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A b s t r a c t 

This paper analyzes the theoretical under­
pinnings of recent proposals for comput ing 
Dempster-Shafer Belief functions f rom A T M S 
labels. Such proposals are intended to be a 
means of integrat ing symbolic and numeric rep­
resentation methods and of focusing search in 
the A T M S . This synthesis is formalized us­
ing graph theory, thus showing the relat ion­
ship between graph theory, the logic-theoretic 
A T M S description and the set-theoretic Demp­
ster Shafer Theory descript ion. The computa­
t ional complexity of calculating Belief functions 
f rom A T M S labels using algorithms originally 
derived to calculate the network rel iabi l i ty of 
graphs is analyzed. Approx imat ion methods to 
more efficiently compute Belief functions using 
this graphical approach are suggested. 

1 In t roduc t ion 
To bridge the gap between the claimed lack of a "logical 
semantics" in uncertainty calculi and the lack of notions 
of uncertainty (claimed essential to modeling human rea­
soning) in logic, several attempts have been made to 
integrate formal logic wi th an uncertainty calculus. In 
this paper the relationships between an uncertainty cal­
culus, Dempster Shafer Theory, and propositional logic 
are shown. 

It has been proposed that Dempster Shafer (DS) The­
ory rivals Probabil i ty Theory in expressive power and ef­
fectiveness as a calculus for reasoning under uncertainty. 
However, because of the computational complexity as­
sociated wi th computing DS Belief functions, only sub­
sets of the fu l l problem domain expressible in DS The­
ory have been implemented, wi th the exception of recent 
Assumption-based TMS (ATMS) implementations. The 
number of subsets of a set of propositions increases ex­
ponentially w i th and given that the DS normalizing 
function can sum over all of these subsets, computing a 
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single normalization funct ion can be computat ional ly ex­
pensive. The tota l space necessary to compute DS belief 
functions over a set of n propositions is in the 
worst case. 

Examples of such restricted implementations include 
work by Shafer and Logan and by d'Ambrosio. Shafer 
and Logan [1987] have implemented DS Theory re­
stricted to the case of hierarchical evidence, based on 
proposals by Barnett [ l 98 l ] and Gordon and Short-
liffe [1985]. D'Ambrosio [1987] has implemented DS 
theory for the restricted case defined by the Support 
Logic Programming of Baldwin [1985]. D'Ambrosio at­
taches a simplification of the Dempster-Shafer uncer­
ta inty bounds to A T M S labels. 

Laskey and Lehner [1988], Provan ([1988b], [1989a]) 
and Pearl [1988] have independently extended the A T M S 
wi th the fu l l DS theory in similar manners. Such an 
extension represents a synthesis of the symbolic (logic-
theoretic) A T M S representation and the numeric (set-
theoretic) DS Theory representation. However, there 
has been no analysis of the underlying theoretical foun­
dations or the complexity of this DS theory implemen­
tat ion. 

This paper describes the theoretical and computa­
t ional issues raised by extending an A T M S to compute 
DS Belief functions wi thout significantly compromising 
the semantic clar i ty or computat ional properties of ei­
ther. This extension is motivated by the need to int ro­
duce a weighting system into the A T M S , and to improve 
the poor performance of the A T M S as observed in prac­
tice and predicted by the average-case results of Provan 
[1989b]. Exist ing ATMSs cannot rank hypotheses, but 
the incorporation of DS Theory allows hypotheses to be 
ranked and offers efficiency improvements, such as the 
abi l i ty of the Problem Solver to prune the search space 
by identi fying and focusing search only on highly l ikely 
part ia l solutions. Using a graph theoretic formulat ion of 
the A T M S we show that simply weighting the edges of 
the graph corresponds to a representation f rom which 
DS Belief functions can be computed. Such a graph 
theoretic formulat ion provides clear intu i t ions in to the 
properties of symbolic ATMS-based DS algorithms and 
their relationship to the computat ion of network relia­
b i l i ty [Agrawal and Barlow, 1984]. 

The complexity of the problems solved when using the 
A T M S to compute DS Belief functions is also defined. 
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Such an analysis identifies the sources of intractabil ity 
in computing DS Belief functions, and explicitly shows 
why most implementations are of particular restrictions, 
such as hypertree embeddings [Shenoy and Shafer, 1988], 
[Shafer and Logan, 1987]. Such theoretical results are 
supported by empirical evidence (e.g. as pointed out in 
[Provan, 1986], [Ball, 1986]) which indicates that only 
moderately-sized problems can be computed efficiently. 
To counter such intractabil ity, approximation methods 
for computing the ful l DS Theory, and not for restric­
tions of the theory are proposed. 

This paper is organized as follows. Section 2 re­
views the theoretical basis of DS theory. Section 3 
presents three complementary theoretical formulations 
of the ATMS based on logic, Boolean expression mini­
mization and graph theory. The correspondence between 
the graph theoretic ATMS formulation and DS theory is 
shown. Section 4 describes the ATMS-based DS theory 
algorithm and Section 5 the complexity of the underly­
ing problems. Finally, in Section 6 the conclusions of 
this study are stated. 

2 Dempster-Shafer Theory Review 
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computes a label, for each database literal x. 
summarizes the "proofs" for x in terms of a Boolean for­
mula consisting of assumptions only. The assumptions, 
which are denoted by A = {A1 , . . . ,A / } , are a distin­
guished subset of the database literals and are the prim­
itive data representation of the ATMS wi th which the 
derivation of all other literals is recorded. 

The ATMS records contradictions in terms of a con­
junction of assumptions called a nogood. By ensuring 
nul l intersections of all labels wi th the set of nogoods, 
the ATMS maintains a consistent assignment of labels 
to database literals. The ATMS can incrementally up­
date the database labeling following the introduction of 
new clauses. It does this by storing the entire label and 
nogood set to avoid computing them every time they are 
needed. 

A typical problem for which an ATMS is used is cir­
cuit diagnosis, such as that done by GDE [de Kleer 
and Will iams, 1987]. The circuit analyzed in [de Kleer 
and Will iams, 1987] consists of multipliers M1, M2 
and M3 and adders A1 and A2, as shown in Figure 1. 
Assumptions can be: (1) each component is working, 

Figure 1: Circuit wi th faulty components 

where W A , signifies that adder Ai is functioning cor­
rectly, and W M , signifies that multiplier M i is function­
ing correctly; or (2) input data, e.g. A = 3, B = 2, 
etc. In the course of diagnosis, an assumption like WM2, 
i.e. "M2 is working", may be proved incorrect. For the 
circuit in Figure 1, the output at F is 10 instead of 12, 
implying that some combination(s) of M1, M2, M 3 , A1 
and A2 is(are) faulty. In GDE, the ATMS identifies hy­
pothesized sets of circuit components whose faulty be­
havior could cause discrepancies between predicted and 
observed circuit measurements. Taking observations at 
points like X, Y or Z narrows the set of diagnoses con­
sistent wi th the observations and guides future decisions 
about where to make further readings. A solution con­
sists of a set of faulty multipliers and adders which ex­
plains all the observations. 

