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Abs t rac t 

This paper considers the Valiant framework 
as it is applied to the task of learning logical 
concepts from random examples. It is argued 
that the current interpretation of this Valiant 
model departs from common sense and prac­
tical experience in a number of ways: it does 
not allow sample dependent bounds, it uses a 
worst case rather than an average case analy­
sis, and it does not accommodate preferences 
about hypotheses. It is claimed that as a re-
sult, the current model can produce overly-
conservative estimates of confidence and can 
fail to model the logical induction process as 
it is often implemented. A Bayesian approach 
is developed, based on the sample dependent 
notion of disagreement between consistent hy­
potheses. This approach seems to overcome the 
indicated problems. 

1 I n t r o d u c t i o n 

The field of machine learning has accrued experience 
across a broad number of areas, and there is now a push 
for developing a more formal theory of learning. While 
we are sti l l a long way from this general aim, funda­
mental principles exist on which such a theory should be 
based: statistics, the representation and ut i l i ty of knowl­
edge., computational complexity [Valiant, 1985], man-
machine interaction [Buntine and Stir l ing, to appear], 
and the psychology of learning. Perhaps the first at­
tempt to encompass some of this broad spectrum in a 
formal theory was made by Valiant in his "theory of the 
learnable" [Valiant, 1985]; Valiant argued that a theory 
of learning should show classes of concepts are le unable 
in the context of an appropriate information gathering 
mechanism and in a reasonable number of steps. The 
best known instance is Valiant's model for learning logi­
cal concepts from random examples. 1 shall refer to this 
as the Valiant model, which is distinct, from his general 
framework. The Valiant model has subsequently been 
developed by a number of researchers to yield an impres­
sive array of results and research tools [llaussler, 1988, 
Rivest, 1987]. The Valiant model has also recently re­
ceived strong criticism from Amsterdam [Amsterdam, 
1988a], who said 

Valiant's formal model of concept learning . . . 
has rarely been used in practice, in part be­
cause the known learnable concept classes are 
too restricted. 

Amsterdam suggested a number of extensions to the 
model, incorporating queries and learning approximate 
representations of a concept, and criticised the model for 
its restricted scope [Amsterdam, 1988b]. 

The Valiant model is becoming recognised as a stan-
dard for formal learning theory and several extensions 
exist [Angluin and Laird, 1988, Amsterdam, 1988a, 
Rivest and Sloan, 1988]. But if it is to be a standard, 
we should heed Amsterdam's criticisms and first consider 
just how well the Valiant model handles its intended task, 
without extensions and considering only its (admittedly 
restricted) current scope. This paper does just that; the 
paper is a critique of the statistical component of the 
Valiant model. 

The two principle claims of this paper are that the 
current interpretation of the Valiant, model can produce 
overly-conservative estimates of error (even accounting 
for the approximations used); and that the model fails to 
match the induction process as it is often implemented. 
It is argued that these supposed shortcomings occur be­
cause the model gives sample independent bounds, the 
model is based on worst case analyses, and the model 
fails to accommodate preferences (or hunches) about 
hypotheses. Overly-conservative estimates would cause 
problems in the knowledge acquisition context, for in­
stance, where only a l imited sample may be available, 
extra examples costly to obtain, and realistic estimates 
of error are required regardless. 

These shortcomings suggest that the statistical com­
ponent of the model is inadequate for a comprehen­
sive analysis of the problem of designing learning algo­
r i thms, although the model does produce valuable up-
per bounds on learning performance. The shortcomings 
may be viewed as symptomatic of the underlying pseudo-
classical statistical philosophy of the Valiant model. The 
Bayesian approach is instead adopted here. The main 
theoretical machinery that this approach adds is the no­
tion of a prior. While priors certainly have to be used 
with caution [Berger, 1985, pi09], there use allows a 
much more powerful statistical analysis of the logical in­
duction problem that sti l l shares all the "distr ibution-
free" advantages of the Valiant model [llaussler, 1988, 
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p179], albeit in an average-case rather than worst-case 
sense. 

