AN EXPECTED-COST ANALYSIS OF BACKTRACKING AND
NON-BACKTRACKING ALGORITHMS

C.J.H. McDiarmid
Department of Statistics
University of Oxford
Oxford England 0X1 3TG
email: MCD@vax.oxford.ac.uk

Abstract

Consider an infinite binary search tree in which
the branches have independent random costs.
Suppose that we must find an optimal (cheap-
est) or nearly optimal path from the root to
a node at depth n. Karp and Pearl [1983]
show that a bounded-lookahead backtracking
algorithm A2 usually finds a nearly optimal
path in linear expected time (when the costs
take only the values 0 or 1). From this suc-
cessful performance one might conclude that
similar heuristics should be of more general
use. But we find here equal success for a sim-
pler non-backtracking bounded-lookahead algo-
rithm, so the search model cannot support this
conclusion. If, however, the search tree is gen-
erated by a branching process so that there
IS a possibility of nodes having no sons (or
branches having prohibitive costs), then the
non-backtracking algorithm is hopeless while
the backtracking algorithm still performs very
well. These results suggest the general guide-
line that backtracking becomes attractive when
there is the possibility of "dead-ends" or pro-
hibitively costly outcomes.

1 INTRODUCTION

Many algorithms considered in operations research, com-
puter science and artificial intelligence may be repre-
sented as searches or partial searches through rooted
trees. Such algorithms typically involve backtracking
but try to minimize the time spent doing so (e.g. [Bit-
ner and Reingold, 1975; Brown and P. W. Purdom, 1981;
Brown and P. W. Purdom, 1982; Dechter, 1990; Haralick
and Elliott, 1980; Karp, 1976; Knuth, 1975; Nudel, 1983;
P. W. Purdom, 1983; Stone and Stone, 1986]). Indeed
for some problems it may be best to avoid backtracking
[de Kleer, 1984].

The paper extends work of [Karp and Pearl, 1983],
and gives a probabilistic analysis of backtracking and
non-backtracking search algorithms in certain trees with
random branch costs. We thus cast some light on the
question of when to backtrack: it seems that backtrack-
iIng is valuable just for problems with "dead-ends" (or

172 Automated Reasoning

G.M.A. Provan

Department of Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104-6389 USA
email: provan@cis.upenn.edu

outcomes with prohibitively high costs).

Let us review briefly the model and results of Karp
and Pearl [1983]. They consider an infinite search tree
In which each node has exactly two sons. The branches
have independent (0, |)-valued random costs X, with
p = PIX = 0)." The problem is to find an optimal
(cheapest) or nearly optimal path from the root to a
node at depth n.

The problem changes nature depending on whether
the expected number 2p of zero-cost branches leaving
a node is > 1,= 1 or < 1. When 2p > 1 a sim-
ple uniform cost breadth-first search algorithm Al finds
an optimal solution in expected time O(n); and when
2p = 1 this algorithm takes expected time 0(n°). When
2p < 1 any algorithm that is guaranteed to find a solu-
tion within a constant factor of optimal must take expo-
nential expected time. However, in this case a "bounded-
lookahead plus partial backtrack"” algorithm A2 usually
finds a solution close to optimal in linear expected time.
This successful performance of the backtracking algo-
rithm A2 for the difficult case when 2p < 1 seems to
suggest that similar backtrack-based heuristics should
be of more general use for attacking NP-hard problems.

This paper shows that a simple non-backtracking
bounded-lookahead algorithm .43 performs as success-
fully as the backtracking algorithm A2, on the basis of
this search model. Similar comments hold if we allow
more general finite random costs on the branches.

However, there is a qualitative difference if we allow
nodes to have no sons (or allow branches to have infinite
costs) so that there are "dead-ends". We extend Karp
and Pearl's work by considering search in random trees
generated by a branching process, where the branches
have independent random finite costs X. (This model
Includes the case of infinite costs—nodes would just pro-
duce fewer sons). In this extended model, let m be the
mean number of sons of a node, let po be the probability
that a node has no sons, and as before let p = P(X — 0).