Given the set of input clauses and assumptions, 
the ATMS computes what de Kleer and Williams 
call minimal conflict sets, which are the labels for 
circuit malfunctions. The two conflict sets are 
represented logically as and 

Hence, the malfunction­
ing of the circuit shown in Figure 1 can be explained by 
the simultaneous malfunctioning of A1, M1 and M2, or 

Dempster's Rule of Combination defines an updated 
mass function for a proposition 0 provable in terms of θi, 
and θj, for all θ,θi,θj C Ө, as: 

(1) 

(2) 

Many good descriptions of Dempster-Shafer (DS) theory 
exist, e.g. [Dempster, 1968], [Shafer, 1976]. We assume 
familiarity wi th DS theory, state a few basic relation­
ships, and refer the reader to the references. 

In DS theory, weights are assigned to subsets as well as 
elements of a mutually exclusive set of focal propositions 

A mass function assigns weights to 
subsets θ of Ө subject to the following properties: 

One measure in DS theory which is derived from this 
mass function is Belief, the degree of belief in proposition 
subsets from which a proposition can be proven: 

The Belief function is also denoted as Bel\ jBe/2. 
The numerator assumes independence of propositions. 
Viewed in set-theoretic terms, this is simply "summing" 
the mass functions of all sets in which is provable.1 The 
denominator of Equation 2 is a normalizing term, given 
that DS Belief is assigned only to non-contradictory sub­
sets. 

3 Theoret ica l A T M S Formal iza t ion 
The ATMS [de Kleer, 1986] is a database management 
system which, given a set of propositioned clauses, 

1DS Theory thus has both underlying set-theoretic and 
logic-theoretic notions. 



If a new clause _ is added such tha t the 
antecendents of x already have labels, or if (x) must be 
updated due to database updat ing, label updat ing must 
take place. An updated label is assigned to a l i teral x by 
taking the conjunction of the labels of the antecedents 

Labels are always repre­
sented minimal ly w i th respect to set inclusion. 

The process of determining solutions, called Interpre­
tat ion Construct ion in A T M S terminology, can be de­
scribed in this logical framework in terms of a C N F 
to D N F conversion, but is more in tu i t ive ly described 
w i th in the Boolean expression framework, in terms of 
well-known set covering algorithms. We discuss Inter­
pretat ion Construction in the next section. 

3.2 B o o l e a n A l g e b r a F o r m u l a t i o n 

This formulat ion uses the same terminology as the logi­
cal formulat ion. The conjunction of the E^s is called a 
Boolean expression4 F, i.e. F = 

As in the previous formulat ion, the A T M S label gen­
eration algor i thm computes the prime implicates for 

The derivation of the pr ime im­
plicates enables the expression F to be represented in 
terms of the prime implicates, i.e. such 
that Fn computes F. A expression F' computes F if 
F'(x) = F(x) for every instant iat ion of x. We note that 
there may be many other expressions F' which also com­
pute F. 

The A T M S then derives the minimal or irredundant 
expression T for F. By assigning a un i t cost to each 
support clause the cost of F can be defined as the sum 
of the costs of the support clauses in F.5 A min imal 
expression T is an expression such that T computes F 
and no expression comput ing F has cost smaller than T. 

Interpretat ion construction derives an irredundant (or 
minimal) set of prime implicates, where a prime imp l i ­
cate w is redundant if it can be removed f rom the set II of 
prime implicates to form a set I I ' such that I I ' s t i l l com­
putes F. The A T M S uses a set covering a lgor i thm for 
interpretat ion construction, but other algorithms may 
be used, such as the Quine-McCluskey algor i thm [Mc-
Cluskey, 1956], or the h i t t i ng set a lgor i thm used by Re-
iter [1987] for a diagnostic reasoning appl icat ion. The 
min imal Boolean expression corresponds in A T M S ter­
minology to an interpretation, which de Kleer [1986] de­
fines as the smallest set of assumptions f rom which al l 
l iterals in the context are derivable. 
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that o f A1, A2, M1 and M3 . 
We now present three complementary methods of 

viewing the problems solved by the A T M S . We f irst con­
sider the two frameworks t radi t ional ly used to formal­
ize the A T M S , namely proposit ional logic and Boolean 
algebra. We then show the equivalence of a graphical 
f ramework. 

3 .1 L o g i c F o r m u l a t i o n 

The input alphabet (using terminology introduced in 
[Reiter and de Kleer, 1987]) is represented by a set 
x = { x 1 , . . . , x n } of proposit ional symbols. A proposi­
t ional l i teral is a proposit ional symbol or its negation. 
A proposit ional clause consists of a finite disjunction 
of proposit ional l i terals w i th no l i teral repeated, e.g. 

3.3 G r a p h T h e o r e t i c F o r m u l a t i o n 

In describing this formulat ion, we introduce some graph-
theoretic notat ion, which is used to show the equivalence 

4This is standard conjunctive normal form (CNF), the 
dual representation of traditional disjunctive normal form 
(DNF) Boolean expressions. 

5There are many ways to define such a cost function. For 
example, the cost of each support clause can be assigned 
as the number of assumptions in 



of the graph-theoretic and logic-theoretic descriptions of 
the problem. 

We can consider a Boolean expression F as defining 
a graph composed of vertices V and edges E6. 
More precisely, a Boolean l i teral xi corresponds to an 
edge Ei, and a logical connective corresponds to 
a vertex that joins two or more edges between the cor­
responding components as follows: a A connecting two 
literals (or clauses) corresponds to an edge connecting 
two vertices (or vertex sets) in series, and a V connecting 
two literals (or clauses) corresponds to an edge connect­
ing two vertices (or vertex sets) in parallel. The direction 
of the edges corresponds to the direction of implication 
for the clauses. 

A path consists of a connected sequence of distinct 
edges. We call £ a path between vertices s and t in 
the event that all edges in the path are functioning. A 
minimal path is a path the deletion of any edge of which 
renders the path disconnected. A subgraph 
of is a graph such tha t and . 
A connected graph has at least one path between every 
pair of vertices. A cutset of a graph Q is a subgraph of 

the removal of any edge (or vertex) of which renders 
disconnected. 
Using the correspondence between the Boolean expres­

sion and graph theoretic formulat ions for the ATMS, we 
outline the graph-theoretic equivalent of the ATMS la­
bels. But instead of the label, we wi l l use the prime 
implicate since a label is jus t another means of repre­
senting as shown earlier. 