Other support for the Bayesian approach appears sub­
stantial. There are strong foundational arguments for 
the approach as a method of reasoning about uncer­
tainty (concept learning is an instance of such reasoning) 
[Berger, 1985, Horvitz et al., 1986], and the approach 
tackles a broad range of other problems in intelligent sys­
tems [Pearl, 1988]. More relevant to the present topic, 
however, the Bayesian approach handles the problem of 
learning uncertain concepts, a central problem that the 
Valiant model has been criticised for not handling [Ams­
terdam, 1988b]. Bayesian methods are competitive with 
some other machine learning approaches [Cheeseman et 
a/., 1988, Buntine, 1989c]. A version of Quinlan's infor­
mation theoretic heuristic for greedily bui lding decision 
trees [Quinlan, 1986] can be derived from Bayesian prin­
ciples, and the widely reported tradeoff between concept 
simplicity and prediction accuracy has a well known ex­
planation in Bayesian decision theory [Cheeseman, 1987, 
Buntine, 1989a]. These last two issues have recently 
been reported as open problems [Haussler, 1988, Fisher 
and Schlimmer, 1988]. The Bayesian approach, however, 
only addresses the uncertainty in learning, and clearly 
needs to be complemented, for instance, wi th the com-
putational concerns that are central to Valiant's broad 
learning framework, and indeed crucial to any theory of 
machine learning. 

Sections 2 and 3 introduce the task of learning logic 
concepts from random examples and the Valiant model 
to that task, Sections 4, 5 and 6 each illustrate a problem 
with the model. Section 7 then outlines the Bayesian so-
lut ion and Section 8 concludes wi th some open problems. 

2 The learning task 
The Valiant model is pr imari ly concerned wi th the logic 
induction problem. For example, suppose for discussion 
that we are designing a system to plan the routing of 
sheet steel through a large manufacturing plant. For 
the purposes of deciding whether to use the annealing 
process or not, a product may be classified by a number 
of attributes that together uniquely determine whether 
the process should be used. That is, there is known to 
exist a necessary and sufficient (logical) definition of the 
"annealing" class given in terms of attributes, this is the 
classification rule we hope to approximate. 

Let us assume there are 6 binary-valued attributes: 
cold-rolled, aluminium-killed, deep-drawing, skin-passed, 
exposed-surface and carbon. And we have been provided 
wi th some examples (each gives values for the attributes) 
that have also been classified as either positive or nega­
tive (use annealing, or not) by the resident metallurgist. 
In this instance, there are 26 = 64 possible examples, 
each having one of 2 possible classifications. A distri­
bution on the examples gives the frequency of any par­
ticular steel product (as uniquely determined by the 6 
attributes) would occur, irrespective of its actual classi­
fication. Examples are known to have come from a fixed 
distr ibut ion. A random sample is a set of classified ex­
amples drawn independently and identically according 
to the distr ibution on examples. This implies sampling 

with replacement. 
A simplistic notion of the logic induction problem, 

then, is to find the "true" classification rule given only 
the classified examples. In practice, of course, we would 
at best hope to find a classification rule that minimises 
errors in some sense on future predictions. An hypothe­
sis space H represents a space of classification rules that 
can feasibly contain the "true" one. For instance, in the 
steel routing application, if we consider the complete hy­
pothesis space, all possible classification rules over the 
64 examples, the space is of size 264 or approximately 1 
billion. 

3 The Valiant model 
Angluin and Laird precis the statistical component of 
the Valiant model as follows [Angluin and Laird, 1988]: 

The idea is that after randomly sampling [clas­
sified examples] of a concept, an identifica-
tion procedure should conjecture a concept that 
wi th "high probabil i ty" is "not too different" 
from the correct concept. 

Angluin and Laird have termed this notion probably ap­
proximately correct (PAC) and a common interpretation 
[Haussler, 1988] is, in a nutshell: there are so few hy­
potheses left that are consistent wi th the classified ex-
amples that every consistent hypothesis is wi th a confi­
dence of 1 — 6 approximately correct wi th error at most 
e on future samples. I shall refer to this as the classical 
interpretation. 

Wi th \Hi\ hypotheses, Blumer, Ehrenfuecht, Haussler 
and Warmuth [Blumer et a/., 1987] show that to be as­
sured of PACness with error c and confidence 1—S with a 
random sample of size N examples, the following should 
hold 

(Blumer bound) . 

