
Formal Properties and Implementation
of Bidirectional Charts

Giorgio Satta
University di Padova, via Belzoni 7

35131 Padova, Italy
and

Istituto per la Ricerca Scientifica e Tecnologica
38050 Povo, Tnento, Italy

Ol iv iero Stock
Istituto per la Ricerca Scientifica e Tecnologica

38050 Povo, Trento, Italy

Abstract
Several theories of grammar currently converge
toward inserting subcategorization information
within lexical entries. Such a tendency would benefit
from a parsing algorithm able to work from
"triggering positions" outward. In this paper a
bidirectional extension of the chart algorithm is
proposed and its most relevant formal properties are
investigated using an Earley like formalism. The
question as to whether the proposed approach
guarantees computational feasibility is then addressed
and is answered affirmatively. Also, it is shown that
the method presented here maintains those
characteristics that were so much appreciated in
monodirectional charts. Finally, from this analysis
indications arc derived for an efficient implementation
of the parsing algorithm.

1 Motivat ion

It is superfluous to point out the relevance of charts [Kay,
1973, 1980, Kaplan, 1973] for natural language parsing. A
didactic presentation of this technique is reported in
[Thompson and Ritchie, 1984]. Yet, one constraining
aspect of chart parsing is that it is directional, i.e. edges can
be combined only in one fixed order (usually active left -
inactive right). The fact that the edge extension operation is
meant to be carried out in one direction, normally is not
critical, given that most modern grammar theories use a
monotonical approach. Of course, things are not exactly the
same with fragmentary input: it may be impossible to start
from one corner of a constituent, simply because the
fragment may not include that corner. But even with well-
formed input something somehow different may be
desirable. There is a strong tendency in grammatical for­
malisms to privilege a particular element inside a given
constituent, called the head of the constituent, that , in a
number of cases, guides the acceptability of elements to its
left as well as to its right. Should the parsing algorithm be
able to work from the head outward, then it would benefit
from a representation developed accordingly. More
concretely, a number of possible partial interpretations
would be pruned out earlier, on the basis of functional
information attached to the head. This results in greater effi­
ciency.

It may be worth recalling that X-bar theory [Jackendoff,
1977] establishes that the head of a constituent (phrase)

individuates the categorial labels of the nodes that dominate
it, up to two or three nodes above, and provides a general
skeleton for the related branches. A number of grammar
theories are influenced in one form or another by this idea.
More recently, also, some grammar formalisms have
explicitly emphasized the role of head-driven paradigm, e.g.
HPSG [Sag and Pollard, 1987].

A proposal for bidirectional chart parsing was given in
[Stock et al., 1989], though mainly as an heuristic tool for
controlling the recognition of spoken input. Another work
on bidirectional charts [Steel and De Roeck, 1987]
introduces heuristics that determine how a constituent is to
be analyzed. Some other works in the formal languages
literature [Bossi et a/., 1983] have dealt with some form of
bidirectionality within a tabular approach, such as Earley's
or Kasami-Cocke-Younger's.

Before proceeding any further, one should examine the
computational feasibility of the proposed approach. Less
fundamental, but still very relevant, is the question whether
the method enjoys those characteristics that proved so useful
in monodirectional charts. In Section 3 it wi l l be shown
that both these questions are answered affirmatively. A
consequence of this analysis may also result in indications
for a good implementation of the algorithm.

After having briefly stated, in the next section, the
proposal for bidirectional chart parsing, coherently with the
motivations stated above, the approach wil l be expressed in
terms of a formalized extension of Earley's algorithm.
Some formal definitions and proofs of basic theorems then
will be given that guarantee the desired formal properties.
Following that, aspects of the implementation are described,
including a revision of the usual agenda-based execution. In
the last part of the paper this approach is compared with
other strategies for chart parsing.

2 A synopsis of bidirectional charts

In this section bidirectional charts are compared descriptively
with monodirectional charts.

The main difference in data structures results in active
edges that include two markers, say Idot and rdot, to indicate
the borders of the recognized portion of the right-hand side
of the specified production rule. The algorithm works out­
ward from particular elements (triggering elements) that can
occur in any position in a given constituent. Such positions
within the right-hand side of a production rule are named
triggering positions. The only requirement is that at least

1480 Speech and Natural Language

one such position is indicated for each constituent (therefore
the case of a grammar with one head per constituent is a
particular case).