L e m m a 1 The set of prime implicates for a CNF 
Boolean expression F defines a set of paths through the 
corresponding graph 

If F is expressed in D N F , then we obtain 

L e m m a 2 The set of prime implicates for a DNF 
Boolean expression F defines the cut sets of the corre­
sponding graph 

The graph corresponding to the irredundant CNF ex­
pression for the circuit diagnosis example is shown in 
Figure 2(a). The graph corresponding to the irredundant 
DNF expression is shown in Figure 2(b) which showns 
the minimal paths derived f rom the example. We em­
phasize that these graphs are interconvertible. By find­
ing the edge cuts containing the m in imum number of 
edges for the graph shown in Figure 2(a), we can obtain 
a minimal cut representation shown in Figure 2(b). Note 
the graph theoretic relationships between the diagnostic 
notions of minimal conflict sets (min imal cut sets) and 
minimal candidates (min ima l paths). 

Computing the pathsets or cutsets of a graph is 
one means of computing the network rel iabi l i ty of 
which we now show is analogous to using the ATMS 
label set to calculate DS Belief funct ion assignments for 
the corresponding Boolean expression F. 

Figure 2: Graphs corresponding to circuit diagnosis for­
mulae 

There are many ways of def in ing a graph f rom a Boolean 
expression. We present one me thod here, and out l ine other 
methods in [Provan, 1989a]. 

4 Correspondence between the A T M S 
and Dempster -Shafer Bel ief Funct ions 

4.1 E x t e n s i o n o f A T M S G r a p h 

We now show how the simple assignment of weights to 
the underlying ATMS graph G enables the computation 
of DS Belief functions f rom the very same graph. Assume 
each edge of G is associated wi th a statistically indepen­
dent random variable wi th only two possible states, func­
t ioning or not functioning. For each DS proposition 9 
there is an associated ATMS literal x and an antecedent 
set ant(x) containing at least one assumption, such as 
x3 V A2 V x. An event is a state assignment to l iterals, 
such as {x1,X2,.....,xn-1} functioning and xn not func­
t ioning. There are 2n possible events. Assign to each 
edge a [0,1] weight, g : E —► [0,1], which is the prob­
abi l i ty that the edge functions properly. Each edge in 
G corresponds to an ATMS assumption, and the edge 
weight corresponds to a weight assigned to the ATMS 
assumption. 

The rel iabi l i ty R(s,t) of a graph wi th respect to two 
distinguished vertices s and t is defined as the probabi l i ty 
that an s — t path exists. The s — t reliabil ity problem 
is defined as follows: 

R(s,t): Given a graph and a probabil i ty as­
signment g to E, compute the probability that a func­
t ioning path exists between two distinguished vertices s 
and t. 

R(s, t) can be computed by summing the probabilities 
of the disjoint s — t path set. A disjoint path set is a set 
of paths such that no pair of paths has a common edge. 
Any pathset, cutset or equivalent Boolean expression for 
computing R(s,t) must be disjoint. 

We summarize the results of [Provan, 1989a] as fol­
lows: 

L e m m a 3 The label assigned to a literal x is a symbolic 
(and not necessarily disjoint) representation of the DS 
Belief assigned to the corresponding DS proposition 

There is an A T M S corollary to DS information pooling 
(equation 2): 

L e m m a 4 The ATMS label updating for a literal x, 
is a symbolic ATMS analog 
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to the DS Belief updating formula for the corresponding 
proposition 

Numeric assignments of Bel can be calculated as given 
by: 
L e m m a 5 The DS Belief assigned to a literal can be 
computed using an ATMS by converting the weighted 
ATMS label set to its graphical representation and com­
puting the probability that an s — t path exists in the 
subgraph formed from the label assigned to the literal. 

Hence calculating DS belief functions for an underly­
ing Boolean expression F is identical to computing the 
network reliabil i ty for the graph corresponding to F. 

Moreover, there is an analog in the ATMS to Demp­
ster's rule of Condit ioning. Dempster's Rule of Condi­
t ioning is as follows: 

4.2 D e m p s t e r - S h a f e r B e l i e f F u n c t i o n 
A l g o r i t h m 

DS Belief functions can be computed from ATMS labels 
as follows. To each ATMS assumption Ai assign a DS 
mass function g(Ai). Then use the ATMS to symboli­
cally compute the labels for all the literals. Similar to the 
ATMS's removal of nogoods from all contexts as an es­
sential part of its processing, DS theory can assign belief 
only to non-contradictory subsets, i.e. it "removes" mass 
assigned to contradictory subsets because 6 is not prov­
able for subsets which have a non-null intersection with 
contradictory subsets. In the ATMS implementation, 
nogoods must be explicit ly accounted for in computing 
DS Belief functions. This is done by: (1) assigning be­
lief in the numerator of equation 2 only to subsets with 
nul l intersections wi th nogoods (i.e. conditioning on the 
consistent sets); and (2) using a normalization function, 
the denominator of equation 2, to renormalize all Belief 
assignments given that no mass is assigned to nogoods. 
Hence, the Belief assigned to any proposition (literal) 
can be computed as follows: 

1. Compute a Boolean expression from the label, as 
described in Section 3.1. 

2. Account for nogoods, using equation 4, or the equiv­
alent form 

(5) 

3. Convert the Boolean expression (4) or (5) into a 
disjoint fo rm. 

7cf. [Shafer, 1976], p.67 for a definition of conditions for 
combinability. 

Table 1: Correspondence of Boolean and Network Reli 
abi l i ty Forms 

4. Substitute mass functions for the A i ' s to calculate 
the Belief function for x, using Table 1. 

Note that in Steps 1 to 3 we manipulate Boolean ex­
pressions. We refer to steps 3 and 4 as a Network Reli­
abi l i ty computat ion. 

There are many methods for symbolically comput ing 
the disjoint form of an arbi t rary Boolean expression, 
some of which are reviewed in [Agrawal and Bar low, 
1984]. The methods applicable to this application are 
those based on pathsets and cutsets, such as the Sum of 
Disjoint Products and Inclusion-Exclusion methods. 

