How to Prove Higher Order Theorems
in First Order Logic

Manfred Kerber
Fachbereich Informatik, Universitat Kaiserslautern

D-6750 Kaiserslautern, Germany
kerber@informatik.uni-kl.de

Abstract

In this paper we are interested in using a first
order theorem prover to prove theorems that
are formulated in some higher order logic. To
this end we present translations of higher or-
der logics into first order logic with flat sorts
and equality and give a sufficient criterion for
the soundness of these translations. In addi-
tion translations are introduced that are sound
and complete with respect to L. Henkin's gen-
eral model semantics. Our higher order logics
are based on a restricted type structure in the
sense of A. Church, they have typed function
symbols and predicate symbols, but no sorts.

Keywords: higher order logic, second order logic, trans-
lation, morphism, soundness, completeness

Die Grenzen meiner Spache bedeuten
die Grenzen meiner Wellt.

Ludwig Wittgenstein,
True tutus logico-philosophic us 5.6

1 Introduction

First order logic is a powerful tool for expressing and
proving mathematical facts. Nevertheless higher order
expressions are often better suited for the representation
of mathematics and in fact almost all mathematical text
books rely on some higher order fragments for expres-
siveness. In order to prove such theorems mechanically
there are two options: either to have a theorem prover
for higher order logic such as TPS [Andrews et al., 1990]
or to translate the higher order constructs into corre-
sponding first order expressions and to use a first order
theorem prover. As important as the first development
Is - which may be the way of the future - we follow
the second approach because strong first order theorem
provers are available today.

The Limitations of First Order Logic

First order logic and the set theories of ZERMELO-
FRAENKEL Oor VON NEUMANN-GODEL-BERNAYS have
been developed for the formalization of mathematical
concepts and for reasoning about them. Other ap-
proaches are RUSSEL'S ramified theory of types and
CHURCH'S simple theory of types which formalize higher

order logic. Mathematicians use a (compared to the
formal approaches) informal technical language that is
much closer to higher order logic augmented by “naive”
set theory than to first order logic. They know about the
antinomies and avoid them, for example by the omission
of expressions like “{z|z ¢ z}”. They also know that
there 1s a (hopefully) clean foundation of set theory, how
this 18 done in detail is in general however not of much
interest to a working mathematician (if he 18 not work-
ing on the foundations of mathematics like logic or set
theory).

Formal set theory 1s of course a very strong tool, es-
pecially when higher concepts are introduced by abbre-
viations. Beginning with the binary relation “€” one
can (and this is really done by N. BOURBAKI) define the
concepts subset, intersection, union, function, relation,
power set, and so on. The definition of a function as
a left-total, right-unique relation is rather complex and
remote from the construct of a function symbol that is
provided originally in logic in order to express functions.
The representation of concepts using functions i1s more
adequate in a higher order language. For instance in
higher order logic it is possible to write:

V+ commutative(+) <= Vz,y z+y=y+zor

VP symmetric(P) < (Vz,y P(z,y) = P(y,z))
Here P is a predicate variable, and symmetric 1s a predi-
cate constant, which expects a predicate term as its argu-
ment. This cannot be written immediately 1n first order
logic, because we quantify over P, so P would have to
be a variable. On the other hand it must be a predi-
cate because of the expression P(z,y), hence a predicate
variable, and this is excluded in first order logic. Never-
theless this definition is expressable in first order logic.
Many concepts cannot be axiomatized in first order logic
at all, for example the set IN of natural numbers 1s not
first order characterizable: the induction axiom is second
order. Another example of the inadequacy of first order
logic comes from the theorem of LOWENHEIM-SKOLEM:
For instance every first order axiomatization of the real
nuinbers R has a countable model.

Why and How Translation

Representing knowledge in an adequate way - adequate
with respect to the naturalness of the representation of
the object - is one thing, the other thing is to have an
adequate and strong form ofreasoning. Ifone uses higher

Kerber 137

order logic there are two possibihities: either to build
strong higher order theorem provers or to translate into
first order logic. We shall follow the second approach 1n

this paper.