Our results concerning algorithms Al and A2 are nat-
ural extensions of Karp and Pearl's results. Thus the
uniform cost algorithm A/ finds an optimal solution in
linear expected time if mp > 1 and in quadratic expected
time it mp = 1. If mp < 1 then any algorithm with a
constant performance guarantee must take exponential

"We have swapped p and 1 — p from the original paper

mailto:provan@cis.upenn.edu

expected time, but the backtracking algorithm A2 finds
a nearly optimal solution in linear expected time.

However, the performance of the non-backtracking al-
gorithm A3 depends critically on the parameter po. Sup-
pose that mp < 1, so that optimal search is hard. If
Po = 0, so that as in the Karp and Pearl model there are
no dead-ends, then algorithm A3 usually finds a nearly
optimal solution in linear expected time; that is, it per-
forms as successfully as the backtracking algorithm A2
However, ifpo > 0 then algorithm A2 usually fails to find
a solution. Thus our model suggests that backtracking
becomes attractive when there is the possibility of dead-
ends.

In the next section we give details concerning the
search model and the algorithms A/LA2 and AZ, and
then in section 3 we present our results. Section 4 briefly
discusses the effect of noise on the algorithmic perfor-
mance. In section 5 we make a few comments on proofs.

2 MODEL AND ALGORITHMS

We suppose that the search tree is the family tree of a
branching process. For an introduction to the theory of
such processes see for example [Harris, 1963; Athreya
and Ney, 1972; Karp and Pearl, 1983]. Thus the search
tree has a root node, at depth 0. Each node at depth n
Independently produces and is joined to a random num-
ber Z of sons at depth (n+ 1). We shall assume that the
mean number m of sons produced satisfies 1 < m < 0.
Thus the expected number of nodes at depth n is m"
and grows exponentially with n.

The Karp and Pearl model is the special case when
each node always has exactly two sons. On the other
hand our search model here is a special case of the more
complicated model considered in [McDiarmid, 1990],
namely an age-dependent branching process of Crump-
Mode type [Crump and Mode, 1968]. For such a model
the implications concerning backtracking are just the
same.

Let g denote the extinction probability for the branch-
Ing process, that is the probability that the search tree
iIs finite. Since m > 1 it follows that g < 1. Let pg be
the probability a node has no sons. Clearly g > 0 if and
only if po > 0, and these conditions correspond to the
existence of "dead-ends" in the search tree.

We suppose that the branches have independent non-
negative random costs X with finite mean. A simple
translation allows us to assume without loss of generality
that small costs can occur; that is, for any é > 0 we have
P{X < 6) > 0. The distinction between zero and non-
zero costs turns out to be important. We let p = P(X =
0) 2 0.

The cost of a path is the sum of its branch costs. We
want to find an optimal (cheapest) or nearly optimal
path from the root to a node at depth n, for large n. Let
C* denote the random optimal cost of such a path, where
C* = oo if there is no such path. Thus P(C, = o0) — g
as n -+ 0o. Ihe interesting case is when the search
tree is infinite, and we shall usually condition on this
happening, so that almost surely C, is finite.

We shall discuss the performance of three algorithms,
A A and A3, the first two of which are taken from

[Karp and Pearl, 1983]. Algorithm A\ is a uniform cost
breadth-first search algorithm and will be analyzed for
the cases mp > 1 and mp = 1, when there are many
zero-cost branches and search is easy. Algorithm A2 is
a hybrid of local and global depth-first search strategies
and will be analyzed for mp < 1. Algorithm A3 consists
of repeated local optimal searches, and will be analyzed
also for mp < 1. Note that A\ is an exact algorithm,
whereas A2 and A3 are approximation algorithms.