5 Complexity of ATMS-based 
Dempster-Shafer Belief Function 
Computat ion 

This extension of the A T M S was original ly proposed as 
a means of improving the efficiency of the A T M S by 
focusing search only on the portions of the search space 
in which solutions were most likely to be found. This 
need arose f rom the poor performance of the A T M S in 
practice, and the theoretical evidence ([Provan, 1988a], 
Provan, 1989b]) which suggests that (1) for almost al l 

Boolean expressions8 the problem of label generation is 
of complexity exponential in the number of l i terals; and 
(2) the interpretat ion construction problem is NP-hard. 

However, the efficiency gains f rom direct A T M S imple­
mentation of DS Theory may not be cost-effective. Using 
the A T M S to compute DS Belief functions f rom A T M S 
labels is intractable in the worst case, a computat ional 
barrier similar to that which has previously prevented 
implementat ion of the ful l DS theory. 

L e m m a 7 Given the set of ATMS labels for a set x of 
literals and an assignment of weights to the ATMS as­
sumption set A, computing the DS Belief assigned to x 
either from the ATMS label set E* or from a minimal 
expression F is of complexity exponential in the number 
of literals in the Boolean expression F, tn the worst case. 

If the ATMS label set is used as a star t ing point , the 
size of the label set is exponential in the number of l i ter­
als or clauses [Provan, 1989b], just as the number of s — t 
pathsets/cutsets is an exponential function of | V \ and 
| E | [Agrawal and Barlow, 1984]. The min imal expres­
sion T may also be used as a star t ing point , bu t even 

8 A property is said to hold for almost all the functions 
of the algebra of logic if the proportion of functions of n 
variables which do not satisfy this property (among all the 
functions of n variables) tends to zero when n —> oo. 
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though C08t{T) < co8t(F l l), it is unknown whether the 
savings introduced wi l l be worth computing F from F l l. 

If t ru th maintenance facilities and numeric assign­
ments of weights to proposition sets are required, this 
method may be useful, depending on the tradeoff be­
tween the cost of computing the DS Belief functions and 
the search space which can be saved by more focused 
search. The graphical framework suggests more efficient 
methods of computing ATMS labels and DS belief func­
tions by exploit ing the topology of the underlying graph. 
Further efficiency improvements may be obtained by us­
ing one of the many R(s,t) approximation algorithms 
applicable to computing DS Belief functions f rom ATMS 
labels. In [Provan, 1989a] we describe network reliabil i ty 
approximation algorithms which avoid the intractabi l i ty 
associated wi th deriving exact solutions. Such algo­
ri thms may remove the necessity to restrict the problem 
domain to a subset such as that of hierarchical evidence 
[Shafer and Logan, 1987] due to intractabi l i ty otherwise. 

6 Conclusions 
The theoretical basis underlying methods of computing 
DS Belief functions f rom ATMS label sets have been dis­
cussed. These computations are done using an ATMS 
which incorporates the ful l DS theory in a semanti-
cally clear and efficient manner, as shown by the graph-
theoretic equivalence of the ATMS and DS theory. In 
addit ion, computing DS Belief functions from ATMS la­
bels was shown to be intractable in the worst case. 

The use of the A T M S to compute DS Belief functions 
is a promising research area, as it is a means of blending 
logic wi th an uncertainty representation in a semanti-
cally correct manner. However, we argue that the com­
putational cost of computing exact DS Belief functions 
may be prohibit ive for large problems, and approxima­
tion methods may have to be used. 

A c k n o w l e d g e m e n t s : Discussions wi th Judea 
Pearl have helped refine my understanding of the corre­
spondence of the semantics of the ATMS and DS theory, 
and the use of network rel iabil i ty algorithms. 
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A b s t r a c t 

We define and exercise the expected value of 
computat ion as a fundamental component of 
reflection about al ternat ive inference strategies. 
We present a por t ion of Protos research focused 
on the inter lacing of reflection and action un­
der scarce resources, and discuss how the tech­
niques have been applied in a high-stakes med­
ical domain. The work centers on endowing 
a computat ional agent w i th the abi l i ty to har­
ness incomplete characterizations of problem-
solving performance to control the amount of 
effort applied to a problem or subproblem, be­
fore tak ing action in the world or turn ing to 
another problem. We explore the use of the 
techniques in control l ing decision-theoretic in­
ference itself, and pose the approach as a model 
of ra t ional i ty under scarce resources. 

1 R e f l e c t i o n a n d F l e x i b i l i t y 

Reflection about the course of problem solving and about 
the interleaving of problem solving and physical act ivi ty 
is a hal lmark of intel l igent behavior. Apply ing a portion 
of available reasoning resources to consider the ut i l i ty of 
alternative inference strategies or the value of continuing 
to refine a result before act ing enables a computational 
agent to generate custom-tai lored approaches to a wide 
variety of problems, under different t ime pressures. Such 
f lexibi l i ty can be especially useful in light of uncertain 
deadlines and challenges. Uncertainty about problems 
and problem solving plagues simple agents immersed in 
complex environments. Constraints on an agent's rea­
soning and representation resources lead to inescapable 
uncertainties about the problems that may be faced and 
about the value of fu ture reasoning in solving those prob­
lems. 

The Protos project has pursued the use of deci­
sion theory for real-t ime control and offline problem-

*This work was supported by a NASA Fellowship under 
Grant NCC-220-51, by the National Science Foundation un­
der Grant IRI-8703710, by the National Library of Medicine 
under Grant RO1LM0429, and by the U.S. Army Research 
Office under Grant P-255I4-EL. Computing facilities were 
provided by the SUMEX-AIM Resource under N1H Grant 
RR-00785. 

solving design. The work has highlighted opportunit ies 
for the principled control of reasoning under scarce re­
sources w i th problems in sort ing and searching and wi th 
decision-theoretic inference itself [Horvi tz, 1987a]. We 
havp part icularly dwelled on the decision-theoretic con­
tro l of decision-theoretic inference as a model of rat ional 
computat ional inference under resource constraints. In 
this paper, we present a component of this work cen­
tering on the use of incomplete characterizations of the 
progression of probabilistic inference to reason about the 
value of continuing to reflect about a problem versus tak­
ing action in the world. This methodology uses knowl­
edge that part ial ly characterizes relevant dimensions of 
problem-solving performance. Such knowledge can be 
learned and refined w i th experience. We shall introduce 
components of ut i l i ty for computat ional or real-world 
actions, and define the expected value of computat ion 
in terms of the likelihood of future probabi l i ty distr ibu­
tions over the t ru th of relevant propositions about the 
state of the world. After discussing the theoretical pr in­
ciples and empirical results, we describe a component 
of research centering on the offline analysis of problem-
solving trajectories. Such offline musing, weighted by 
expected challenges, can be important in real-time re­
flection about problem solving. 

