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Abstract 
Several theories of grammar currently converge 
toward inserting subcategorization information 
within lexical entries. Such a tendency would benefit 
from a parsing algorithm able to work from 
"triggering positions" outward. In this paper a 
bidirectional extension of the chart algorithm is 
proposed and its most relevant formal properties are 
investigated using an Earley like formalism. The 
question as to whether the proposed approach 
guarantees computational feasibility is then addressed 
and is answered affirmatively. Also, it is shown that 
the method presented here maintains those 
characteristics that were so much appreciated in 
monodirectional charts. Finally, from this analysis 
indications arc derived for an efficient implementation 
of the parsing algorithm. 

1 Motivat ion 

It is superfluous to point out the relevance of charts [Kay, 
1973, 1980, Kaplan, 1973] for natural language parsing. A 
didactic presentation of this technique is reported in 
[Thompson and Ritchie, 1984]. Yet, one constraining 
aspect of chart parsing is that it is directional, i.e. edges can 
be combined only in one fixed order (usually active left -
inactive right). The fact that the edge extension operation is 
meant to be carried out in one direction, normally is not 
critical, given that most modern grammar theories use a 
monotonical approach. Of course, things are not exactly the 
same with fragmentary input: it may be impossible to start 
from one corner of a constituent, simply because the 
fragment may not include that corner. But even with well-
formed input something somehow different may be 
desirable. There is a strong tendency in grammatical for­
malisms to privilege a particular element inside a given 
constituent, called the head of the constituent, that , in a 
number of cases, guides the acceptability of elements to its 
left as well as to its right. Should the parsing algorithm be 
able to work from the head outward, then it would benefit 
from a representation developed accordingly. More 
concretely, a number of possible partial interpretations 
would be pruned out earlier, on the basis of functional 
information attached to the head. This results in greater effi­
ciency. 

It may be worth recalling that X-bar theory [Jackendoff, 
1977] establishes that the head of a constituent (phrase) 

individuates the categorial labels of the nodes that dominate 
it, up to two or three nodes above, and provides a general 
skeleton for the related branches. A number of grammar 
theories are influenced in one form or another by this idea. 
More recently, also, some grammar formalisms have 
explicitly emphasized the role of head-driven paradigm, e.g. 
HPSG [Sag and Pollard, 1987]. 

A proposal for bidirectional chart parsing was given in 
[Stock et al., 1989], though mainly as an heuristic tool for 
controlling the recognition of spoken input. Another work 
on bidirectional charts [Steel and De Roeck, 1987] 
introduces heuristics that determine how a constituent is to 
be analyzed. Some other works in the formal languages 
literature [Bossi et a/., 1983] have dealt with some form of 
bidirectionality within a tabular approach, such as Earley's 
or Kasami-Cocke-Younger's. 

Before proceeding any further, one should examine the 
computational feasibility of the proposed approach. Less 
fundamental, but still very relevant, is the question whether 
the method enjoys those characteristics that proved so useful 
in monodirectional charts. In Section 3 it wi l l be shown 
that both these questions are answered affirmatively. A 
consequence of this analysis may also result in indications 
for a good implementation of the algorithm. 

After having briefly stated, in the next section, the 
proposal for bidirectional chart parsing, coherently with the 
motivations stated above, the approach wil l be expressed in 
terms of a formalized extension of Earley's algorithm. 
Some formal definitions and proofs of basic theorems then 
will be given that guarantee the desired formal properties. 
Following that, aspects of the implementation are described, 
including a revision of the usual agenda-based execution. In 
the last part of the paper this approach is compared with 
other strategies for chart parsing. 

2 A synopsis of bidirectional charts 

In this section bidirectional charts are compared descriptively 
with monodirectional charts. 

The main difference in data structures results in active 
edges that include two markers, say Idot and rdot, to indicate 
the borders of the recognized portion of the right-hand side 
of the specified production rule. The algorithm works out­
ward from particular elements (triggering elements) that can 
occur in any position in a given constituent. Such positions 
within the right-hand side of a production rule are named 
triggering positions. The only requirement is that at least 
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one such position is indicated for each constituent (therefore 
the case of a grammar with one head per constituent is a 
particular case). 

To accomplish that, two edge combination rules are 
introduced. The first rule is a bidirectional extension of the 
chart "fundamental" rule: it allows the combination of an 
active edge with an inactive edge occurring either to its right 
or to its left. The second rule allows the combination of two 
adjacent active edges, "working" on the same production rule 
and with the rdot of the leftmost edge coinciding with the 
Idol of the rightmost edge. This is a means of merging two 
attempts into a single, more advanced, attempt to analyze a 
constituent. 