I shall refer to this as the Blumer bound. For a complete 
propositional hypothesis space H over n propositional 
symbols, \H\ is 22 (there are 2n different examples, 
each can be true or false). For various other proposi­
tional languages the Blumer bound gives tighter results 
than those obtained using the Vapnik-Chervonenski di­
mension [Buntine, 1989b, Haussler, 1988]. For learning 
then, after setting an acceptable level of confidence and 
error, we select a plausible hypothesis space, choose an 
algorithm and buy the sufficient sample, and then apply 
the algorithm to find a hypothesis consistent with the 
sample. 

4 The impact of the sample on 
estimating PACness 

The classical interpretation ignores what is perhaps the 
most v i ta l piece of information in the whole equation: 
what actual examples are obtained. Results are always 
given purely in terms of the size of the sample. While this 
is acceptable if we currently wish to estimate how large a 
sample should be obtained, if we actually have a sample 
there may well be other information in it apart from its 
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size able to tighten the bounds on PACness. A learning 
algorithm should make use of this sort of information. 

To understand the potential of this other information, 
consider the analytically simple but impractical situation 
where the the hypotheses space is complete, it includes 
all possible classification rules. For instance, in the steel 
routing example, \H\ = 26 4 . W i t h a sample of size 200 
and confidence of 90% the Blurner bound gives a bound 
of c < 0.23. Experience wi th induction tools such as ID3 
[Quinlan, 1986] indicates that this bound is not opt imal. 
In fact, stochastic simulation shows that according to 
most distributions on examples, given a random sample 
of 200 classified examples, many of the 64 possible differ­
ent examples wi l l have been included, so we know their 
classification! Of the remaining, because we haven't seen 
them in a rather large sample, they are probably rare 
anyway. It is possible but very unlikely that the ran­
dom sample wi l l contain all possible examples, then the 
predicted error rate should be zero! If only 4 out of the 
64 where not included, then the error rate should now 
be non-zero and of the order of 4/64 = 0.0625, certainly 
much less than 0.23. At the other extreme, if the random 
sample consisted of 200 repetitions of the same example, 
then the predicted error rate should be higher again. 
Knowledge of the actual sample clearly has potential for 
improving error analysis, and a theory of learning should 
account for this. 

A careful inspection of the proof of the Blumer bound 
reveals that it assumes the size of the sample is known, 
but the examples making up the sample are unknown. 
Information about the sample cannot be incorporated. 
Fortunately, a sample-dependent bound for determining 
PACness can be found using Bayesian statistics. This 
is based around a notion of the disagreement between 
consistent hypotheses. 

D e f i n i t i o n 1 Let S be a random sample of classified ex-
amples of a concept drawn from a finite example space 
and let H be a hypothesis space for the concept. The 
maximum disagreement induced by S on H is the maxi­
mum for I such that H1 H2 E H, H1 and H'2 are consis­
tent with S, and H\ and H2 disagree on I classifications 
out of all possible distinct examples. 

For a complete hypothesis space, the maximum dis­
agreement induced by S is just the number of distinct 
possible examples that do not occur in 5. For a con­
junctive hypothesis space, maximum disagreement has 
an upper bound of 2 n + 1 s c ( s ) - 2 n + 1 - i c ( s ) where n is 
the number of propositional symbols, sc(S) denotes the 
length of the shortest conjunction consistent wi th S, and 
lc(S) denotes the length of the longest such conjunction 
[Buntine, 1989b]. For this last bound, bare in mind that 
there are 2n distinct possible examples. 

Disagreement can be used to find an upper confidence 
l im i t on the chance that any consistent hypothesis wi l l 
disagree on the classification of an example. The result 
assumes the so called non-informative Dirichlet prior on 
a distr ibution over n example types, Pr(e1,... ,en) α 
IIie α-1, where e, is the probabil ity of seeing the i-th 
example and α is set to 1/2. As always, the choice of prior 
is application specific so some other value of a might be 
more appropriate for a given problem. 