2 D e c i s i o n - T h e o r e t i c V a l u a t i o n 

Decision theory provides the foundations for a princi­
pled approach to metalevel decision making under un­
certainty. Decision-theoretic metareasoning can be es­
pecially useful in reasoning about the selection, and op­
t imal halt ing t ime, of reasoning strategies that incre­
mentally refine results as scarce resources are expended 
[Horvitz, 1987b, Dean and Boddy, 1988]. 

We usu comprehensive value, Uc, to refer to the u t i l ­
i ty associated wi th the value at t r ibuted to the state of 
an agent in the world. This value is a funct ion of the 
problem at hand, of the agent's best default action, and 
of the stakes of a decision problem. We call the net 
change expected in the comprehensive value, in return 
for some allocation of computat ional resource, the ex­
pected value of computat ion (EVC) . It is often useful 
to view the comprehensive ut i l i ty , at any point in the 
reasoning process, as a funct ion of two components of 
u t i l i ty : the object-level ut i l i ty , u0, and the inference-
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related cost, The object-level u t i l i t y of a strategy 
is the expected u t i l i t y associated wi th a computer re­
sult or state of the wor ld . We say that the object-level 
u t i l i ty is a funct ion of a vector of at t r ibutes, For 
example we may assign an object-level u t i l i t y to an in-
completely sorted file of records, based on several differ-
ent dimensions of incompleteness. The inference-related 
component is the sum of the expected d isut i l i ty i n t r in ­
sically associated w i t h , or required by, the process of 
problem solving. This cost can include the d isut i l i ty of 
delaying an action while wai t ing for a reasoner to infer a 
recommendation. In general, the inference-related cost 
is a function of a vector of resource at t r ibutes, rep­
resenting the quant i ty that has been expended of such 
commodities as t ime and memory. 

There is generally uncertainty in the object-level state 
resulting f rom the expenditure of computat ional re­
sources. Thus, in the genera case, we must sum over 
a probabi l i ty d is t r ibut ion of object-level at t r ibutes to 
generate an expected comprehensive ut i l i ty . If and 

are the vectors representing object-level and inference-
related at t r ibutes w i thou t addi t ional computat ion, re­
spectively, and the and are the revised vectors, ex­
pected w i th addi t ional computat ion, the net, or change 
in , comprehensive u t i l i t y , given some allocation of re­
sources is 

In cases where the inference-related and object-level u t i l ­
ities can be decomposed, and are related through addi­
t ion, the E V C is jus t the difference between the increase 
in object-level u t i l i t y and the cost of the addi t ional com­
putat ion, 

In another study, we considered the refinement of mu l t i ­
dimensional at t r ibutes of par t ia l results w i t h computa­
t ion [Horvi tz, 1988]. Here, we wi l l s impli fy our object-
level focus to a probabi l i ty of a state in the wor ld , H, 
and the qual i ty of an associated decision to act, A, given 
uncertainty about the t r u t h of the state. We wi l l s im­
plify the inference-related component to a consideration 
of computat ion t ime. 

The decision-theoretic approach to metareasoning in 
diff icult machine intelligence problems was introduced by 
I.J. Good over 2 decades ago, in the context of the control 
of game-playing search [Good, 1968]. Good had earlier 
discussed the explici t integrat ion of the costs of inference 
wi th in the framework of normat ive rat ional i ty , defining 
Type 1 rat ional i ty as inference tha t is consistent w i th 
the axioms of decision theory, regardless of the cost of 
inference, and Type II rat ional i ty as behavior that takes 
into consideration the costs of reasoning [Good, 1952]. 
Related work in decision science has focused on the 
likely benefit of expending effort for decision analyses 
[Matheson, 1968, Watson and Brown, 1978]. Our group 

More comprehensive notions of the value of a reasoning 
system in an environment are discussed in [Horvitz, 1987b]. 

researched the general appl icabi l i ty of decision-theoretic 
control of computat ion, w i th an emphasis on metarea-
soning problems w i th probabil ist ic inference and knowl­
edge representation [Horv i tz , 1987b]. Early investiga­
t ion demonstrated that mu l t ia t t r ibu te decision-theoretic 
control of reasoning had promise for guiding the so­
lu t ion of a variety of tasks, including such fundamen­
ta l problems as sort ing a file of records or search­
ing a large tree of possibilit ies [Horv i tz , 1987a]. In ­
deed, there have been recent studies of the value of 
computat ion in the control of sort ing [Horvi tz , 1988] 
and of game-playing search [Russell and Wefald, 1988, 
Hansson and Mayer, 1989]. In related research on the 
control of logical inference, Smi th , and Trei tel and Gene-
sereth, have explored the use of decision theory for select­
ing alternative logical reasoning strategies [Smith, 1986, 
Trei tel and Genesereth, 1986]. 

3 Complex i ty of Inference 
In reasoning about real-world actions under uncertainty, 
an agent generally must consider alternative decisions 
and outcomes, preferences about the possible outcomes, 
and the uncertain relationships among actions and out­
comes. We have been investigating the use of influ­
ence diagrams [Howard and Matheson, 1981] for repre­
senting and solving automated reasoning problems. The 
influence diagram is an acyclic directed graph containing 
nodes representing proposit ions and arcs representing in­
teractions between the nodes. Nodes represent a set of 
mutual ly exclusive and exhaustive states; arcs capture 
probabil ist ic relationships between the nodes. Influence 
diagrams wi thout preference or decision informat ion are 
termed belief networks. A belief network defines a model 
for doing probabil ist ic inference in response to changes 
in in format ion. 

The problem of probabil ist ic inference wi th belief net­
works is -hard [Cooper, 1987]. Thus, we can expect 
algori thms for doing inference to have a worst-case t ime 
complexity that is exponential in the size of the problem 
(e.g., the number of hypotheses and pieces of evidence). 
Some methods for inference in belief networks attempt-
to dodge int ractabi l i ty by exploi t ing independence re­
lations to avoid the expl ici t calculation of the jo int -
probabi l i ty d is t r ibut ion. A variety of exact methods has 
been developed, each designed to operate on part icu­
lar topologies of belief networks [Horvi tz et al . , 1988a]. 
Other methods forego exact calculation of probabil i t ies; 
these approximat ion techniques produce part ia l results 
as distr ibut ions or bounds over probabil i t ies of interest. 
The complexity of precise inference and the availabil i ty 
of alternative reasoning approaches highl ight the need 
for robust approximat ion strategies and intell igent con­
t ro l techniques. We have sought to develop and con­
t ro l decision-theoretic inference for reasoning under un­
certainty in high-stakes and time-pressured applications, 
such as medical decision making. 