For each algorithm Aj, we let the random cost of the
solution found be C*J'(= oo if no solution is found), and
the random time taken be T,,. We measure time by the
number of nodes of the search tree encountered.

The three algorithms are as follows:

Algorithm Al At each step, expand the leftmost
node among those frontiers nodes of minimum cost. The
algorithm halts when it tries to expand a node at depth
n. That node then corresponds to an optimal solution.

Figure 1: Operation of algorithm A2: The triangles rep-
resent local depth-first searches for (a, L)-sons.

Algorithm AZ2: Algorithm A2 has three parameters:
d, L, and a. An (a, L)-reqgular path is a path which con-
sist of segments each of length L and cost at most alL
(except that the last segment may have length < L). A2
conducts a depth-first search to find an (a, L)-regular
path from a depth d node to a depth n noae. In other
words, A2 is a depth-first strategy which stops at regular
intervals of L levels to appraise its progress. If the cost
increase from the last appraisal is at most aL, the search
continues; if that cost increase is above alL, the current
node is irrevocably pruned, the program backtracks to
a higher level, and the search resumes. If it succeeds in
reaching depth n,A2 returns the corresponding path as
a solution: ifit fails, the search is repeated from another
depth d node. If all the nodes at depth d fail to root
an (a,L)-regular path to a depth n node, A2 terminates
with failure.

Algorithm A3: The simple bounded-lookahead or
"horizon" heuristic is a staged-search algorithm which
avoids backtracking. It has one parameter L. Starting
at the root it finds an optimal path to a node at depth
L, makes that node the new starting point and repeats.
If L is a constant clearly A3 takes linear expected time.

McDiarmid and Provan 173

Figure 2: Operation of algorithm A3: The triangles rep-
resent local complete-enumeration searches for a least-
cost path.

3 RESULTS

We summarize our results in six theorems. Theorem 1
concerns the region mp > 1, theorem 2 concerns mp = 1
and theorems 3 — 6 concern mp < 1. When mp > 1,
there are many zero costs, and the main distinction is
between zero and non-zero costs.

Theorem 1 If mp > 1 then:

(a) conditional on non-extinction, the random variable
lim
(?‘ —_— =00 (:;

1s finite almost surely, and indeed E[C~] is finite; and
(b) the time TA! taken by algorithm Al satisfies

E[TAY] = O(n).

Thus, if the search tree is infinite, the optimal cost C),
remains bounded as n — oo, and algorithm A1 finds an
optimal path in linear expected time.

By restricting ourselves to 0,1 costs and uniform r-ary
trees (so that each node has r sons) we may obtain a
tighter result than in part (a) above, namely

r(k+l)

P(C: > k) < [M] (1)

r-—1

The case r = 2 is a shight improvement on theorem 3.1
of Karp and Pearl [1983], and our proof (given below) is
simpler and easier to generalise.

Next we consider the critical case mp = 1. It is con-
venlent to make some simplifying assumptions on the
typical random family size Z and cost X'. We assume
roughly that Z is not too big, and that the cost 0, which

occurs with probability p, is “isolated”, 1.e. for some
e >0, P(X(C):O.

Theorem 2 Let mp = 1:
(a) If E{Z2%%] < oo for some 6§ > 0,

PO< X «1)
and P(X =1) >

o O

174 Automated Reasoning

then, conditional on non-extinction

——g-"-—- — 1 almost surely as n — 00.
1052 logz n

(b) If E[Z?%] < oo then the time T/! taken by algo-
rithm A1l satisfies

E[TA' = O(n?).

Part (a) shows that if the optimal cost C; 1s finite then
1t 1s usually close to log, log, n. This result is a special
case of theorem 2 of [Bramson, 1978]: see also theorem
3.2 of [Karp and Pearl, 1983]. Part (b) states that the
algorithm A1l finds an optimal solution in quadratic ex-
pected time.

Our main interest is in the case mp < 1, when we
cannot quickly find optimal solutions and thus it 18 of
interest to analyze heuristic approximation methods.