The application of any of the two above rules is subject 
to a check in the chart so that the edge combination 
operation is really extending in an innovative way the at­
tempts present in the chart under the form of active edges. 
(This point wil l become clearer in the following sections). 
The general control strategy is bottom-up: whenever an 
inactive edge of a given category is introduced into the chart, 
for all the possible production rules that have occurrences of 
that category in a triggering position, an active edge is 
introduced, spanning just the given inactive edge. 

In the following these concepts are formalized in terms 
of an extension of the Earley algorithm [Earley, 1970]. This 
allows use of formalizations and results that arc well 
established in the literature. Also, it is well known that 
chart parsing can be considered homomorph to Earley 
parsing, apart from the facts that 1) an explicit concept of 
active edge is introduced 2) the combination of a chart with 
an agenda separates the issue of control from the algorithm 
itself. Therefore the formal results described hold for this 
chart-based approach. It is returned to in Section 4, which 
deals with implementational issues, and includes a new 
organization of active edges and a new use of the agenda. 

3 An extension of the Earley Algor i thm 

This section presents a formal extension of the Earley 
algorithm [Earley, 1970]. The formalism chosen here was in 
part inspired by the representation used in [Graham and 
Harrison, 1976], but it is rather different from the original 
one, given that now we are free to parse in any direction. 

3.1 Prel iminaries 

Assume a context-free grammar G=(N, Z, P, S), where N is 
the finite set of all non terminal symbols, Z is the set of all 
terminal symbols, disjoint from N, P is the finite non 
empty set of production rules, and S is the so called start 
symbol. Let L(G) denote the language generated by the 
grammar G. Each rule in P is notated with the form DD -> 
C ...C , where is a function from the set {1 .. IPI) to 

p.l p,n(p) 

N+ (in the remaining part of this section the integer p is 
used for the correspondent production rule in P). For 
simplicity, the grammar G is expressed in an e-production 
free form, without loss of generality [Aho and Ullman, 
1972:148], though the algorithm can be easily reformulated 

iNote that this has nothing to do with having reached the 
ini t ial or f inal position in the right-hand side of the 
production rule. 

Satta and Stock 1481 



3.2 Recognition A lgor i thm 
A recognizer is a procedure that accepts a string we iff 
we L(G); a parser is a procedure that, in addition, outputs 
one or more derivation trees for each accepted input Only a 
recognition algorithm wil l be presented here; the use of a 
simple algorithm able to reconstruct the derivation trees by 
interpreting the recognition matrix T (see for example 
[Graham and Harrison, 1976]) is sufficient to obtain a parser 
algorithm. 

The resulting algorithm inserts in the recognition matrix 
T each chunk of analysis previously obtained, and tries to 
extend it via left and/or right expanding processing (which 
combines the chunk at hand with other chunks in the 
matrix). Each chunk, once completed, gives rise to some 
new production hypotheses, which can be subsequently 
expanded only if the triggering position within the 
production is covered. The algorithm presented employs a 
program variable A as if it were a set-valued variable; this is 
done in order to separate in a straightforward way the control 
problem from the algorithm itself. 

Algorithm 1 a context free 
grammar without e-productions. Let be an 
input string. Form an (n+l)x(n+l) matrix T (with elements 
t indexed from 0 to n in both dimensions) as follows. 

insert the triple e=(s, i -1, i) in the 
program variable A; 
(* we are going to process all the 
states in A*) 

while A not empty do 
extract any element e=(s, i, j) from the set A 
and insert state s in t ; apply each of the 
following procedures, in any order, to the 
element e: 

left-expander(e) 
right-expander(e) 
completer(e); 

(* we do not want to specify any 
execution order *) 

for some p 

end. 
The three processes mentioned above will now be described. 

3.2.1 Left-expander 

applied to the index m. Before combining two chunks, a 
check is made on the subsumed triggering positions: it is 
undesirable to expand two chunks, both of which are out of 
any triggering position. In all those cases of accepted 
combinations, the index m is marked in both the combined 
chunks, because they are now subsumed by the combination 
chunk. Note that, under the definition given above for the 
equivalence relation Q, the procedure never duplicates the 
triples in A, nor the states belonging to the same 
component of recognition matrix T. 

3.3 Formal Properties 
Only the most interesting formal properties of Algorithm 1 
are presented here; for a formal proof of Invariant 1 refer to 
[Satta, 1988]. The soundness and completeness of the 
algorithm are corollaries of the above invariant. 