1.1 Example: A common translation of our formula
above in a first order logic is:
VP symmetric(P) <=
(Vz,y apply(P,z,y) = apply(P,y,z))

apply 1s a predicate; it 1s interpreted freely, although 1t
is intended that it 1s true exactly when P holds for the
other arguments.

The following problems occur:

- Under what conditions can such a translation be
correct?” That 1s, if we translate a formula and we
obtain a tautology, when is the original formula a
tautology too?

— In what sense can such a translation be complete?
That 1s, if we translate a tautology, do we always
obtain a tautology?

For general considerations concerning the expressive-
ness of higher order logic, it is obvious that if we find
a translation from higher order to first order logic, it
cannot be complete in the general sense, especially since
the theorem of LOWENHEIM-SKOLEM must hold and be-
cause of GODEL'S incompleteness result. In principle
such a translation must be equivalent to some set the-
oretical formulation as stated in MOSTOWSKI'S isomor-
phism theorem [Mostowski, 1949].

Related Work

J. VAN BENTHEM and K. DOETS [1983] give a transla-
tion of a restricted higher order logic without function
symbols and without higher order constants and identi-
ties to a standard first order logic. They introduce the
general idea of a translation, and its soundness and com-
pleteness. The translation to standard first order logic
leads to more complicated formulae than the translation
to a sorted version, because it is necessary to relativize
quantification with respect to the corresponding type.

Of great influence for the present paper are the trans-
lation techniques of H. J. OHLBACH [1989], who trans-
lates modal logics and other non-classical logics to a
context logic, where contexts are restricted higher order
expressions. These contexts are translated to an order
sorted first order logic.

Here a translation of (almost) full higher order logic
with function symbols to a many sorted first order logic
with equality is given. We do not need a general order
sorted logic as long as we do not use a sorted higher
order source logic.

2 Higher Order Logic

In this section we define formally a higher order logic
based on CHURCH'S simple theory of types, much of the
notation is taken from [Andrews, 1986]. However, we
shall write the types in a different way. For example if P
IS a binary predicate symbol on individuals, we write its
type as (i x i — 0) instead of (ou) for better readability.
Apologies to all who are familiar with CHURCH'S original
notation.

138 Automated Reasoning

The Syntax

Let us introduce type symbols first, then define terms
and formulae for the logics £#. The n-th order predicate
logics L™ are then defined as subsets of L“.

2.1 Definition (Types of £“): ¢ is a type of order 0
that denotes the type of the individuals. o 18 a type
of order 1 and denotes the type of the truth values.
If ,...,7m, and o are type symbols not equal to o
(with m > 1) then (7 X --- X 7, — o) 18 a type of
order 1 4+ maximum of the orders of 71,...,7m,0. It
denotes the type of m-ary functions with arguments of
types 71,...,Tm, respectively, and value of type o. If
T1,..., Tm are type symbols not equal to o (with m > 1)
then (7, X --- x 1,, — 0) 18 a type of order 1 + max-
imum of the orders of 71,...,7m. It denotes the type
of m-ary predicates with arguments of types n,
respectively.

.‘.’Tm‘

2.2 Definition (Signature of £“): The signature of a
logicin £ is aset S = |J, S"** U, §Y* where each
set SE"** is a (possibly empty) set of constant symbols
of type 7 and SY%" a countable infinite set of varnable
symbols of type 7. We assume that the sets S, are all
disjoint, 1n addition we sometimes mark the elements of
a set S, by its type 7 as index. A logic in £* 18 defined
by its signature & and is denoted £¥(S). If there is only
one signature we often write £“ instead of £¥(S).

2.3 Definition (Terms of £“):
1. Every variable or constant of a type 7 18 a term.

2. If firux- .xrpm—a)stry,---,1r, are terms of the types
indicated by their subscripts, then we get a term of

type 0 by fir,x.. xrm—o)(trys---1lr,)-
2.4 Definition (Formulae of £%):

1. Every term of type o is a formula.

2. If ¢ and ¥ are formulae and x 1s a variable of any
type, then (—¢), (¢ A ¢), and (Vzy) are formulae.

2.5 Definition (L™, for n > 1): £L2" is a subset of L
so that every variable and every constant is of order less
or equal to n, £2"~! is a subset of £2" such that no
variable of order n i1s quantified.