Theorem 3 If mp < 1, then any algorithm that is
guaranteed to find a solution within a constant factor of

optimal must take exponential average time.

Theorem 4 Let mp < 1. For a > 0 let

pla) = :;_{) E{ exp t(a — X)].
Then there 1s a unique solution a* to the equation
p(a) = 1/m; a® > 0 and conditional on non-extinction,
Cn

— —a" as n— oo
n

almost surely and in mean.

Thus if the optimal cost C;, 18 finite then it 1s usually
close to a*n. For discussion concerning this result see

[Hammersley, 1974; Kingman, 1975].

Theorem 5 Let mp < 1, and consider the random
cost C4? yielded by the “bounded lookahead plus par-
tial backtrack” algorithm A2. For any ¢ > 0 there are
parameters d, a, L such that algorithm A2 runs in linear
expected time, and almost surely

CA%2 < (1+¢€)C: for n sufficiently large.

Thus algorithm A2 usually finds a nearly optimal so-
Jution (whether dead-ends can occur or not). This seems
to be very successful performance, but in one sense it 18
not. For given any sensible parameters there will be a
positive probability of failing to produce a solution (even
when py = 0 so that there are no dead-ends), and thus
of course E[CA?] = co.

However, returning “failure” (as in Karp and Pearl’s
algorithm A2) rather than a path of greater than near-
optimal cost may possibly be too extreme. Failure of A2
to find a near-optimal solution can be easily avoided by
adding a suitable “second phase” if the present algorithm
fails. A possible second phase could be a depth-first
search for a root-leaf path (ignoring costs).

Theorem 6 Let mp < 1, and consider the random
cost CA3 yielded by the bounded lookahead but non-
backtracking algorithm A3:

(a) If po = O then for any € > 0 there is a (constant)
parameter L such that the algorithm A3 runs in linear
expected time; and almost surely

CA3 < (1 +€)C? for n sufficiently large,
and further
E[CA3] < (14 €)C; for n sufficiently large.

(b) If po > 0, and if the lookahead parameter L = o(n)
(as is only reasonable) then almost surely

CA® = oo for n sufficiently large.

Part (a) above shows that if no dead-ends can occur
then the simple non-backtracking heuristic A3 usually
finds a nearly optimal solution and does so quickly. Part
(b) show that A3 1s hopelessif dead-ends can occur. Fur.
ther, suppose that L = O(logn) so that each stage can
be performed in polynomial average time. Then even
if we consider a polynomial number of different start-
ing points as with algorithm A2, still almost surely each
search will fail if n is sufficiently large. This will follow
from the proof of theorem 6.

4 EFFECTS OF READING ERRORS

In this section we discuss briefly the interesting effect of
noise (1.e. reading errors) 1n the basic Karp and Pearl
model. Suppose that the algorithm Al may make oc-
casional independent random reading errors. Thus, for
the case of (0, 1)-costs, there 1s a probability ég > 0 that
a 0-cost 1s read as a 1, and a probability 6, > 0 that a
1-cost 1s read as a 0; and so the probability that a 0 is
read Is:

p=p(l—60)+(1-p)b.

It 1s easy to see that if ég and 6; are small then there
will be a correspondingly small change in -}; times the
expected solution value obtained by an error-prone al-
gorithm Al (compared with the value obtained by an
error-free algorithm Al).

However, near the critical value p = % there may be
a dramatic change in the expected running time. 1f p
is just greater than i, small reading errors could make

Ahr

p < %.2 Then although an error-free algorithm (A1) runs
in linear expected time, an error-prone version takes ex-
ponential expected time. Conversely, if p is f'ust less
than 2, small reading errors could make p > 5. Then
although an error-free algorithm Al takes exponential
expected time, an error-prone algorithm Al runs in lin-
ear expected time. Thus although the optimal value 1s
robust with respect to reading errors, the time taken by
algorithm A1l to compute the optimal cost 1s certainly
not robust when p is near 3.