L e m m a 1 ( [ B u n t i n e , 1989b]) Let S be a random 
sample of N classified examples, H be a hypotheses space 
on E distinct examples, and k be the maximum disagree­
ment induced by S on H. In addition, suppose that 
a prior belief in the distribution on examples is non-
informative. Define beta error to be the value of e for 
which 

(1) 

where lt is the incomplete beta function [Abramowitz 
and Stegun, 1972]. For any arbitrary hypothesis H con­
sistent with the sample S, we have better than 1 — 6 confi­
dence according to a posterior belief (conditioned on the 
sample) that the error rate of H is less than the beta 
error. 

Fast formulae for computing the incomplete beta func­
tion and its inverse are available in mathematical hand­
books [Abramowitz and Stegun, 1972]. To give an idea of 
the behaviour of beta error, the following approximation 
can be made [Buntine, 1989b]. 

) 

where Z1-s denotes the standard normal deviate for 1 — 
6, that is Pr(Z < Z1/S) =1 — 6. For instance, Z0.95 = 
1.64 and Z0.99 = 2.33. This approximation should be 
compared with the Blumer bound. Notice that k/2 and 
In |H| roughly correspond in the two bounds. 

Consider, again, the simple situation where the hy­
pothesis space is complete. Figure 1 shows how the 
beta error in which we have 99% confidence varies as 
a larger sample is taken. Twenty-four samples were gen­
erated by first randomly generating (according to the 
non-informative prior) a distr ibution if on the E = 64 
distinct examples, and then randomly generating exam­
ples from this distribution. Two representative samples 
where then selected for display. Accumulated sample 
size is given by N. The line graphs marked by boxes and 
the left axis give beta error. The line graphs marked by 
circles and the left axis give the true value of the max­
imum error for a consistent hypothesis. Notice how the 
beta error usually tracks along but just above the true 
maximum error. This occurred in all twenty-four sam­
ples, wi th the beta error occasionally under-estimating 
error. The Blumer bound1 is the line marked by dia­
monds in the top part of the graph. The bar graphs and 
left axis give the maximum disagreement induced by the 
accumulated sample (k) represented as a proportion of 
the distinct examples (k/E). Notice how the beta er­
ror stays well below this proportion as Equation (2) in­
dicates, but the Blumer bound remains wi th i t . W i th 
the well behaved nature of the beta distr ibution, similar 
shaped graphs should occur for other values of E and 6. 

Figure 2 shows how the beta error in which we have 
99% confidence varies wi th k, the maximum disagree­
ment induced by a sample on a hypotheses space. This 
is given for two different sample sizes (TV = 100,200) 

1 For a fairer comparison, a tighter version b < |H|(1 - e ) N 

has been used in this and later graphs. 
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from E = 64 distinct classified examples. The Blumer 
bound given assumes the hypothesis space is complete. 
Notice how the beta error decreases with the maximum 
disagreement, i.e. when more example types are seen in 
the sample, consistent hypotheses wil l have lower error. 
This demonstrates just how important it is to make use 
of knowledge about a sample when evaluating PACness. 

5 Average rather than worst case 
PACness 

The use of the bound obtained in Lemma 1 or the Blumer 
bound, as wi th Haussler's notion of c-exhausting a hy­
pothesis space [Haussler, 1988], are really worst case 
analyses: they apply to every consistent hypothesis. If 
we choose a single consistent hypothesis arbitrari ly, then 
we may choose a worst case, or we may choose a more ac­
curate hypothesis. To see what is wrong wi th this worst 
case analysis, suppose we have a carton of 200 apples, of 
which at most 3 are known to be bad. According to a 
worst case analysis, we cannot be confident of picking a 
good apple out of the carton because in the worst case 
we wi l l get a bad apple. An average case analysis, like 
common sense, tells us that if we pick an apple out of 
the carton, we can be confident (98.5% in this case) it 
wi l l be a good apple. 

To introduce an average case analysis, we could, for 
instance, determine the confidence 1 - 6 that error is 
at most c for an arbitrarily chosen consistent hypoth­
esis, bearing in mind that some consistent hypotheses 
may have a worse error. This confidence represents our 

strength of belief that we have not obtained an unrep­
resentative sample and that we have not chosen a worst 
case hypothesis from those consistent wi th the sample. 
Both are chances we have no control over. 