The Semantics

The standard semantics i1s due to TARSKI and has been
extended by HENKIN [1950] to the general model seman-
tics, we shall follow these concepts.

We use the following notation: Let A;,..., A, and

B be sets, then F(A,,..., Anm; B) denotes the set of all
functions from 4, x --- x A, to B.

2.6 Definition:

~ A frame is a collection {D,}, of nonempty sets D,,
one for each type r, such that D, = {T,F} and
Diryx...xrm—a) € F(Dy,,..., Dy ;Dy). The mem-
bers of D, are called truth values and the members
of D, are called individuals.

~ An nterpretation ({D,},,T) of L“ consists of a
frame and a function J that maps each constant of
type 7 of L to an element of D,.

~ An assignment into a frame {D,}. is a function
§ that maps each variable of type 7 of £ to an
element of D,. Given an assignment £, a variable
z;, and an element d € D,, {[z, — d] is defined as
£ except for z, where it i1s d.

2.7 Definition (Interpretation): An interpretation
M = ({D,;},,T) is a weak interpretation (weak model,
general model) for £“ iff there is a binary function YM
so that for every assignment £ and term t of type 7,
VMt € D, and the following conditions hold:

1. for all vaniables z,, Vg“ r, =€z,

2. for all constants c,, V?‘ c, = Je,

3. for composed terms
VI (Firix-xrama)(trs, s tem)) =
VE (frix xramo)) (V¥ VML)

4. VM(p AY) = VMo AVMy *
5. VM (—p) = VM

6. Vi (Vzrp) =Vd €D VL a0

It 1s a strong interpretation (strong model, standard
model), if D, = ¥(D,,,...,D,, . ;D,) for all occurring
types T with r=(ny x - - - X 1, — 0).

2.8 Remark: It is easy to see that in L' for every weak
model of a formula set there 1s a strong model with the
same interpretation function 7.

Sorted Logics

Now we introduce our target language, a standard many-
sorted first order logic with equality predicates on all
sorts. Let X be a (finite) set of sorts. We define the sig-
nature Sg. of a logic in £; ., as a union of possibly empty
sets S(*1:-+#m)* (m_ary function constants), S(1:-#m)
(m-ary predicate constants), S?2,.,; (object constants),

and the infinite countable sets S!,. (object variables),

where §;1,...,8m,8 € ¥. In each S(**) we have the bi-
nary predicate symbol =(4?). We index the elements
of Sy sometimes by their sorts. For instance a function
symbol f of sort (81,...,8m) : § 1s written as flor,am)s
Sorted terms and formulae can be defined as usual and
we uilderly the usual semantics. For details see [Kerber,
1990].

The order sorted logic covers this simple situation and
therefore the input language of a theorem prover like the
Markgraf Karl Refutation Procedure [MKRP, 1984] is
well-suited for dealing with the defined logic.

3 Logic Morphisms

Now we shall define those concepts that are necessary tu
describe the relation between formalizations in different
logics. The important concepts are: logic, morphism,
quasi-homomorphism, and soundness and completeness
of a morphism.

3.1 Definition (Morphism of Logics): Let F! and
F? be two logical systems (L%, L", or L],.,), then a

*We use the connectives and quantifiers in a naive way at
the meta-level.

morphism © is a mapping that maps the signature S of
a logic F1(8) in F! to a signature of a logic F2(©(S))
in 2 and that maps every formula set in F!(S) to a
formula set in F2(©(S))."

3.2 Definition (Soundness): Let © be a morphism
from F! to F2. © is called strongly (weakly) sound
\ff the following condition holds for every formula set T’
in F': if T has a strong (weak) model in F? then there
is a strong (weak) model of &(T) in F2.

3.3 Definition (Completeness): Let © be a morphism
from F! to F2. © is called strongly (weakly) complete
iff the following condition holds for every formula set I’
in F': if ©(T) has a strong (weak) model in F? then
there is a strong (weak) model of T in F!.

3.4 Definition (Quasi-Homomorphism): Let F(§;)
and F%(S;) be two logics. A mapping © that maps every
formula and every term of F!(S;) to a formula respec-
tively to a term of F2(S,) is called a quasi-homomor-
phism iff the following conditions are satisfied:

1. For all terms:

1.1 if z is a variable of F!(&;) then ©(z) is a vari-
able of F%(S;).

