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A b s t r a c t 

Consider an infinite binary search tree in which 
the branches have independent random costs. 
Suppose that we must f ind an opt imal (cheap­
est) or nearly opt imal path f rom the root to 
a node at depth n. Karp and Pearl [1983] 
show that a bounded-lookahead backtracking 
algor i thm A2 usually finds a nearly opt imal 
path in linear expected t ime (when the costs 
take only the values 0 or 1). From this suc­
cessful performance one might conclude that 
similar heuristics should be of more general 
use. But we find here equal success for a sim­
pler non-backtracking bounded-lookahead algo­
r i t hm , so the search model cannot support this 
conclusion. If, however, the search tree is gen­
erated by a branching process so that there 
is a possibil ity of nodes having no sons (or 
branches having prohibit ive costs), then the 
non-backtracking algori thm is hopeless while 
the backtracking algor i thm st i l l performs very 
well. These results suggest the general guide­
line that backtracking becomes attractive when 
there is the possibility of "dead-ends" or pro­
hibi t ively costly outcomes. 

1 I N T R O D U C T I O N 

Many algorithms considered in operations research, com-
puter science and artif icial intelligence may be repre-
sented as searches or part ial searches through rooted 
trees. Such algorithms typical ly involve backtracking 
but t ry to minimize the t ime spent doing so (e.g. [Bit-
ner and Reingold, 1975; Brown and P. W. Purdom, 1981; 
Brown and P. W. Purdom, 1982; Dechter, 1990; Haralick 
and El l io t t , 1980; Karp , 1976; Knu th , 1975; Nudel, 1983; 
P. W. Purdom, 1983; Stone and Stone, 1986]). Indeed 
for some problems it may be best to avoid backtracking 
[de Kleer, 1984]. 

The paper extends work of [Karp and Pearl, 1983], 
and gives a probabil istic analysis of backtracking and 
non-backtracking search algorithms in certain trees wi th 
random branch costs. We thus cast some light on the 
question of when to backtrack: it seems that backtrack­
ing is valuable just for problems w i th "dead-ends" (or 

outcomes wi th prohibit ively high costs). 
Let us review briefly the model and results of Karp 

and Pearl [1983]. They consider an inf inite search tree 
in which each node has exactly two sons. The branches 
have independent (0, l)-valued random costs X, wi th 
p = P(X = 0).1 The problem is to find an opt imal 
(cheapest) or nearly opt imal path f rom the root to a 
node at depth n. 

The problem changes nature depending on whether 
the expected number 2p of zero-cost branches leaving 
a node is > 1, = 1 or < 1. When 2p > 1 a sim­
ple uniform cost breadth-first search algori thm Al finds 
an opt imal solution in expected t ime O(n); and when 
2p = 1 this algor i thm takes expected t ime 0(n2). When 
2p < 1 any algori thm that is guaranteed to find a solu­
t ion wi th in a constant factor of opt imal must take expo­
nential expected t ime. However, in this case a "bounded-
lookahead plus part ia l backtrack" algor i thm A2 usually 
finds a solution close to opt imal in linear expected t ime. 
This successful performance of the backtracking algo­
r i t hm A2 for the diff icult case when 2p < 1 seems to 
suggest that similar backtrack-based heuristics should 
be of more general use for attacking NP-hard problems. 

This paper shows that a simple non-backtracking 
bounded-lookahead algori thm .43 performs as success­
ful ly as the backtracking algor i thm A2, on the basis of 
this search model. Similar comments hold if we allow 
more general finite random costs on the branches. 

However, there is a quali tat ive difference if we allow 
nodes to have no sons (or allow branches to have infinite 
costs) so that there are "dead-ends". We extend Karp 
and Pearl's work by considering search in random trees 
generated by a branching process, where the branches 
have independent random finite costs X. (This model 
includes the case of infinite costs—nodes would just pro­
duce fewer sons). In this extended model, let m be the 
mean number of sons of a node, let po be the probabil i ty 
that a node has no sons, and as before let p = P(X — 0). 

Our results concerning algorithms Al and A2 are nat­
ural extensions of Karp and Pearl's results. Thus the 
uniform cost algor i thm Al finds an opt imal solution in 
linear expected t ime if mp > 1 and in quadratic expected 
t ime if mp = 1. If mp < 1 then any algor i thm w i th a 
constant performance guarantee must take exponential 

1 We have swapped p and 1 — p from the original paper 
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expected t ime, but the backtracking algor i thm A2 finds 
a nearly opt imal solution in linear expected t ime. 

However, the performance of the non-backtracking al­
gor i thm A3 depends cri t ical ly on the parameter po. Sup-
pose that mp < 1, so that opt imal search is hard. If 
Po = 0, so that as in the Karp and Pearl model there are 
no dead-ends, then a lgor i thm A3 usually finds a nearly 
opt imal solution in linear expected t ime; that is, i t per­
forms as successfully as the backtracking algori thm A2. 
However, if po > 0 then algor i thm A2 usually fails to find 
a solut ion. Thus our model suggests that backtracking 
becomes attractive when there is the possibility of dead-
ends. 

In the next section we give details concerning the 
search model and the algori thms Al,A2 and AZ, and 
then in section 3 we present our results. Section 4 briefly 
discusses the effect of noise on the algorithmic perfor­
mance. In section 5 we make a few comments on proofs. 