To accomplish that, two edge combination rules are
introduced. The first rule is a bidirectional extension of the
chart "fundamental" rule: it allows the combination of an
active edge with an inactive edge occurring either to its right
or to its left. The second rule allows the combination of two
adjacent active edges, "working" on the same production rule
and with the rdot of the leftmost edge coinciding with the
Idol of the rightmost edge. This is a means of merging two
attempts into a single, more advanced, attempt to analyze a
constituent.

The application of any of the two above rules is subject
to a check in the chart so that the edge combination
operation is really extending in an innovative way the at­
tempts present in the chart under the form of active edges.
(This point wil l become clearer in the following sections).
The general control strategy is bottom-up: whenever an
inactive edge of a given category is introduced into the chart,
for all the possible production rules that have occurrences of
that category in a triggering position, an active edge is
introduced, spanning just the given inactive edge.

In the following these concepts are formalized in terms
of an extension of the Earley algorithm [Earley, 1970]. This
allows use of formalizations and results that arc well
established in the literature. Also, it is well known that
chart parsing can be considered homomorph to Earley
parsing, apart from the facts that 1) an explicit concept of
active edge is introduced 2) the combination of a chart with
an agenda separates the issue of control from the algorithm
itself. Therefore the formal results described hold for this
chart-based approach. It is returned to in Section 4, which
deals with implementational issues, and includes a new
organization of active edges and a new use of the agenda.

3 An extension of the Earley Algor i thm

This section presents a formal extension of the Earley
algorithm [Earley, 1970]. The formalism chosen here was in
part inspired by the representation used in [Graham and
Harrison, 1976], but it is rather different from the original
one, given that now we are free to parse in any direction.

3.1 Prel iminaries

Assume a context-free grammar G=(N, Z, P, S), where N is
the finite set of all non terminal symbols, Z is the set of all
terminal symbols, disjoint from N, P is the finite non
empty set of production rules, and S is the so called start
symbol. Let L(G) denote the language generated by the
grammar G. Each rule in P is notated with the form DD ->
C ...C , where is a function from the set {1 .. IPI) to

p.l p,n(p)

N+ (in the remaining part of this section the integer p is
used for the correspondent production rule in P). For
simplicity, the grammar G is expressed in an e-production
free form, without loss of generality [Aho and Ullman,
1972:148], though the algorithm can be easily reformulated

iNote that this has nothing to do with having reached the
ini t ial or f inal position in the right-hand side of the
production rule.

Satta and Stock 1481

3.2 Recognition A lgor i thm
A recognizer is a procedure that accepts a string we iff
we L(G); a parser is a procedure that, in addition, outputs
one or more derivation trees for each accepted input Only a
recognition algorithm wil l be presented here; the use of a
simple algorithm able to reconstruct the derivation trees by
interpreting the recognition matrix T (see for example
[Graham and Harrison, 1976]) is sufficient to obtain a parser
algorithm.

The resulting algorithm inserts in the recognition matrix
T each chunk of analysis previously obtained, and tries to
extend it via left and/or right expanding processing (which
combines the chunk at hand with other chunks in the
matrix). Each chunk, once completed, gives rise to some
new production hypotheses, which can be subsequently
expanded only if the triggering position within the
production is covered. The algorithm presented employs a
program variable A as if it were a set-valued variable; this is
done in order to separate in a straightforward way the control
problem from the algorithm itself.

Algorithm 1 a context free
grammar without e-productions. Let be an
input string. Form an (n+l)x(n+l) matrix T (with elements
t indexed from 0 to n in both dimensions) as follows.

insert the triple e=(s, i -1, i) in the
program variable A;
(* we are going to process all the
states in A*)

while A not empty do
extract any element e=(s, i, j) from the set A
and insert state s in t ; apply each of the
following procedures, in any order, to the
element e:

left-expander(e)
right-expander(e)
completer(e);

(* we do not want to specify any
execution order *)

for some p

end.
The three processes mentioned above will now be described.