1.2 if ¢ 1s a constant of F!(S;) then ©(c) is a con-
stant of F2(S,).

1.3 if f(t1,...,tm) is a term of F!(S;) then
O (f(t1,...,tm)) = 9(O(f),0(t1),...,0(tm))
with 9(a,ay,...,am) = “a(:(‘;"‘;l': _“_"j’)a:)‘

The constants a have to be chosen appropn-
ately out of &5, especially they have to be new,
that 1s, there must be no element o’ € §; so
that a, = ©(a’). The case which 1s chosen can
depend only on the a, not on the a,,...,an.
(a stands for apply.)

2. For all formulae ¢;, ¢2 and for all variables z:

2.1 O(p1 A g2) = O(p1) A O(ip2)
2.2 ©(~p) = -6(p)
2.3 6(Vzyp) = VO(2)O(yp)
3. All terms that are not formulae of F1(S;) are
mapped to terms that are not formulae of F2(S,).

4 A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the sound-
ness of translations of formulae of £” onto formulae of
L! ., which is strong enough to cover most require-
ments.

4.1 Theorem: If O is an injective quasi-homomorphism

from L"(S) to L],,..(Sx), then © is weakly sound.

Proof: Let M be a weak model of a formula set T,
M = ({D,;},,J) 1s a weak model for any ¢ out of
[, that 1is, VEMgp = T for every assignment £. We are

going to construct a model M = ({D"""}u,n,T) of

*A formula is regarded as a formula set with one element.
Especially we write O() instead of O({¢}).

Kerber 139

(), where »r"* denotes the sort upon which the type
T is mapped. We define the sets P =D, T is
defined as J(6(c)) := J(c) for all constants ¢ in S.

(Here and 1n the sequel we make use of the injectivity
of ©. Additionally we use the fact that constants are

mapped onto constants.) The assignments £ are defined

by £(©(z)) := £(z). Because of D"™" = D, we get all
assignments in this way. Recall that we have no function
or predicate variables in £1__,. We also use the fact that
variables are mapped onto variables. For the functions
a,”" with 7 = (1 x--- X 7 — o) we can define the in-
terpretation so that it ta.kes the interpretation of the first
argument, which is a function, and apphes it to the other
arguments. We can do this, because these functions are

new. Formally this mterpretatlgn can be wrltten" fO'I"
al f € D"™ for all z, € D""" .. z,, € D"™

VM(a"’")(f,:cl,...,a:m) (= f(xl,...,xm). Note that

f € D7 = D, is a function and hence applicable.
Analogousl‘y we define the interpretation for the pred-

1cates ap

Now M is a model of ©(y), which is proved by showing
inductively that for all terms and formulae Vé-“ 00O =

V?A. The proof is straightforward and can be found in
[Kerber, 1990]. a

4.2 Theorem: If © is an injective quasi-homomorphism
from £L"(S) to L!__,(Sg), then O is strongly sound.
Proof: If there is a strong model of a formula set I" in
E"(S), then this model is also a weak model. By the
previous theorem there is hence a weak model of O(T)
in £} . (Sg). By a sorted version of remark 2.8 there is
also a strong model of ©(T). .

By the theorems above it follows directly that the
translation used in example 1.1 is weakly and strongly
sound.

4.3 Remark: Note that the formulae that are obtained
by these translations are not essentially more difficult
than the original ones and that the structure of the for-
mulae (number and position of quantifiers or junctors) 1s
respected. In the image the terms are never more nested
than in the original. The only thing that can change, is
that the number of arguments in a term is increased by
one.

5 A Complete Translation

Now we want to define morphisms ©,, from £ to £!_,
which are not only sound but also complete. We define

the morphisms for odd n, for even n they are obtained as
the restrictions of the next higher odd n, that is 62,, =
an+1 |ca=. The morphlsms O are defined as O(p) =

©'(¢) U EXT, where © is a quasi-homomorphism and
EXT 18 the set of extensionality axioms which depends
only on the signature. In the following we drop the index
n. Again we abbreviate apply as .