4 Decisions Under Scarce Resources 

Let us explore concerns that arise in automated decision 
making under scarce resources. The graph in the lower 
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Figure 1: A representation of a time-pressured decision 
problem. From top to bo t tom, the three sections of the 
figure portray (a) the decision-theoretic metareasoning 
problem, (b) a belief network representing propositions 
and dependencies in intensive-care physiology, and (c) a 
closeup on the respiratory status node, and its relation­
ship to the current decision problem. 

port ion of Figure 1 depicts an object-level influence-
diagram representation of a time-pressured problem that 
might face an automated physician's assistant: A 75-
year-old woman in the intensive-care uni t suddenly 
shows signs of breathing diff iculty. The patient may be 
merely showing signs of mi ld respiratory distress or may 
be in the more serious si tuat ion of respiratory failure. In 
this context, the pr imary decision is whether or not to 
recommend that the patient be placed on a mechanical 
venti lator. The decision (square node) depends on the 
probabi l i ty of respiratory failure, which, in tu rn , depends 
on the probabil i t ies of propositions in a large belief net­
work serving as a medical knowledge base (represented 
by the graph above the object-level problem in Figure 1). 
The large oval nodes in the base decision problem rep­
resent uncertain states associated w i th placing an older 
person on a venti lator. The diamond represents the ut i l ­
i ty associated w i th different outcomes. Factors to con­
sider in a decision to act include the possibility that it 
may take a long t ime to wean a patient wi th severe lung 
disease from a venti lator that is applied needlessly; thus, 
the patient may face a long hospital stay and be placed 
at high risk of mor ta l i t y f rom a disease such as pneumo­
nia. However, if the patient turns out to be in respira­
tory failure, and is not treated immediately, she faces a 
high risk of cardiac arrest based on the disrupted phys­
iology associated w i th abnormal blood levels of oxygen 
and carbon dioxide. 

4 .1 A c t i o n s a n d O u t c o m e s i n t h e W o r l d 

In our simple example, there are only four different fun­
damental outcomes. The patient either is in respiratory 
failure (H) or is not in respiratory failure and we 
either wi l l place the patient on a venti lator (.4) or wi l l 
not do so Thus, we may erroneously decide not 
to treat a patient who is suffering from respiratory fail­
ure we may correctly treat a patient who is 
suffering from respiratory failure (A,H), we may erro­
neously treat a patient who is not suffering from respira­
tory failure or we may correctly forego treating 
a patient who is not suffering from respiratory failure 

The expected object-level uti l i t ies of action 
and of no action in terms of the proba­

bi l i ty of respiratory failure, P ( H ) , are described by the 
following equations: 

The lines described by these equations intersect at a 
probabil i ty of 11 denoted p*. The desired action (the 
decision wi th the highest expected ut i l i ty ) changes as 
the ut i l i ty lines cross at ;P*. A ut i l i ty analysis dictates 
that a patient should not be treated unless a decision 
maker's belief in the t ru th of H is greater than p*. 

4.2 Dec is ions A b o u t C o m p u t a t i o n 

Let us now integrate explicit knowledge about the pro­
cess of reasoning into the decision problem. In answer 
to a query for assistance, our automated reasoner must 
propagate observed evidence about the patient's symp-
tomology through a complex belief network. The results 
of an approximate probabilistic-inference scheme may be 
a probabil i ty distr ibut ion over a final probabil i ty. This 
probabil i ty is the value that a computer wi l l calculate 
from a belief network, given sufficient t ime to finish its 
computat ion. Assume that our reasoner may apply one 
of several incremental-refinement algorithms that can it-
eratively tighten the distr ibut ion on the probabil i ty of 
interest over t ime. We wish the system to make a ratio­
nal decision about whether to make a treatment recom­
mendation immediately, or to defer its recommendation 
and continue to reason, given its knowledge about the 
costs of time needed for computat ion. 

4 .2 .1 Costs o f I n f e r e n c e - B a s e d D e l a y 
The example of a patient gasping for breath, facing the 

risk of a long hospitalization or a cardiac arrest depend­
ing on our decision, poignantly demonstrates the salience 
of reasoning-resource constraints in a high-stakes situa­
t ion. Sc far, we have considered the uti l i t ies of alter­
native outcomes to be independent of t ime. Assume 
that the ut i l i ty of treating a patient in respiratory fail­
ure depends on how long the patient has been in failure. 
Assume, also, that the in i t ia l presentation of respira­
tory symptoms occurs in the presence of the reasoner 
and that analysis of the problem begins at this t ime, 
to. We represent the cost of delaying treatment, when 
that treatment is needed, by considering a continuum of 
mutual ly exclusive decisions to treat at different times, 
A(i). where cost funct ion can capture 
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the decay of u t i l i t y of action w i th t ime. At some t ime t, 
the u t i l i t y of act ing in the presence of respiratory fai lure 
reverts to the u t i l i t y of not act ing at a l l . We subst i tute 
the static u t i l i t y equation for u(A), defined previously, 
w i th a t ime-dependant equat ion: 

u[A(t)] = p(H)u[A(i),H]+p(-,H)u(A,->H) 

where u [A ( t ) , H] reverts to u ( ¬ A , H) as some funct ion of 
t ime 2 . In this example, we assume that delay of action 
wi l l not affect the u t i l i t y of a patient that does not re­
quire the intervent ion. W i t h the time-dependent u t i l i t y 
funct ion, our p* threshold w i l l change w i th t ime. 

As indicated by the network in the upper port ion Fig­
ure 1, a more complete representation of the respiratory 
decision problem includes knowledge about the costs and 
benefits of apply ing different inference strategies. This 
influence diagram represents the metareasoning prob­
lem. The node labeled Uo in the metareasoning network 
is just the value node f rom the object-level decision prob­
lem represented at the bo t t om of Figure 1. Rather than 
seek to opt imize the object-level value, our agent's goal 
is to opt imize the u t i l i t y associated w i th the value node 
in the metareasoning problem, labeled Uc. As demon­
strated by the relationships among propositions in the 
metareasoning problem, Uc is a funct ion of the object-
level value and the inference-related cost, Ui, which in 
turn depends on computat ional delay, t ime availabil i ty, 
and the context. The integrat ion of inference-related and 
object-level u t i l i t y allows agents to treat decisions and 
outcomes regarding the control of reasoning jus t as it 
does decisions about action in the wor ld. 