3.2.1 Left-expander

applied to the index m. Before combining two chunks, a
check is made on the subsumed triggering positions: it is
undesirable to expand two chunks, both of which are out of
any triggering position. In all those cases of accepted
combinations, the index m is marked in both the combined
chunks, because they are now subsumed by the combination
chunk. Note that, under the definition given above for the
equivalence relation Q, the procedure never duplicates the
triples in A, nor the states belonging to the same
component of recognition matrix T.

3.3 Formal Properties
Only the most interesting formal properties of Algorithm 1
are presented here; for a formal proof of Invariant 1 refer to
[Satta, 1988]. The soundness and completeness of the
algorithm are corollaries of the above invariant.

Note that there is a fundamental difference between
Algorithm 1 and Earley's algorithm: Earley's algorithm
extends each state from left to right, hence it suffices to
avoid state duplication to save analysis duplication.
Working within a bidirectional framework things are more
complex. In fact if a state is expanded independently along
two opposite sides, the two resulting states wi l l be mutu­
ally overlapping and then, once completed, w i l l
unnecessarily duplicate analyses. Similar undesired
duplications may arise from different states that stand for the
same production and compete (from opposite sides) for the
same constituent. Therefore a formal proof of the absence of

1482 Speech and Natural Language

done in dependence of the particular strategy used in
expanding each state on both sides. But note also that
general properties of monotonicity still hold for the
algorithm with respect to the equivalence relation Q,

Complexity analysis follows for Algorithm 1. Only a
sketch of the formal proof is given here.

Theorem 2 Algorithm 1 uses a total amount of space
0(n2) and it lakes an amount of time 0(n3), where n is the
length of the input string.

Sketch of the proof There are only a finite number of
different states, and this number is not dependent upon n: in
fact every component of the state defining quintuple has a
finite range independent from n. Algorithm 1 uses a number
of elements in the recognition matrix T proportional to n2

(to be precise, the algorithm uses only those elements t
such that j>i and it carefully avoids duplication of any state
in the generic element t . Considering that the states
inserted in T are the all and only states inserted in A, it is
concluded that Algorithm 1 uses a number of states
proportional to n2, hence the first part of the statement holds
true. The processing of a state consists of the applications
of the three procedures completer, left-expander, right-
expander. The completer procedure, whenever it can apply,
takes only a finite amount of time independent from n. The
left-expander procedure, whenever it can apply, looks for all
states in a column of the matrix T, spending a constant
amount of time for each state. Note in fact that the check to
avoid duplication of states within the same element in the
recognition matrix can be done in constant (with respect to
n) time; this is also true for the same check on the program
variable A (organize A as an (n+ l)x (n+ l) matrix). The
number of states in a column of the recognition matrix T is
proportional to n, so the left-expander takes an amount of
time proportional to n. By following similar reasoning for
the right-expander procedure and combining the result with
the above observations about the number of states created by
the algorithm, it can be concluded that Algorithm 1 takes an
amount of time O(n3).

4 How to Implement a Bidirectional
Algori thm within the Chart Data Structure

The formalization used in the previous section was chosen
because of its expository simplicity and its ease of use in
proving relevant formal properties. Some of the concepts
expressed in Section 2 will now be presented in more detail,
suggesting an efficient way of implementing Algorithm 1
using a chart framework, along with some improvements in
data structures and bookkeeping.

4.1 Implementation-oriented Representation
To implement Algorithm 1 using the chart, it is sufficient
to represent each vertex with the usual two fields: leftward
and rightward. The leftward field of the j-th vertex can access
all the states in the (upper) j-th column of the previously
defined recognition matrix T, and the rightward field can
access all the states in the (right) j-lh row of the same
matrix. Each partially completed state is represented with an
active edge, and each completed state with an inactive edge.

Satta and Stock 1483

For the two expander procedures, all the edges (states)
included in each vertex field are partitioned by production
rule, along with a position within the given rule: this ren­
ders the edge search more efficient. Each set within the
partition is called an edge-selection. With such a repre­
sentation it is possible to omit the somewhat inefficient
splitting of each completed state done by the function F
within the completer procedure. Such a splitting wi l l be
necessary only when the completed states correspond to a
triggering position within some production rule. In all other
cases it suffices to insert the completed state (edge) in the
edge-selection of the incident vertices, with the proviso of
using an appropriate representation for the marking field m,
as is done in the next section.