6 Considering preferences on 
hypotheses 

As mentioned above, the classical interpretation and the 
result in Lemma 1 give confidence on error bounds for the 
worst case consistent hypothesis. In practice, of course, 
we do not build induction programs that try to find 
the worst conjecture consistent wi th the sample, nor do 
we arbitrar i ly choose one. Most induction practitioners 
spend their t ime try ing to find a conjecture that they 
believe is in some sense the best. How should this be 
done? 

Merely choosing just any consistent hypothesis may 
ignore v i ta l information of a form not able to restrict 
the hypothesis space. Suppose, as Littlestone considers 
[Littlestone, 1988], we suspect there arc abundant irrel­
evant or .redundant attributes. It would be an obscure 
application where we know exactly how many attributes 
are irrelevant or redundant. Suppose, as Rivest consid­
ers [Rivest, 1987], we believe decision lists form a suit­
able hypothesis space. Do we use 5-DL (decision lists 
wi th conjunctions of size 5 at each decision) or maybe 
10-DL? In fact, this is what we typically want the in­
duction system to tell us. Suppose we make a guess and 
consider a hypothesis space of r -DL. If we undershoot 
on r, we may end up finding no consistent hypothesis 
at al l . If we overshoot, there may be many hypothesis 
left consistent wi th the l imited sample we do have, and 
we have no assurance that an arbitrari ly chosen one wil l 
have a suitable mecisure of PACness. Clearly, we should 
not choose such a hypothesis arbitrari ly. 
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This issue has caused Mitchell to propose the need 
for "bias" in induction [Mitchell, 1980]. Bias is infor­
mation extraneous to the sample used when choosing a 
hypothesis. For instance, we might choose a hypothe­
ses that is "preferred" in some sense. In the situation 
above, if we believe irrelevant attributes abound, we 
might search for a consistent hypothesis that incorpo-
rates a smaller number of tests, for instance, a shorter 
decision list. An early paper by Gold [Gold, 1967] gave a 
result that supported Mitchell 's proposal. Gold showed 
that there is no logic learning algorithm that uniformly 
requires a smaller number of examples to correctly iden­
t i fy a hypothesis than the "identification by enumera­
t ion" algori thm. Since almost all reasonable logic learn­
ing algorithms can be classed in this broad category, we 
can conclude that some algorithms perform well on some 
types of problems, others perform well on other types of 
problems, but no algorithm performs uniformly better. 
As a consequence, the best we can do in logic induction 
is to hope that we choose an algorithm that performs 
well on the style of problem we are presented; and only 
information extraneous to the sample can help us in this 
choice. 

The approach used by many applied logic induction 
systems is to use Occam's razor as a "preference order­
ing" on hypotheses. These systems search for "simpler" 
consistent hypotheses where the notion of simple is a syn­
tactic notion relative to the description language chosen 
for the application. For instance, Quintan's ID3 [Quin-
lan, 1986] does this by searching for a more compact de­
cision tree consistent wi th the sample. As a result, the 
ID3 algorithm could not be expected to perform well, 
for instance, in learning some DNF formulae. These can 
have quite complex decision tree representations. 

Notice that this use of a preference ordering must be 
relative to the application concerned because any syn­
tactic measure is a language dependent concept, and the 
language used is typically supplied by a domain expert. 
Caution also dictates that we only use an ordering that 
we have some prior justif ication for, otherwise we may 
as well arbitrar i ly pick a consistent hypothesis. Gold's 
result also assures us that this is the best methodology 
available when learning logic concepts. Finally, the clas­
sical and the two revised PACness notions are now in­
appropriate because they do not account for the use of 
preferences. 

7 T h e Bayesian approach 

The only induction theories that address the use of pref­
erence (or "bias") specifically are Bayesian statistics and 
its logarithmic counterpart, the min imum description 
length (MDL) method. These answer Mitchell's con­
cerns [Mitchell , 1980] in mathematical detail: how "bias" 
is required, how it can be implemented (as a measure of 
belief), and how it effects the logical induction process. 
The Bayesian approach is discussed here. 