*By "r" we mean the string after expanding the abbre-
viation for 7, for instance, if r = (¢ X ¢ — o) then "rv is
"(¢e Xt — o).

140 Automated Reasoning

5.1 Definition (Standard Translation O, 1) Let
S2n=1 =], S; be the signature of a loglc in £2"~1. We

define a signature Sy of a logic in L} ., by assigning to
each predicate constant of order n, arity m, and type
r=(n X X7y —0)8 predicate constant of order
1, arity m (that is, of type (¢ x --- x ¢ — 0))* and sort
(*m",...,"1n*). All constants and variables of order
less than n and of a type o are mapped onto constants
and variables of type ¢ and sort “o". Because we as-
sumed all members in $%"~! to be disjoint, we can use
the same names for the images.

Additionally we have in Sy for each type 7 of order less
than n with 7 = (1, X -+ X 7,5, — 0) a new (m + 1)-ary
predicate constant o™ of sort (rv,vms, T)
and for each type 7 of order less than n with r =
(M X X Ty — 0), 0 # o a new (m + 1)-ary func-
tion constant a' 7 of sort (v, wmpe L Ty n) o,

Now we are going to define a quasi-homomorphism ©’'.
For terms it is defined inductively by:

"T"

T1 for all variables z,, ©'(z,) = z

T2 for all constants c, of order equal n with

T = (Tl X -+ X Ty — O), é’(c-r) — C("TI“V'-’"TM")
T3 for all constants ¢, of order less than n, ©'(c,) =
c T.'

T4 For a term with an m-ary function term f of type
T as top expression we define ©'(f(t;,...,1,,)) =

""" (O (£),0'(t1),- .., (tm))
For formulae we define ©’ inductively by:

F1 For an atomic formula with predicate constant p of
order n as top expression we define

O (p(t1,...,tm)) = O PNO'(t1),...,0 (L))

F2 For a term with an m-ary predicate term p of type
7 and order less than n as top expression we define

O'(p(t1,---,tm)) = a7 (O (p), O'(t1), . ..,0 (tm))

F3 For all other formulae we define ©' as the homomor-
phic extension.

EXT is the set of the following £!__ -formulae:
A1 For every function constant a' 7 with
T=(N X X Ty — 0):
an uvgu.ru(vx".,»1 “, N ’Vz;::.mu
ll.r“(f, xl’ N xm)E(‘la"’lla")a"f'l(g’ zl, . xm))
: f E("T","T") g
A2 For every predicate constant a' 7 with
T=(N X - X Ty — 0):
VP'.T.'Vq.'T'. (Vz;'rx ..’ o ,Vz:;fm "
a"""(p, :51:.. - Zm) a""™"(g,z1,...,Zm))
= p=("""""" g
Now we can define O(p) = ©'(p) U EXT.

5.2 Remark: It should become obvious now, why we
excluded types like (0 — o0): For instance let P be a
predicate of this type, Q be a predicate of type (¢« — 0),

*Recall: In £2™? there is no function constant of order n.

and ¢ be a constant of type ¢. Then the transla-
tion of P(Q(c)) A Q(c) can be only the apply-construct
a"(=0"(P,a"¢=9"(Q,c)) A a"=9"(Q,c) or the
direct translation P(a ¢=9"(Q, ¢c)) A a"(=9"(Q,¢).
But both formulae are not well formed, because
a"(“—2)"(Q, c) has to be a formula and a term at once.
Even worse 1n general a uniform (quasi-homomorphic)
translation is not possible, because Q(c) must be trans-
lated in the first case to a term and in the second to
a formula, what 1s not allowed in first order logic. I
think that this example is also a counterexample for the
correctness of the translation given by BENTHEM and
DokETs [1983] for a language without function symbols.
A possible translation of the unrestricted typed higher
order logic has also to provide a translation of formulae

of the kind P(Q(c)) A Q(c). This is possible by having

as functional symbols only the a”"”"; all other symbols
are object variables or object constants. Especially the
junctor “A” has also to be translated to a constant.

