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A b s t r a c t 

In this paper we are interested in using a first 
order theorem prover to prove theorems that 
are formulated in some higher order logic. To 
this end we present translations of higher or
der logics into first order logic w i th flat sorts 
and equality and give a sufficient criterion for 
the soundness of these translations. In addi
t ion translations are introduced that are sound 
and complete w i t h respect to L. Henkin's gen
eral model semantics. Our higher order logics 
are based on a restricted type structure in the 
sense of A. Church, they have typed function 
symbols and predicate symbols, but no sorts. 

K e y w o r d s : higher order logic, second order logic, trans
la t ion, morphism, soundness, completeness 

Die Grenzen meiner Spache bedeuten 
die Grenzen meiner Welt. 
Ludwig Wittgenstein, 
True tutus logico-philosophic us 5.6 

1 I n t r o d u c t i o n 
First order logic is a powerful tool for expressing and 
proving mathematical facts. Nevertheless higher order 
expressions are often better suited for the representation 
of mathematics and in fact almost al l mathematical text 
books rely on some higher order fragments for expres-
siveness. In order to prove such theorems mechanically 
there are two options: either to have a theorem prover 
for higher order logic such as TPS [Andrews et al., 1990] 
or to translate the higher order constructs into corre
sponding first order expressions and to use a first order 
theorem prover. As impor tant as the first development 
is - which may be the way of the future - we follow 
the second approach because strong first order theorem 
provers are available today. 

T h e L i m i t a t i o n s o f F i r s t O r d e r L o g i c 

First order logic and the set theories of Z E R M E L O -
F R A E N K E L or V O N N E U M A N N - G O D E L - B E R N A Y S have 
been developed for the formal izat ion of mathematical 
concepts and for reasoning about them. Other ap
proaches are RUSSEL 'S ramified theory of types and 
C H U R C H ' S simple theory of types which formalize higher 

W h y a n d H o w T r a n s l a t i o n 

Representing knowledge in an adequate way - adequate 
wi th respect to the naturalness of the representation of 
the object - is one thing, the other thing is to have an 
adequate and strong form of reasoning. If one uses higher 
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For general considerations concerning the expressive-
ness of higher order logic, it is obvious that if we find 
a translat ion f rom higher order to first order logic, it 
cannot be complete in the general sense, especially since 
the theorem of L O W E N H E I M - S K O L E M must hold and be
cause of G O D E L ' S incompleteness result. In principle 
such a translat ion must be equivalent to some set the
oretical formulat ion as stated in M O S T O W S K I ' S isomor
phism theorem [Mostowski, 1949]. 

R e l a t e d W o r k 

J . VAN B E N T H E M and K. D O E T S [1983] give a transla
t ion of a restricted higher order logic wi thout function 
symbols and wi thout higher order constants and identi
ties to a standard first order logic. They introduce the 
general idea of a t ranslat ion, and its soundness and com
pleteness. The translat ion to standard first order logic 
leads to more complicated formulae than the translat ion 
to a sorted version, because it is necessary to relativize 
quanti f icat ion w i t h respect to the corresponding type. 

Of great influence for the present paper are the trans-
lat ion techniques of H . J . O H L B A C H [1989], who trans-
lates modal logics and other non-classical logics to a 
context logic, where contexts are restricted higher order 
expressions. These contexts are translated to an order 
sorted first order logic. 

Here a translat ion of (almost) fu l l higher order logic 
w i th funct ion symbols to a many sorted first order logic 
w i th equality is given. We do not need a general order 
sorted logic as long as we do not use a sorted higher 
order source logic. 

2 H igher Order Logic 
In this section we define formal ly a higher order logic 
based on C H U R C H ' S simple theory of types, much of the 
notat ion is taken f rom [Andrews, 1986]. However, we 
shall wr i te the types in a different way. For example if P 
is a binary predicate symbol on individuals, we wri te its 
type as (i x i — 0) instead of (ou) for better readabil ity. 
Apologies to all who are famil iar w i th C H U R C H ' S original 
notat ion. 
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5.6 R e m a r k : One might wonder why we proposed a suf
ficient criterion for the soundness of translations, when 
we have a translat ion that is sound and complete and 
hence could be used always. However in a concrete situ
ation it can be better not to translate into the fu l l sound 
and complete formulae, because the search space may 
become too big. It would not be a good idea to add 
the extensionality axioms if they are not really needed. 
In addit ion we can prevent instant iat ion if we translate 
certain constants not by an apply or if we use different 
apply functions or predicates although we could use the 
same. On the other hand the completeness result guar
antees that we can f ind a translation at al l . Which one 
we choose may be very impor tant for the theorem prover 
to find a proof. Whereas the extensionality axioms are 
relatively harmless, for really higher order theorems it is 
necessary to add so-called comprehension axioms (com
pare [Andrews, 1986, p. 156]) in order to approximate 
weak semantics to strong semantics. For many theorems 
these axioms are not necessary, for the others one must 
choose the axioms very carefully, otherwise the first or
der theorem prover w i l l get a search space that is too 
big. It is the advantage of higher order theorem prov
ing compared to our approach, that there one does not 
need these axioms (for the prize of the undecidabil ity of 
unif ication). In the appendix we give an example of a 
theorem, where a comprehension axiom is necessary. 

6 Summary and Open Problems 
In the sections above we introduced the basic machinery 
for translat ing higher order formulae to first order logic. 
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We introduced a sufficient criterion for the soundness of 
such a translation, namely that it has to be an injective 
quasi-homomorphism. Then we gave a complete trans
lation for the restricted higher order language. 

In the ful l version of the paper [Kerber, 1990] we gen
eralized the results to logics wi th equality. An interest
ing and useful generalization would be to a higher order 
sorted logic. Then the first order logic should have a sort 
structure at least as powerful as that of the higher order 
source logic. The results should be transferable although 
the formal treatment can become strenuous. 
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Appendix 
We present an MKRP-proof of C A N T O R ' S theorem that 
the power set of a set has greater cardinality than the set 
itself. We use the formulation of [Andrews, 1986, p.184]. 
A comprehension axiom is necessary. We write t as I, o 
as 0, — as T, a " ^ 4 - * ) ) " as A [ I T [ I T 0 ] ] , and so on. 
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