4.2.2 R e f l e c t i o n A b o u t F u t u r e B e l i e f 
Our agent's at tent ion is centered on the calculation of 

p(H) , the probability of respiratory failure. We define < 
to be the probabi l i ty tha t the agent would compute if i t 
had sufficient t ime to finish its computat ion. Tha t is, 
is value of p(H) that the reasoner wi l l report after com­
plete computat ion. At the present moment—before the 
inference is completed—our automated reasoner may be 
uncertain about what the value of wi l l be. The current 
uncertainty is described by some probabi l i ty d is t r ibut ion 
over We denote the uncertainty about at the present 
moment by A l though this d is t r ibut ion can change 
w i th reasoning, investigators [Howard, 1970] have shown 
that the belief a decision maker should use for decision 
making, if she has to act immediately, is the mean of 
p{), denoted by Af ter spending addit ional t ime 
t on inference about our reasoner may have a new 
distr ibut ion over denoted by 

An automated reasoner may have useful knowledge 
about how a d is t r ibut ion over a belief—and thus how 
the new mean of the d is t r ibut ion -w i l l change wi th ad­
di t ional comput ing. An impor tan t class of knowledge 
about is of the fo rm, This measure refers to 
belief at the present time about the l ikel ihood of alterna­
tive belief d istr ibut ions over tha t might be generated 

In this domain, we could capture the cost of delay with a 
stochastic model describing the probability of a cardiac arrest 
as a function of the time we delay therapy; cost models can be 
useful summaries of the uti l i ty of a large number of outcomes. 
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after computat ion for addi t ional t ime t. Th is not ion is 
central in reflection about the value of in i t ia t ing or con­
t inu ing decision-theoretic inference, as opposed to that 
of act ing w i th the current best decision. 

E x p e c t e d V a l u e o f P e r f e c t C o m p u t a t i o n Suppose 
tha t , after th ink ing for only a few mill iseconds, an auto­
mated reasoner has generated a probabi l i ty d is t r ibut ion 
over We first introduce the expected value of perfect 
computation on denoted by 
may be viewed as the value of instantaneous complete 
computat ion of the target probabi l i ty in a decision set­
t ing . Instantaneous complete th ink ing would collapse 
the current probabi l i ty d is t r ibut ion over into an im­
pulse. Given the current probabi l i ty d is t r ibut ion 
over we define as follows: 

where is the u t i l i ty , associated w i th 
the best decision D, based on tak ing an immediate action 
using the current mean belief, Th is measure 
tells us that the value of comput ing the final answer is 
jus t the difference in u t i l i t y between the current best ac­
t ion and the summation of future best actions weighted 
by the probabi l i ty of different final beliefs. 

B e l i e f A b o u t C h a n g e s i n B e l i e f Real-world com­
puters rarely deliver the fu l l expected value of perfect 
computat ion on diff icult problems because they must 
expend valuable resources in the reasoning process. As­
sume that our agent in the intensive-care un i t , faced wi th 
determining the probabi l i ty that our elderly patient is 
in respiratory failure, has incomplete knowledge about 
what wi l l be at some future t ime t, which we re­
fer to as For example, the system may have 
a probabi l i ty d ist r ibut ion over the future bounds on ø 
wi th addi t ional computat ion. Such knowledge may have 
been acquired through an empir ical analysis of a network 
in addit ion to an upper bound that has been proved the­
oretically. Our reasoner could apply this type of knowl­
edge by considering the EVC( t ) based on the informat ion 
about probabi l i ty distr ibut ions over obtained w i th 
computat ion for an addit ional t ime t, as 

Tha t is, we sum over the new probabi l i ty distr ibut ions 
on expected at t ime t, weighted by the current belief, 

that th ink ing unt i l t wi l l lead to each of the 
revised distr ibut ions. In terms of the mean, of 
the future distr ibut ions, 

When , for all t, the cost of computat ion, embod­
ied w i th in our comprehensive u t i l i t y funct ion, becomes 



Figure 2: In reasoning about the value of continuing 
to reflect about belief, versus that of tak ing immediate 
act ion, an EVC-evaluat ion module considers the deci­
sion problem and the probabi l i ty d is t r ibut ion over future 
probabi l i ty d istr ibut ions [p(pt (ø))] that may be gener­
ated w i th the al location of computat ional resource. 

greater than the benefit of comput ing (EVC < O), an 
agent should cease reflection and act. The EVC formula 
can be used to study the value of alternative inference 
schemes. Of course, there can be significant overhead 
in the real-t ime application of an EVC-based control 
strategy. Thus, a central goal of research on decision-
theoretic control is to identify tractable solutions to the 
EVC evaluation problem. Al ternat ively, offline analysis 
and compi lat ion of control strategies may be useful in 
situations where the complexity of meta-analysis l imits 
the gains of real-t ime decision-theoretic control. 

Analogous value-of-computation approaches can be 
used to valuate and control other problem classes. For 
example, we can use an EVC(t) calculation for control­
l ing the nature and extent of a search or sort problem; 
we associate a cost w i t h the t ime required to expand 
another node in a tree, or to perform a set of tests and 
swaps in a part ia l ly sorted file, and consider a probabi l i ty 
d is t r ibut ion over the expected object-level gains, given 
the allocated t ime. The development of tractable EVC 
approximations for these and other problems, make pos­
sible useful normat ive control through iterative testing 
of the value of cont inuing to reason. 

5 Va lue of Probab i l i s t i c Bound ing 

We have pursued tractable solutions to the EVC through 
examining parameterized families of distr ibut ions. For 
example, we have explored the use of the EVC approach 
to control probabi l ist ic bounding methods. Assume that 
our automated reasoner has, w i th some in i t ia l amount of 
computat ion, computed upper and lower bounds on ø), 
wi th an upper bound at b and lower bound at a. If our 

reasoner does not have any informat ion about where ø 
is—except that the final computed result wi l l be between 
the current bounds—then it is reasonable to assume a 
uni form distr ibut ion over ø between the bounds. A uni­
form distr ibut ion wi th in bounds is consistent w i th an 
agent being ignorant of the final belief, except for the 
bounds informat ion. Detailed knowledge about conver­
gence could change this d ist r ibut ion. Let us focus on 
the value structure of assuming uni formi ty at both cur­
rent and future distr ibut ions about belief. We denote 
the problem by E V C / B U , the expected value of compu­
tat ion for a bounding algor i thm given an assumption of 
uniformity. 

An agent may have useful knowledge about pt(ø) with­
out having information about how the mean < øt > wi l l 
change, except for knowing that ø wi l l be constrained 
to tighter bounds. As an example, a system could make 
use of certain or uncertain knowledge about the rate of 
bounds convergence to valuate a decision to continue to 
compute. We have analyzed how a system can apply 
knowledge that the bounds on the belief for a node in a 
belief network wi l l converge at a rate dictated by a frac­
t ion, C, which, when mult ipl ied by the current bounds 
interval at to, dictates the interval at t. Tha t is, 

where int is just the interval, or the difference between 
the upper and lower bounds. If we were uncertain about 
the convergence, we would have a probabi l i ty distr ibu­
t ion over this convergence fract ion. 