2Recall that p is the probability that a random cost equals
0.

5 COMMENT ON PROOFS

This section presents the following two proofs: (1) in-
equality 1, which has appeared before only in {Provan,
1985]; and (2) theorem 6, a proof of the performance of
the simple bounded-lookahead algorithm A3—this the-
orem is not like anything from [Karp and Pearl, 1983],
and 1t 1s also quick and easy to prove. Theorems 1-6
can be deduced from the corresponding results in [McDa-
armid, 1990} by specialising to the model discussed here
and using standard truncation arguments. The proofs
of theorems 1—35 can follow roughly similar lines to the
proofs of the corresponding results in Karp and Pearl

[1983].

Proof of inequality 1: Consider a branching process in
which the number of sons of an individual has the bino-
mial distribution with parameters r and p. Let ¢ be the
extinction probability. Then

P(Cr>k)<q

since if C* > k then each of the r* subtrees rooted at
the nodes at depth k& must fail to have an infinite path
of zero-cost branches. We shall show that (for rp > 1)
we have

r(1 —p)
(r—1)°
and then inequality 1 will follow. Using standard branch-

Ing processes theory, q 1s the least positive root s of
f(s) = s, where the generating function f(s) = (1 —

r

¢g<zIT where ¢ =

p+ ps)”. Since f is convex 1t suffices to demonstrate
that |
f(z") < 7,
that 1s l—-p4+pr” < =z
But
z
r=1~-p+—,

-
and so this 1s equivalent to showing that

rpe""1) < 1.

To do this, introduce

gly) = (r=(r-Dyy"" for0<y<1
But g¢(1) = 1,
and ¢(y) = r(r—1)(1-y)y" 2 for 0 < y<1,
S0 gly) < 1 for 0 <y < 1.

Finally, put ¥y = x to obtain, as required,
1 > (r=(r—= D)"Y = rpz"~ YD
Proof Of Theorem 6

{a) We have already noted that for any constant looka-
head L the algorithm A3 runs in linear expected
time. By theorem 9,

-l--E[C;] —a*" >0 asn— oo.
n

Let ¢ > 0 and choose L so that

1 .
-[-E[T < (1 +€)a”.

McDiarmid and Provan 175

Now C;° is at most the sum of [£#] independent
random variables each distributed like C;. Hence,
by the strong law of large numbers, almost surely

A3
~— < (14 2¢)a"”

1

for n sufhiciently large.

But again by theorem 4, almost surely:

Cn > (1 - ¢)a"
n

for n sufficiently large,

and part (a) of theorem 6 now follows.>

(b) To prove part (b) we need only observe that

1 — (1= po)™*
asn — oo if L = o(n).0

P(C, =o00) >

)

— 1]

6 CONCLUSIONS

This paper has studied the performance of both back-
tracking and non-backtracking tree search algorithms in
finding a least-cost root-leaf path in random trees with
random non-negative costs. The investigations extend
the work of Karp and Pearl in several ways, but in par-
ticular through the introduction of dead-ends. This anal-
ysis suggests the following conclusions:

1. When the possibility of "catastrophe" (dead ends or
prohibitive costs) can be ignored then backtracking
methods do not seem attractive, and a far simpler
approach like that of the "horizon heuristic" .43 is
preferable.

2. When catastrophe I|looms then a backtracking
method like Karp and Pearl's bounded-lookahead
plus partial backtrack algorithm A2 does seem an
attractive option.

This conclusion lends some mathematical support to
certain empirical studies which show that, under given
conditions, backtracking algorithms do not perform as
well as non-backtracking algorithms. Examples are the
empirical analysis of [Dechter and Meiri, 1989; Haral-
ick and Elliott, 1980] in binary constraint satisfaction
problems, and the analysis of [de Kleer, 1984] in reason
maintenance systems.