Note that there is a fundamental difference between 
Algorithm 1 and Earley's algorithm: Earley's algorithm 
extends each state from left to right, hence it suffices to 
avoid state duplication to save analysis duplication. 
Working within a bidirectional framework things are more 
complex. In fact if a state is expanded independently along 
two opposite sides, the two resulting states wi l l be mutu­
ally overlapping and then, once completed, w i l l 
unnecessarily duplicate analyses. Similar undesired 
duplications may arise from different states that stand for the 
same production and compete (from opposite sides) for the 
same constituent. Therefore a formal proof of the absence of 
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done in dependence of the particular strategy used in 
expanding each state on both sides. But note also that 
general properties of monotonicity still hold for the 
algorithm with respect to the equivalence relation Q, 

Complexity analysis follows for Algorithm 1. Only a 
sketch of the formal proof is given here. 

Theorem 2 Algorithm 1 uses a total amount of space 
0(n2 ) and it lakes an amount of time 0(n3), where n is the 
length of the input string. 

Sketch of the proof There are only a finite number of 
different states, and this number is not dependent upon n: in 
fact every component of the state defining quintuple has a 
finite range independent from n. Algorithm 1 uses a number 
of elements in the recognition matrix T proportional to n2 

(to be precise, the algorithm uses only those elements t 
such that j>i and it carefully avoids duplication of any state 
in the generic element t . Considering that the states 
inserted in T are the all and only states inserted in A, it is 
concluded that Algorithm 1 uses a number of states 
proportional to n2, hence the first part of the statement holds 
true. The processing of a state consists of the applications 
of the three procedures completer, left-expander, right-
expander. The completer procedure, whenever it can apply, 
takes only a finite amount of time independent from n. The 
left-expander procedure, whenever it can apply, looks for all 
states in a column of the matrix T, spending a constant 
amount of time for each state. Note in fact that the check to 
avoid duplication of states within the same element in the 
recognition matrix can be done in constant (with respect to 
n) time; this is also true for the same check on the program 
variable A (organize A as an (n+ l )x (n+ l ) matrix). The 
number of states in a column of the recognition matrix T is 
proportional to n, so the left-expander takes an amount of 
time proportional to n. By following similar reasoning for 
the right-expander procedure and combining the result with 
the above observations about the number of states created by 
the algorithm, it can be concluded that Algorithm 1 takes an 
amount of time O(n3). 

4 How to Implement a Bidirectional 
Algori thm within the Chart Data Structure 

The formalization used in the previous section was chosen 
because of its expository simplicity and its ease of use in 
proving relevant formal properties. Some of the concepts 
expressed in Section 2 will now be presented in more detail, 
suggesting an efficient way of implementing Algorithm 1 
using a chart framework, along with some improvements in 
data structures and bookkeeping. 

4.1 Implementation-oriented Representation 
To implement Algorithm 1 using the chart, it is sufficient 
to represent each vertex with the usual two fields: leftward 
and rightward. The leftward field of the j-th vertex can access 
all the states in the (upper) j-th column of the previously 
defined recognition matrix T, and the rightward field can 
access all the states in the (right) j-lh row of the same 
matrix. Each partially completed state is represented with an 
active edge, and each completed state with an inactive edge. 
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For the two expander procedures, all the edges (states) 
included in each vertex field are partitioned by production 
rule, along with a position within the given rule: this ren­
ders the edge search more efficient. Each set within the 
partition is called an edge-selection. With such a repre­
sentation it is possible to omit the somewhat inefficient 
splitting of each completed state done by the function F 
within the completer procedure. Such a splitting wi l l be 
necessary only when the completed states correspond to a 
triggering position within some production rule. In all other 
cases it suffices to insert the completed state (edge) in the 
edge-selection of the incident vertices, with the proviso of 
using an appropriate representation for the marking field m, 
as is done in the next section. 

4.2 The Agenda and the Concept of Delayed 
Eva luat ion 
Implementations of the chart algorithm often make use of a 
data structure, called the agenda, to retain all the established 
tasks. Generally a task is a proposed combination of two 
edges: the use of an agenda separates the control problem 
from the algorithm schemata in a straightforward way. 