For each hypothesis H € H, we have Pr(H) an a pri-
ori measure of belief in it being "true" before the sample 
S is seen, and Pr(H \ S) an a posterior measure of be­
lief after the sample has been seen. The prior measure 
may be uniform for all hypotheses in the space; in which 

case we are using a non-informative prior, and acknowl­
edging that we have no basis to prefer one hypothesis 
other another. When using Occam's razor as a prefer­
ence ordering on hypotheses, we are tying the prior to 
some measure of hypothesis size. 

For each hypothesis H, prior and posterior are related 
as follows: 

It is quite simple to show that this relation holds even 
when a sample is made without replacement, or when ex­
amples are obtained through the learner making queries. 
The relation shows that the prior preference ordering we 
choose before obtaining the sample is also appropriate, 
given a sample, for ordering those hypotheses consistent 
wi th the sample. 

It is implici t in the current interpretation of the 
Valiant model and in the MDL model that we should 
choose just a single consistent hypothesis to make pre­
dictions wi th. To be more in the spirit of the Bayesian 
approach, we should instead choose several of the "bet­
ter" hypotheses and pool their predictions, as a means 
of "hedging our bets". This is a consequence of the de­
cision theory component of the Bayesian approach. Ex­
periments show this hedging of bets may give only minor 
improvement in subsequent prediction accuracy, but can 
also lower the variance of prediction accuracy for classifi­
cation rules built from different samples (Buntine, forth­
coming). 

The Bayesian approach also gives a method for deter­
mining confidence in error estimates, for example, PAC-
ness. This method does not appear to suffer the three 
broad problems claimed earlier about the Valiant model. 
For the classification rule C to be used, we first need 
the mean error E according to posterior belief, u c ( 0 , 
representing how much error we expect C to have, and 
the variance of this error, ), representing our uncer­
tainty in the expected error. For the case of a random 
sample and the so called non-informative prior 
these quantities are as follows: 

where k(C, H) represents the disagreement between C 
and 77, which is the number of classifications out of all 
possible distinct examples on which C and H disagree, 
and N and E have their usual meaning2. The mean 
error is calculated as the average disagreement divided by 
2N + E. The mean and variance could be approximated 
stochastically by finding a small number of hypotheses 
consistent wi th the sample and then evaluating the two 
summations in the above equations on these hypotheses. 
PACness can then approximated from these quantities. 

2These equations follow using the method of proof for 
Lemma 1 and knowledge of the mean and variance of the 
beta distribution. 
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8 Conclus ion 

It has been argued that analysis of learning algorithms 
would better consider how to search for one or several 
preferred consistent hypotheses, and that prediction er­
ror can be approximately bounded using the sample de­
pendent quantities maximum disagreement and average 
disagreement. These quantities play the role of l og |H | 
in the Blumer bound. 

The following open problems il lustrate the kinds of 
computational issues that need to be addressed to de­
velop the Bayesian approach given here in the manner 
of Valiant's [Valiant, 1985] broad learning framework. 

1. How can maximum disagreement or some average 
measure of disagreement be efficiently estimated for 
samples from different concept classes? 

2. The analysis in Sections 4 to 7 consider how to more 
accurately determine PACness given a sample, but 
not how large a sample is ini t ia l ly required. How 
is maximum disagreement or some average measure 
of disagreement expected to grow wi th the sample 
size, or what is Pr(k \ N)? 

3. What are suitable algorithms and what is the com­
putational complexity of searching for "preferred" 
consistent hypothesis for various concept classes and 
preference criteria? Both Haussler [Haussler, 1988, 
Section 5] and Rivest [Rivest, 1987, Section 5.3] have 
briefly considered this question using "simpl ic i ty". 

4. Just how good is the stochastic approximation for 
determining PACness (outlined in Section 7) under 
a range of different priors and concept classes? 

If current trends on applied machine learning are 
any guide, then even more interesting problems revolve 
around the learning of uncertain concepts. 

References 

[Abramowitz and Stegun, 1972] M. Abramowitz and 
LA . Stegun. Handbook of Mathematical Functions. 
Dover Publications, New York, 1972. 

[Amsterdam, 1988a] J. Amsterdam. Extending the 
Valiant learning model. In Fifth International Con­
ference on Machine Learning, pages 381-394, Ann Ar­
bor, Michigan, 1988. Morgan Kaufmann. 