5.3 Theorem: © is weakly and strongly sound. (For a
proof see [Kerber, 1990].)

5.4 Theorem: O is weakly complete.
Proof: Let I' be a formula set in £%*~!(S). Let M be

a weak model of ©(T'). Then M is a model of ©(y) for
every formula ¢ in I'. Let M be ({D*},,J) and £ be

an arbitrary assignment. Then we have V'fM(O(gp)) =T.

We want to construct a model M of ¢, so that for all
assignments £ we have V?"(go) = T. Therefore we de-

fine D, := D" and D, := {T,F}. For all other types
rwith 7 = (np x .-+ x 1, — o) we have to define
D, C F¥(D,,,...,D,_;D,). We do it by inductively
defining injective functions §, from p"(""“"""“""’)"
to F(Dy,,...,Dy_;D,) and setting D, := h,(D"7").
Hence hj, 18 a bijective function from D" to D, .*

We define §; inductively:

g, : D" — D, is the identity mapping. (This function
18 obviously bijective.)

Let i, and }, be defined for P""", ..., P""=" and
D"?". We are going to define a function f, with 7 =
(nx:- X1, —0),0#o0,for D"™ Forallz e D"™"
br(z) is defined as the function b,(z)(£1,...,Em) =
2 (VM (") (2, b7 (&1), . - . b7 (&m))) for all £, € Dy,

ery Zm €Dy ..

The following diagram may help to see the involved map-
pings at a glance:

véM(all.r") :D'.T" x D"Tl "x o XD".’.m" D"o"

!lur Iu:,‘ Tu:,: ln.
ﬁr ‘_"r(f)fl IS f)r,. ; ’DO)

By the corresponding extensionality axiom in EXT 1t

can be shown that fj, is bijective (see [Kerber, 1990}).

For ¢ = o and for order of 7 is equal to n we
define h'r(P)(ila---,im) = P(h;,l(jl),n-sh;,:(jm))a

*In order to get strong completeness it would be necessary
to achieve bijectivity from D" to F(D,,,..., Dr.; D). For
n > 1 this is impossible because of Godel’s incompleteness
theorem.

and for order of 7 less than n, bh,(z)(&1,...,Zm) =
VM(a" ™)z, b7 (21), . .. b7 (Em)) for all 2, € Ds,y, ..,

Zm € D,_. The bijectivity is shown analogously with
help of the extensionality axioms.

h is the polymorphic mapping defined by all the indi-
vidual §,. Now we are going to show that if M is a

model of O(y), that is, for all assignments ¢ we have
Vg”(e(p)) = T, we have M is a model of p, that

is, for all assignments £ we have V?:'(go) = T with
M = ({j?,},,j). 7 is defined as hojoé’. The assign-

ments £ are defined as §j o £ 0 ©'. Because §j and ©' are
bijective, we get all assignments this way.
By induction on the construction of terms it can be

proved, that for all terms: Vg‘;' =fo vg“ o ©' and for all

formulae: Vf' = Vé’“ o @'. The proof can be found in

[Kerber, 1990]. Summarizing we have: if Vg“(é(e ="T
then Vg"' (©'(¢)) = T then V{' (p) =T. n

5.5 Remark: Because ©' 1s an injective quasi-

homomorphism, ©'~! provides a calculus for £*. If we
add rules that enforce that function symbols and pred-
icate symbols are equal if they agree 1in all arguments,

we can transform every sound and complete first order

calculus of £!_., by O to a sound and weakly complete

calculus for £”. We can execute the proof in £}, and
then lift 1t to a proof in £”.

5.6 Remark: One might wonder why we proposed a suf-
ficient criterion for the soundness of translations, when
we have a translation that is sound and complete and
hence could be used always. However in a concrete situ-
ation it can be better not to translate into the full sound
and complete formulae, because the search space may
become too big. It would not be a good idea to add
the extensionality axioms if they are not really needed.
In addition we can prevent instantiation if we translate
certain constants not by an apply or if we use different
apply functions or predicates although we could use the
same. On the other hand the completeness result guar-
antees that we can find a translation at all. Which one
we choose may be very important for the theorem prover
to find a proof. Whereas the extensionality axioms are
relatively harmless, for really higher order theorems it is
necessary to add so-called comprehension axioms (com-
pare [Andrews, 1986, p.156]) in order to approximate
weak semantics to strong semantics. For many theorems
these axioms are not necessary, for the others one must
choose the axioms very carefully, otherwise the first or-
der theorem prover will get a search space that is too
big. It is the advantage of higher order theorem prov-
Ing compared to our approach, that there one does not
need these axioms (for the prize of the undecidability of
unification). In the appendix we give an example of a
theorem, where a comprehension axiom is necessary.