The algorithm presented in the previous section 
combines two edges only if they have not already been 
subsumed by other edges at the moment of the combination. 
This is done to avoid analysis duplication. Working with an 
agenda is less straightforward in such cases. In fact, the 
condition about the absence of subsuming edges, on the 
basis of which the combinations to be inserted in the agenda 
are established, may no longer be true at the moment 
combinations are picked up from the agenda. The problem is 
therefore one of a "delayed evaluation" of which edge 
combinations are to actually be performed. One obvious but 
inefficient solution would be to erase some tasks from the 
agenda when the involved edges are subsumed by other 
edges. The following, more efficient implementation, is 
proposed here. Instead of treating the subsumption marking 
by means of a specific index for each state (as was done in 
the previous section), it may be more convenient to use a 
partial ordering relation (<) among edges exiting from a 
given vertex. Given two edges e and a (the latter being 
necessarily active) belonging to the same edge-selection, e<a 
i ff e is subsumed by a. The above partial ordering relation 
gives rise to tree forest structures, each one associated with 
an edge-selection and each one composed of edges. In this 
way, each edge belonging to the yield of a tree in some 
edge-selection s, within a direction field, say d, of some 
vertex v, wi l l subsume all its ancestors (in that tree), that 
are edges leaving from vertex v in direction d with regard to 
edge-selection s. The algorithm takes care only of those 
edges that are nodes in the yields of some forest; hence it is 
worth representing each edge-selection in such a way that it 
contains exactly those edges that belong to the yields of the 
associated forest Every time a new (active or inactive) edge 
is inserted into the chart, the relevant edge-selections at both 
the involved vertices are updated. The problem of the 
"delayed evaluation" within the agenda is then solved in the 
following way. Each task is represented as an ordered pair of 
two adjacent edge-selections belonging to the same vertex. 
The two edge-selections are adjacent in the sense that they 
refer to the same production rule and to the same position 

within that production, but are opposed in their directions. 
Each vertex also contains a field, called active-e-sels, in 
which the algorithm takes note of those edge-selections 
involved in a task present in the agenda. Every time a task 
is picked up from the agenda, cross combinations between 
the two yields are executed. In doing this a difference must 
be drawn between edge pairs that had been already combined 
before the insertion of the current task in the agenda and 
edge pairs that had not. The former case may have occured if 
an equivalent task (i.e. one involving the same adjacent 
edge-selections) had been previously extended at a time when 
the above edges were already in the respective edge-
selections.2 The active-e-sels field of the involved vertex is 
updated accordingly. The new edges that resulted from the 
execution of the task are inserted in the chart; edge-
selections are then updated and new tasks wil l be inserted 
into the agenda only if they were not already there. Figures 
1 and 2 report a brief example. In Figure 1 an active edge for 
a production rule p: X—> ABC spans from vertex 2 to vertex 
3, with a subsumed inactive edge of category B, and 
consequently two tasks have been established and inserted in 
the agenda. For each vertex field (leftward, rightward and 
active-e-sels) the relevant edge-selection is also depicted. 
After the first task is picked up from the agenda (i.e. 
2: A.BC) and the combination edge e is inserted in the chart, 
no new task is inserted in the agenda (the active-e-sels field 
at vertex 3 is active for the relevant edge-selection) but the 
relevant edge-selection at vertex 3 is updated (Figure 2 ). 
When the last task in the agenda (i.e. 3:AB.C) is executed, 
the subsumed edge e4 is no longer present in the edge-
selection; its descendant edge e is then combined, and 

partial overlapping is avoided. 
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This implementation solves the problem of "delayed 
evaluation" within the agenda, and avoids dealing with 
sterile tasks. Note also that the yield updating operation and 
the active-e-sels field updating operation take only a 
constant amount of time, so the complexity results of 
Theorem 2 st i l l is obtained for the proposed 
implementation. 

5 Conclusions 

This paper has described some relevant formal properties of 
bidirectional charts, a concept that may prove to be a step 
forward in nondeterministic natural language parsing. Some 
relevant theorems have been proved, adopting an Earley 
style formalism. Some aspects of the implementation of 
bidirectional charts have been also shown, together with the 
notion of "delayed evaluation" of tasks to be executed. We 
shall conclude with a brief discussion of the possible 
application of this technique compared with traditional 
bottom-up parsing. 
Bottom-up parsing, in its many implementations [Wir6n, 
1987] can be seen as a particular, restricted application of 
our algorithm, in which triggering positions are assigned to 
the first constituent position of the right-hand side of each 
production rule; in such a case analysis direction is forced to 
go from left to right. Restricting the triggering position to 
the left is inefficient for two reasons. First of all, such a 
position is often occupied by elements that can be modifiers 
at the beginning of different constituents, and therefore the 
early identification of the "current" constituent is fuzzy. In 
the second place, the left position is often occupied by 
optional phrases and this fact brings in the well known 
parsing problem of right common factors within production 
rules [Wang, 1985]. The algorithm here discussed is more 
flexible in the sense that triggering positions can be chosen 
for the most convenient positions within the right-hand side 
of the production rules. Finally, provided a representation 
for production rules that makes use of regular expressions 
(see for example LFG [Kaplan and Bresnan, 1982]), the 
presented algorithm can take advantage of right common 
factors as much as of left common factors. 
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