[Amsterdam, 1988b] J. Amsterdam. Some philosophical 
problems wi th formal learning theory. In AAAI-88, 
pages 580-584, Saint Paul, Minnesota, 1988. 

[Angluin and Laird, 1988] D. Angluin and P. Laird. 
Learning from noisy examples. Machine Learning, 
2(4):343~370, 1988. 

[Berger, 1985] J. O. Berger. Statistical Decision Theory 
and Bayesian Analysis. Springer-Verlag, 1985. 

[Blumer et a/., 1987] A. Blumer, A. Ehrenfeucht, 
D. Haussler, and M.K. Warmuth. Occam's razor. In-
formation Processing Letters, 24:377-380, 198V. 

[Buntine and Stir l ing, to appear] W.L . Buntine and 
D.A. St ir l ing. Interactive induction. In J. Hayes, 
D. Michie, and E. Tyugu, editors, MI-12: Machine 

Intelligence 12, Machine Analysis and Synthesis of 
Knowledge. Oxford University Press, to appear. 

[Buntine, 1989a] W.L . Buntine. Decision tree induction 
systems: a Bayesian analysis. In L. N. Kanal, T. S. 
Levi t t , and J. F. Lemmer, editors, Uncertainty in Ar­
tificial Intelligence 3. Elsevier Science, 1989. 

[Buntine, 1989b] W.L . Buntine. Inductive knowledge 
acquisition and inductive methodologies. Knowledge-
Based Systems, 2(1), 1989. 

[Buntine, 1989c] W.L . Buntine. Learning classification 
rules using Bayes. In Proceedings of the Sixth Inter­
national Machine Learning Workshop, Cornell, New 
York, 1989. to appear. 

[Cheeseman, 1987] P. Cheeseman. Invited talk in Third 
Workshop on Uncertainty in AI, Seattle, 1987. 

[Cheeseman et ai, 1988] P. Cheeseman, M. Self, 
J. Kelly, W. Taylor, D. Freeman, and J. Stutz. 
Bayesian classification. In AAAI-88, pages 607-611, 
Saint Paul, Minnesota, 1988. 

[Fisher and Schlimmer, 1988] D.H. Fisher and 
J.C. Schlimmer. Concept simplification and predic­
tion accuracy. In Fifth International Conference on 
Machine Learning, pages 22-28, Ann Arbor, Michi­
gan, 1988. Morgan Kaufmann. 

[Gold, 1967] E.M. Gold. Language identification in the 
l imi t . Information and Control, 10:447-474, 1967. 

[Haussler, 1988] D. Haussler. Quantifying inductive 
bias: AI learning algorithms and Valiant's learn­
ing framework. Artificial Intelligence, 36(2):177-222, 
1988. 

[Horvitz et al, 1986] E.J. Horvitz, D.E. Heckerman, 
and C.P. Langlotz. A framework for comparing alter­
native formalisms for plausible reasoning. In AAA1-
86, pages 210 214, Philadelphia, 1986. 

[Littlestone, 1988] N. Littlestone. Learning quickly 
when irrelevant attributes abound: a new linear 
threshold algori thm. Machine Learning, 2(4):285~318, 
1988. 

[Mitchell, 1980] T . M . Mitchel l . The need for biases in 
learning generalisations. C B M - T R 5-110, Rutgers 
University, New Brunswick, NJ, 1980. 

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intel­
ligent Systems. Morgan and Kauffman, 1988. 

[Quinlan, 1986] J.It . Quinlan. Induction of decision 
trees. Machine Learning, 1(1):81-106, 1986. 

[Rivest and Sloan, 1988] R.L. Rivest and R. Sloan. 
Learning complicated concepts reliably and usefully 
(extended abstract). In AAAI-88, pages 635 640, 
Saint Paul, Minnesota, 1988. 

[Rivest, 1987] R.L. Rivest. Learning decision lists. Ma­
chine Learning, 2(3):229- 246, 1987. 

[Valiant, 1985] L.G. Valiant. A theory of the learnable. 
CACM, 27(11):1134-1142, 1985. 

842 Machine Learning 