6 Summary and Open Problems

In the sections above we introduced the basic machinery
for translating higher order formulae to first order logic.

Kerber 141

We introduced a sufficient criterion for the soundness of
such a translation, namely that it has to be an injective
gquasi-homomorphism. Then we gave a complete trans-
lation for the restricted higher order language.

In the full version of the paper [Kerber, 1990] we gen-
eralized the results to logics with equality. An interest-
ing and useful generalization would be to a higher order
sorted logic. Then the first order logic should have a sort
structure at least as powerful as that of the higher order
source logic. The results should be transferable although
the formal treatment can become strenuous.

Acknowledgement

| like to thank AXEL PRACKLEIN for many discussions
and thorough reading of a draft and JORG SIEKMANN
for his advice that resulted in numerous improvements.

References

[Andrews et ai, 1990] Peter B. Andrews, Sunil Issar,
Dan Nesmith, and Frank Pfenning. The TPS theo-
rem proving system. In M.E. Stickel, editor, Proc. of
the 10th CADE, pages 641-642, Kaiserslautern, Ger-
many, July 1990. Springer Verlag, Berlin, Germany.
LNAI 449.

[Andrews, 1986] Peter B. Andrews. An Introduction
to Mathematical Logic and Type Theory: To Truth

through Proof. Academic Press, Orlando, Florida,
USA, 1986.

[Benthem and Doets, 1983] Johan van Benthem and
Kees Doets. Higher Order Logic, volume |. Elements
of Classical Logic of Handbook of Philosophical Logic,
D. Gabbay, F. Guenthner, Edts., chapter 1.4, pages
275-329. D.Reidel Publishing Company, Dodrecht,
Netherlands, 1983.

[Henkin, 1950] Leon Henkin.
ory of types.
1950.

[Kerber, 1990] Manfred Kerber. How to prove higher
order theorems in first order logic. SEK1 Report SR-
90-19, Fachbereich Informatik, Universitat Kaiserslau-
tern, Kaiserslautern, Germany, 1990.

[IMKRP, 1984] Karl Mark G Raph. The Markgraf Karl
Refutation Procedure. Technical Report Memo-SEKI-
MK-84-01, Fachbereich Informatik, Universitat Kai-
serslautern, Kaiserslautern, Germany, January 1984.

[Mostowski, 1949] Andrzej Mostowski. An undecidable

arithmetical statement. Fundamenta Mathematicae,
36:143-164, 1949.

[Ohlbach, 1989] Hans Jiirgen Ohlbach. Context logic.
SEKI| Report SR-89-08, Fachbereich Informatik, Uni-

versitat Kaiserslautern, Kaiserslautern, Germany,
1989.

Completeness in the the-
Journal of Symbolic Logic, 15:81-91,

Appendix

We present an MKRP-proof of CANTOR'S theorem that
the power set of a set has greater cardinality than the set

itself. We use the formulation of [Andrews, 1986, p.184].
A comprehension axiom is necessary. We write t as |, o

as 0, —asT,a"**-*))" as A[IT[ITO]], and so on.

142 Automated Reasoning

Formulae given to the editor
Axioms:
« SORT DECLARATIONS @
SORT I,ITO,ITLITO]:ANY
¢« TERM DECLARATICHS =
TYPE A[ITO](ITO I)
TYPE A[IT{IT0]] C(XTLITO] I):ITO
TYPE SUBSET(ITC ITO)
¢« DEFINITION SUBSET =»
ALL A,B:ITD SUBSET(A B) EQV
(ALL X:T A[ITOJ(a X) INPL A[XTO)(B X))