4.2 The Agenda and the Concept of Delayed
Eva luat ion
Implementations of the chart algorithm often make use of a
data structure, called the agenda, to retain all the established
tasks. Generally a task is a proposed combination of two
edges: the use of an agenda separates the control problem
from the algorithm schemata in a straightforward way.

The algorithm presented in the previous section
combines two edges only if they have not already been
subsumed by other edges at the moment of the combination.
This is done to avoid analysis duplication. Working with an
agenda is less straightforward in such cases. In fact, the
condition about the absence of subsuming edges, on the
basis of which the combinations to be inserted in the agenda
are established, may no longer be true at the moment
combinations are picked up from the agenda. The problem is
therefore one of a "delayed evaluation" of which edge
combinations are to actually be performed. One obvious but
inefficient solution would be to erase some tasks from the
agenda when the involved edges are subsumed by other
edges. The following, more efficient implementation, is
proposed here. Instead of treating the subsumption marking
by means of a specific index for each state (as was done in
the previous section), it may be more convenient to use a
partial ordering relation (<) among edges exiting from a
given vertex. Given two edges e and a (the latter being
necessarily active) belonging to the same edge-selection, e<a
i ff e is subsumed by a. The above partial ordering relation
gives rise to tree forest structures, each one associated with
an edge-selection and each one composed of edges. In this
way, each edge belonging to the yield of a tree in some
edge-selection s, within a direction field, say d, of some
vertex v, wi l l subsume all its ancestors (in that tree), that
are edges leaving from vertex v in direction d with regard to
edge-selection s. The algorithm takes care only of those
edges that are nodes in the yields of some forest; hence it is
worth representing each edge-selection in such a way that it
contains exactly those edges that belong to the yields of the
associated forest Every time a new (active or inactive) edge
is inserted into the chart, the relevant edge-selections at both
the involved vertices are updated. The problem of the
"delayed evaluation" within the agenda is then solved in the
following way. Each task is represented as an ordered pair of
two adjacent edge-selections belonging to the same vertex.
The two edge-selections are adjacent in the sense that they
refer to the same production rule and to the same position

within that production, but are opposed in their directions.
Each vertex also contains a field, called active-e-sels, in
which the algorithm takes note of those edge-selections
involved in a task present in the agenda. Every time a task
is picked up from the agenda, cross combinations between
the two yields are executed. In doing this a difference must
be drawn between edge pairs that had been already combined
before the insertion of the current task in the agenda and
edge pairs that had not. The former case may have occured if
an equivalent task (i.e. one involving the same adjacent
edge-selections) had been previously extended at a time when
the above edges were already in the respective edge-
selections.2 The active-e-sels field of the involved vertex is
updated accordingly. The new edges that resulted from the
execution of the task are inserted in the chart; edge-
selections are then updated and new tasks wil l be inserted
into the agenda only if they were not already there. Figures
1 and 2 report a brief example. In Figure 1 an active edge for
a production rule p: X—> ABC spans from vertex 2 to vertex
3, with a subsumed inactive edge of category B, and
consequently two tasks have been established and inserted in
the agenda. For each vertex field (leftward, rightward and
active-e-sels) the relevant edge-selection is also depicted.
After the first task is picked up from the agenda (i.e.
2: A.BC) and the combination edge e is inserted in the chart,
no new task is inserted in the agenda (the active-e-sels field
at vertex 3 is active for the relevant edge-selection) but the
relevant edge-selection at vertex 3 is updated (Figure 2).
When the last task in the agenda (i.e. 3:AB.C) is executed,
the subsumed edge e4 is no longer present in the edge-
selection; its descendant edge e is then combined, and

partial overlapping is avoided.

1484 Speech and Natural Language

This implementation solves the problem of "delayed
evaluation" within the agenda, and avoids dealing with
sterile tasks. Note also that the yield updating operation and
the active-e-sels field updating operation take only a
constant amount of time, so the complexity results of
Theorem 2 st i l l is obtained for the proposed
implementation.

