i n g l e m m a w i l l be useful i n p r o v i n g P ropo ­
s i t ions 2 and 3. 

L e m m a 1 Let q be an argument. Then, (1) q holds in 
some D-maximal model of T if and only if it is not ulti­
mately refuted; and (2) q holds in all D-maximal models 
of T if and only if it is not ultimately rebutted. 

P r o o f W e w i l l p rove th is b y i n d u c t i o n o n the p r i o r i t y 
i of q. Spec i f ica l ly , when p r o v i n g p a r t (1) of the l e m m a 
for an a r g u m e n t o f p r i o r i t y i , we w i l l assume t h a t b o t h 
pa r ts o f the l e m m a ho ld for a r g u m e n t s w i t h p r io r i t ies 
greater t h a n t ; when p r o v i n g p a r t (2) for an a rgumen t o f 
p r i o r i t y i , we w i l l assume t h a t b o t h pa r ts o f the l e m m a 
ho ld for a r g u m e n t s w i t h p r i o r i t i es greater t han z , and 
t h a t p a r t (1) ho lds for a rgumen ts w i t h p r io r i t i es equal 
t o i . 

(1 ) (=>) If q is u l t i m a t e l y re fu ted by p, t hen p has a 
h igher p r i o r i t y t h a n q , , and p i s no t u l t i m a t e l y r e b u t t e d . 
By our i n d u c t i v e a s s u m p t i o n , p ho lds in al l D - m a x i m a l 
mode ls , and hence q does no t ho ld in any D - m a x i m a l 
mode ls . 

4 Th is def ini t ion and the fol lowing proofs are based on less 
general versions in [Ginsberg, 1989]. 
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