References

[Athreya and Ney, 1972] K.B. Athreya and P.E. Ney.
Branching Processes. Springer-Verlag, Berlin, 1972.

R. Bitner and E. M.
techniques.
1975.

[Bither and Reingold, 19735] J.
Reingold. Backtrack programming
Communications of the ACM, 18:651-655,

[Bramson, 1978] M. D. Bramson. Minimal displacement
of branching random walk. Z. Wahrsch. Varw. Ga-
biete, 45:89-108, 1978.

It is also easy to prove a weaker version of this result
using only an easy part of theorem 4 and the subadditivity
of the sequence E[C,].

176 Automated Reasoning

[Brown and P. W. Purdom, 1981] C. A. Brown and
P. W. Purdom, Jr. . An average case analysis of
backtracking. S1AM J. Computing, 10 (3):583-593,
1981.

[Brown and P. W. Purdom, 1982] C A. Brown and
P. W. Purdom, Jr.. An empirical comparison of
backtracking algorithms. IEEE Trans. PAMI, 4,
1982.

[Crump and Mode, 1968] K.S. Crump and C.J. Mode.
A general age-dependent branching process. Jour-
nal of Mathematical Analysis and Applications, 24,

1968.

[de Kleer, 1984] J. de Kleer. Choices without backtrack-
ing. Proc. AAAl, 79-85, 1984.

[Dechter, 1990] R. Dechter. Enhancement Schemes
for Constraint Processing: Backjumping, Learning
and Cutset Decomposition. Artificial Intelligence,

41(3):273-312, 1990.

[Dechter and Meiri, 1989] R. Dechter and |. Meiri. EX-
perimental Evaluation of Preprocessing Techniques
In Constraint Satisfaction. In Proc. [JCAI, 271—
276, 19809.

[Hammersley, 1974] J. M. Hammersley. Postulates for
subadditive processes. Annals of Probability, 2:652-
680, 1974.

[Haralick and Elliott, 1980] R. M. Haralick and G. L.
Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence,

14:263-313, 1980.

[Harris, 1963] T. E. Harris.
Processes. Springer-Verlag, Berlin, 1963.

The Theory of Branching

[Karp, 1976] R. M. Karp. The probabilistic analysis
of some combinatorial search algorithms. In J. F.
Traub, editor, Algorithms and Complexity, pages 1-
19, Academic Press, 1976.

[Karp and Pearl, 1983] R. M. Karp and J. Pearl.
Searching for an optimal path in a tree with ran-
dom costs. Artificial Intelligence, 21:99-116, 1983.

[Kingman, 1975] J.F.C. Kingman. The First Birth
Problem for an Age-Dependent Branching Process.
Annals of Probability, 3:790-801, 1975.

[Knuth, 1975] D. E. Knuth. Estimating the efficiency of

backtrack programs. Mathematics of Computation,
29:121-136, 1975.
[McDiarmid, 1990] C.J.H. McDiarmid. Probabilistic

Analysis of Tree Search. In G.R. Gummett and
D.J.A. Welsh, editors, Disorder in Physical Sys-
tems, pages 249-260, Oxford Science Publications,
1990.

[Nudel, 1983] B. Nudel.
and their algorithms:

Consistent labeling problems
expected complexities and

theory-based heuristics. Artificial Intelligence,
21:135-178, 1983.

[Provan, 1985] G. M. Provan. A Probabilistic Analysis
of Search Algorithms in Uniform Trees. Mathemat-
ical Institute, University of Oxford, Unpublished D.
Phil, qualifying dissertation, 1985.

[P. W. Purdom, 1983] Jr. P. W. Purdom. Search re-
arrangement backtracking and polynomial average
time. Artificial Intelligence, 21:117-133, 1983.

[Stone and Stone, 1986] H. Stone and J. Stone. Effi-
cient Search Techniques: An Empirical Study of the
N-Queen$ Problem. Technical Report TRTC 12057
(#54343), IBM T.J. Watson Research Center, 1986.