We have applied the EVC equation to the bounding 
problem, considering future distr ibutions expected wi th 
additional computat ion. Given a convergence fraction 
that allows us to calculate the future bounds, we must 
consider all possible configurations of the new bounds 
given the current constraints. As we sweep the expected 
future interval over the current interval, the mean of the 
future distr ibut ion sweeps between positions w i th in the 
current bounds. When the mean is above p*, we sum 
over the ut i l i ty of acting for all states of belief greater 
than that threshold; when the mean is below p*, we simi­
larly consider the ut i l i ty of not acting. Given our current 
bounds and a convergence fract ion, we sum the uti l i t ies 
of the best decision at the future means and subtract 
the ut i l i ty of the best action wi thout addit ional compu­
tat ion. Solving the uniform distr ibut ion case for different 
possible p* boundary conditions yields functions that re­
port the EVC as a function of (1) the ut i l i t ies for each 
of the four outcomes, (2) the current bounds on ø, (3) a 
function describing the expected convergence of bounds 
(e.g., a C , wi th t ime, and (4) the cost of delay. Under un­
certain performance, a rational agent's reflection based 
on the EVC formalism involves the interlacing of probes 
for positive EVC( t ) and continued inference. Computa­
t ion should continue unt i l action is indicated by a non-
positive EVC. This volley of reflection and inference is 
demonstrated in Figure 2. 

5 .1 P a r t i a l C h a r a c t e r i z a t i o n o f I n f e r e n c e 

We have experimented wi th decisions about computat ion 
and action wi th in alternative u t i l i t y contexts. We have 
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part icular ly explored the behavior of recently-developed 
graceful approximat ion methods for probabil ist ic infer­
ence. These strategies include a flexible variant of Pearl's 
method of condit ioning [Pearl, 1986], called bounded con­
ditioning [Horvitz et a l . , 1988b]. 

In the method of condi t ioning, a mul t ip ly connected 
network is reformulated to a set of singly connected net­
works by locat ing a set of nodes that break cycles. The 
complete set of cycle-breaking nodes is called the loop 
cutset. The nodes of the loop cutset are instant iated w i th 
each possible value (or combinat ion of values), and the 
resulting jo in t probabi l i t ies of each instance are calcu­
lated as prior probabi l i t ies of the instant iated variables. 
Algor i thms for solving the singly connected network sub-
problems can be applied to the solution of each network 
instance. In bounded condi t ioning, instances are ana­
lyzed in order of their expected contr ibut ion to the t ight­
ening of bounds. The instances are sorted according to 
their prior probabi l i ty, and are solved in sequence. A 
bounding calculus generates logical bounds on the final 
probabi l i ty of interest by considering the max imum and 
min imum contr ibut ions of the unexplored subproblems. 

We applied bounded condi t ioning to several random 
networks as well as to a belief network describing prob­
abilistic relationships among findings and pathophyiso-
logic states in an intensive-care uni t .3 The structure 
of this belief network is captured by the graph in the 
middle of Figure 1. The network consists of 37 mul­
t ip ly connected nodes. We studied the performance of 
several loop cutsets for this network. A sample loop cut­
set consists of 5 nodes that leads to 144 different singly 
connected-network problems. 

We sought to characterize the refinement of bounds 
wi th addit ional computat ion. Our analyses focused on 
updat ing belief in the intensive-care network w i th single 
pieces of evidence. We found that the convergence of the 
bounds could by approximated by an exponential decay 
of the size of the interval w i th t ime. This convergence 
was modeled approximately by the funct ion 

Addi t ional discussion of bounded condi t ioning, includ­
ing analysis of the basis for such convergence, is found 
in [Horvitz et al. , 1988b]. As an example, the conver­
gence of a typical update in the network is captured by 
an exponential decay w i th an approximate half-l ife of 
36 seconds. Tha t is, after 36 seconds of analysis by a 
Motorola-68020-based computer, running at a 17 MHz 
clock rate, the bounds converge to one-half of their or ig­
inal bounds. At 72 seconds, the bounds are halved once 
again to an interval of approximately 0.25. Th is conver­
gence is modeled by the exponential decay w i th k = 0.02. 
The convergence is displayed in Figure 3. 

This convergence informat ion can be used to calcu­
late an EVC associated w i th cont inuing to apply the 
bounding a lgor i thm. Evaluat ing the E V C wi th in our 
testbed intensive-care belief network has shown, for sam­
ple updates and associated sets of u t i l i ty estimates, that 
a p* decision threshold can be crossed well before the 

3This network, called A L A R M , was constructed by Ingo 
Beinlich [Beinlich et al., 1989]. 
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Figure 3: The application of the bounded-condit ioning 
method to the intensive-care uni t belief network prob­
lem. The graph shows the convergence of the upper and 
lower bounds, and the mean of the approximation (cen­
ter curve), to a probabi l i ty of interest as addit ional in­
ference subproblems are solved. 

computat ion of f inal belief. Exper imentat ion wi th ratio­
nal metareasoning to select among alternative inference 
strategies, and to control the length of t ime that they 
are applied is continuing on a variety of belief networks 
and decision contexts. 

5.2 A c q u i s i t i o n o f C o n t r o l K n o w l e d g e 

Our formalism for the calculat ing the value of proba­
bil istic bounding operates on knowledge about conver­
gence on bounds. We have performed theoretical anal­
ysis of worst-case performance of bounded condit ion­
ing. We have also recorded empir ical ly derived part ial-
characterization in format ion. Clearly, an agent could 
benefit by continually bolstering its knowledge about 
part ia l characterizations w i th extensive empirical study 
of problem-solving trajectories dur ing idle-t ime. A com­
ponent of our research focuses on an offline analysis of 
the performance of reasoning strategies of different net­
works. The analyses are aimed at captur ing useful par­
t ial characterization of the expected performance of dif­
ferent strategies by performing Monte Carlo simulation 
to generate plausible patterns of evidence, and summa­
r iz ing and stor ing a set of performance indices. For ex­
ample, we are interested in the convergence of bounds in 
response to a state of evidence. This informat ion can be 
extremely useful to a control reasoner that is at tempt­
ing to valuate the E V C for a set of competing solution 
strategies. We are researching the automated acquisi­
t ion of par t ia l characterizations of stategy performance 
w i th in the intensive-care uni t appl icat ion area. 