2 MODEL A N D ALGORITHMS 
We suppose that the search tree is the family tree of a 
branching process. For an introduct ion to the theory of 
such processes see for example [Harris, 1963; Athreya 
and Ney, 1972; Karp and Pearl, 1983]. Thus the search 
tree has a root node, at depth 0. Each node at depth n 
independently produces and is joined to a random num­
ber Z of sons at depth (n+ 1). We shall assume that the 
mean number m of sons produced satisfies 1 < m < 
Thus the expected number of nodes at depth n is mn 

and grows exponentially w i th n. 
The Karp and Pearl model is the special case when 

each node always has exactly two sons. On the other 
hand our search model here is a special case of the more 
complicated model considered in [McDiarmid, 1990], 
namely an age-dependent branching process of Crump-
Mode type [Crump and Mode, 1968]. For such a model 
the implications concerning backtracking are just the 
same. 

Let q denote the ext inct ion probabi l i ty for the branch­
ing process, that is the probabi l i ty that the search tree 
is f ini te. Since m > 1 it follows that q < 1. Let p0 be 
the probabi l i ty a node has no sons. Clearly q > 0 if and 
only if po > 0, and these conditions correspond to the 
existence of "dead-ends" in the search tree. 

We suppose that the branches have independent non-
negative random costs X w i th finite mean. A simple 
translation allows us to assume wi thout loss of generality 
that small costs can occur; that is, for any > 0 we have 
P{X < > 0. The dist inct ion between zero and non­
zero costs turns out to be impor tant . We let p = P(X = 
0) 0. 

The cost of a path is the sum of i ts branch costs. We 
want to find an opt imal (cheapest) or nearly opt imal 
path f rom the root to a node at depth n, for large n. Let 
C* denote the random opt imal cost of such a path, where 
C* = if there is no such path . Thus P(C„ q 
as n The interesting case is when the search 
tree is inf ini te, and we shall usually condition on this 
happening, so that almost surely Cn is finite. 

We shall discuss the performance of three algorithms, 
A1,A2 and A 3 , the first two of which are taken from 

[Karp and Pearl, 1983]. A lgor i thm A\ is a uniform cost 
breadth-first search algori thm and wi l l be analyzed for 
the cases mp > 1 and mp = 1, when there are many 
zero-cost branches and search is easy. A lgor i thm A2 is 
a hybrid of local and global depth-first search strategies 
and wi l l be analyzed for mp < 1. A lgor i thm A3 consists 
of repeated local opt imal searches, and wi l l be analyzed 
also for mp < 1. Note that A\ is an exact a lgor i thm, 
whereas A2 and A3 are approximation algorithms. 

For each algori thm Aj, we let the random cost of the 
solution found be C* J ' ( = if no solution is found), and 
the random time taken be TAJ. We measure time by the 
number of nodes of the search tree encountered. 

The three algorithms are as follows: 

A l g o r i t h m Al: At each step, expand the leftmost 
node among those frontiers nodes of min imum cost. The 
algor i thm halts when it tries to expand a node at depth 
n. Tha t node then corresponds to an opt imal solut ion. 

Figure 1: Operation of algori thm A2: The triangles rep­
resent local depth-first searches for L)-sons. 

A l g o r i t h m A2: A lgor i thm A2 has three parameters: 
d, L, and a. An ( L)-regular path is a path which con­
sist of segments each of length L and cost at most aL 
(except that the last segment may have length < L ) . A2 
conducts a depth-first search to find an L)-regular 
path from a depth d node to a depth n noae. In other 
words, A2 is a depth-first strategy which stops at regular 
intervals of L levels to appraise its progress. If the cost 
increase from the last appraisal is at most a L , the search 
continues; if that cost increase is above a L , the current 
node is irrevocably pruned, the program backtracks to 
a higher level, and the search resumes. If it succeeds in 
reaching depth n,A2 returns the corresponding path as 
a solution: if it fails, the search is repeated from another 
depth d node. If all the nodes at depth d fail to root 
an (a,L)-regular path to a depth n node, A2 terminates 
wi th failure. 

A l g o r i t h m A3: The simple bounded-lookahead or 
"horizon" heuristic is a staged-search algorithm which 
avoids backtracking. It has one parameter L. Start ing 
at the root it finds an optimal path to a node at depth 
L, makes that node the new start ing point and repeats. 
If L is a constant clearly A3 takes linear expected t ime. 
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6 CONCLUSIONS 
This paper has studied the performance of both back­
t rack ing and non-backtracking tree search algor i thms in 
f inding a least-cost root- leaf pa th in random trees w i t h 
random non-negative costs. The investigations extend 
the work of Ka rp and Pearl in several ways, but in par-
t icular through the in t roduct ion of dead-ends. Th is anal-
ysis suggests the fo l lowing conclusions: 

1. When the possibi l i ty of "catastrophe" (dead ends or 
proh ib i t i ve costs) can be ignored then backtracking 
methods do not seem at t rac t ive, and a far simpler 
approach like tha t of the "horizon heurist ic" .43 is 
preferable. 

2. When catastrophe looms then a backtracking 
method like Ka rp and Pearl's bounded-lookahead 
plus par t ia l backtrack a lgor i thm A2 does seem an 
at t ract ive op t ion . 

Th is conclusion lends some mathemat ica l support to 
certain empir ical studies which show tha t , under given 
condit ions, backtracking a lgor i thms do not per form as 
well as non-backtracking a lgor i thms. Examples are the 
empir ica l analysis of [Dechter and Me i r i , 1989; Haral-
ick and E l l i o t t , 1980] in binary constraint satisfaction 
problems, and the analysis of [de Kleer, 1984] in reason 
maintenance systems. 
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