» COMPREHENSION AXIONM =
ALL S:ITO ALL G:ITLITO) EX P:ITO

(ALL X:I A[ITOI(P X) EQV

(A[IT0](S X) AEND (BOT A[ITO]CALXIT[ITO]]1(G X) X))))

Theorems:

ALL S:ITO (NOT EX G:IT{ITO] ALL F:ITO

SUBSET (F 8) INPL (EX J:I A[ITO])(S J) AND
A[TITIITO0]](G J) = F))

Refutation:
A1: All x:Any + =(x x)
A2: A11 x:T y:It{ito] z:Ito - A[ITO) (L 1(z y) x)
A[IT0) (2 x)
A(ITO)(£_1(x2 ¥y) x)
A[ITO) (afit{ito]](y x) x)
A4: A1l x:I y:It[ito] z:Ito + A[ITO](L 1(z y) x)

- A[ITO)} (= x) + A[ITO)}(a[lit(itol](y x) Xx)
T6: A1l x:Ito + A[ITO)(x £_2(x)) + A[ITO0)(c_1 £_3(x))
T6: A1l x:Ito + A[ITO)(x £_2(x))
=(alit{ito]](c_.2 £_3(x)) x)
A[IT0])(c_1 £_2(x)) <+ A[XITO)(c_1 £_3(x))
A[ITO)(c_1 £_2(x))
=(alit[itol](c.2 £_3(x)) x)

A3: A1l x:I y:It[ito] z:1to

+ 1 1 4+ 1

T7: A1l x:1to
T8: A1l x:Ito

+ 1 1 4

T5,1 & A2,1 -> R8: All x:It{ito] y:Ito
+ ALITO) (c_1 £.3(2_1(y x)))
+ A{IT0)(y £_2(2_1(y x)))
411 x:Itfito]
+ A[ITO]) (c1 £_3(2_1(c_1 x)))
+ A[ITO)(c_1 £_3(2_1(c_1 x)))
411 x:It[ito]
+ A[IT0])(c_1 £_3(f_1(c_1 X)))
All x:Xt[ito] y:Ito
+ s(afit(ito]](c_2 £_3(2_1(y x)))
f_1(y x))
+ A[ITO)(y £_2(£_1(y x)))
A1l x:It[ito]
+ n(afit{ito]](c_2 £.3(2_1(c_1 x)))
£_1(c_1 x))
+ =(afit[ito]](c_2 £_3(L_1(c_1 x)))
£_1(c.1 x))
All x:Xt[ito]
+ w(afit(ito]](c_2 £.3(f_1(c_1 x)))
f£_1(c_1 x))
Di4,1 & 43,2 -> P156: All x:Ito y:It[ito]
- ALITO) (£ 1(c1 y) £.3(2_ 1(c_1 ¥)))
- A[ITO)(L_1(x c_2) £_3(2_1(c_1 y)))
P15 (factor) -> F18: - A[ITO)(f_1(c_1 c_2)
£.3(£.1(c_1 c_2)))
A4,1 & F16,1 => R17: - A[ITO)Cc_1 £_3(£_1(c_1 ¢c_2)))
+ A[ITO] (alit[ito]])(c. 2
£.3(£_1(c_1 c_2)))
£.3(r_1(c_1 ¢c_2)))
-> RW18:~ A[ITO0)}(c_ 1 £.3(£_1(c_1 c_D)))
+ A[ITO}(£_1(c_1 c_2)
£.3(£_1(c_1 c_2)))
R¥18,2 & P15,2-> R19:~ A[ITO](c_1 £_3(f_1(c_1 c_.2)))
- Af1IT0)(£_1(c_1 c_2)
£.3(2_1(c._1 c_2)))
R19,2 & RW18,2-> R20:~ A[IT0)(c_1 £_3(L_1(c_1 c_2)))
- A{ITO)(c_1 £2_3(f_1(c_1 c_2)))
R20 1=2 -> D21: - A[XIT0)(c.1 £.3(£_1(c_1 ¢c_2)))
D21,1 & D10,1~> R22: []

R8,2 & T7,1 -> R9:

RO 1=2 -> D10:

T6,1 & A2,1 -> R12:

R12,2 & T8,1 -> R13:

R13 1=3 -> Dia4:

R17,2 & D14