5 Conclusions

This paper has described some relevant formal properties of
bidirectional charts, a concept that may prove to be a step
forward in nondeterministic natural language parsing. Some
relevant theorems have been proved, adopting an Earley
style formalism. Some aspects of the implementation of
bidirectional charts have been also shown, together with the
notion of "delayed evaluation" of tasks to be executed. We
shall conclude with a brief discussion of the possible
application of this technique compared with traditional
bottom-up parsing.
Bottom-up parsing, in its many implementations [Wir6n,
1987] can be seen as a particular, restricted application of
our algorithm, in which triggering positions are assigned to
the first constituent position of the right-hand side of each
production rule; in such a case analysis direction is forced to
go from left to right. Restricting the triggering position to
the left is inefficient for two reasons. First of all, such a
position is often occupied by elements that can be modifiers
at the beginning of different constituents, and therefore the
early identification of the "current" constituent is fuzzy. In
the second place, the left position is often occupied by
optional phrases and this fact brings in the well known
parsing problem of right common factors within production
rules [Wang, 1985]. The algorithm here discussed is more
flexible in the sense that triggering positions can be chosen
for the most convenient positions within the right-hand side
of the production rules. Finally, provided a representation
for production rules that makes use of regular expressions
(see for example LFG [Kaplan and Bresnan, 1982]), the
presented algorithm can take advantage of right common
factors as much as of left common factors.

References

[Bossi et al., 1983] A. Bossi, N. Cocco and L. Colussi. A
divide-and-conquer approach to general context-free
parsing. Information Processing Letters, 16 - pp. 203-
208, 1983.

[Earley, 1970] Jay Earley. An Efficient Context-Free
Parsing Algorithm. Communications of the ACM, 13 -
pp. 94-102, 1970.

[Graham and Harrison, 1976] Susan L. Graham and Michael
A. Harrison. Parsing of General Context Free
Languages. Advances in Computers - pp. 77-185 - ,
Academic Press, New York, 1976.

[Jackendoff, 1977] Ray Jackendoff. X-bar Syntax: A Study
of Phrase Structure. The M I T Press, Cambridge,
Massachusetts, 1977.

[Kaplan, 1973] Ronald M. Kaplan. 1973. A General
Syntactic Processor. In: (R. Rustin, ed) Natural
Language Processing - pp. 193-241 - , Algorithmics
Press, New York, New York, 1973.

[Kaplan and Bresnan 1982] Ronald M. Kaplan and Joan
Bresnan. Lexical Functional Grammar: A Formal
System for Grammatical Representation. In: (J.
Bresnan, ed) The Mental Representation of Grammatical
Relations - pp. 173-281 -, The MIT Press, 1982.

[Kay, 1973] Martin Kay. The M I N D System. In: (R.
Rustin, ed) Natural Language Processing - pp. 155-188 -
, Algorithmics Press, New York, New York, 1973.

[Kay, 1980] Martin Kay. Algorithm Schemata and Data
Structures in Syntactic Processing. Tecnical Report
CSL-80 Xerox-PARC, Palo Alto, California, 1980.

[Sag and Pollard, 1987] Ivan Sag and Carl Pollard. Head
Driven Phrase Structure Grammar: An Informal
Synopsis.. Report No. CSLI 87-79, CSLI, Stanford
University, Stanford, 1987.

[Satta, 1988] Giorgio Satta. Some Results for a
Bidirectional Extension of Earley's Algorithm. Draft,
IRST, Trento, 1988.

[Steel and De Roeck, 1987] Sam Steel and Anne De Roeck.
Bidirectional Chart Parsing. Proceedings of AISB-87,
Edinburgh, Scotland, 1987.

[Stock et al., 1989] Oliviero Stock, Rino Falcone and
Patrizia Insinnamo. Bidirectional Charts: a Potential
Technique for Parsing Spoken Natural Language.
Computer Speech and Language, 3, 1989.

[Thompson and Ritchie, 1984] Henry Thompson and
Graeme Ritchie. Implementing Natural Language
Parsers. In: (T. O'Shea, M. Eisenstadt eds) Artificial
Intelligence - pp. 245-300 -,Harper & Row, New York,
1985.

[Wang, 1985] Weigno Wang. Computational Linguistics
Technical Notes No. 2.. Technical Report 85/013,
Computer Science Department, Boston University,
Boston, Massachusetts, 1985.

[Wir6n, 1987] Mats Wir6n. A Comparison of Rule-
Invocation Strategies in Context-Free Parsing.
Proceedings of the 3rd Conference of the European
Chapter of the Association for Computational
Linguistics, Copenhagen, Denmark, 1987.

Satta and Stock 1485

