Augmenting Concept Languages by Transitive Closure of Roles
An Alternative to Terminological Cycles

Franz Baader®
German Research Center for Artificial Intelligence
Projektgruppe WINO, Postfach 2080
W-6750 Kaiserslautem, Germany

baader@dfki.uni-kl.de

Abstract

In Baader (1990,1990a), we have considered different
types of semantics for terminologicial cycles in the
concept language TLQ which allows only conjunction of
concepts and value-restrictions. It turned out that greatest
fixed-point semantics (gfp-semantics) seems to be most
appropriate for cycles in this language. In the present
paper we shall show that the concept defining facilities of
FLo with cyclic definitions and gfp-semantics can also be
obtained in a different way. One may replace cycles by role
definitions involving union, composition, and transitive
closure of roles.

This proposes a way of retaining, in an extended language,
the pleasant features of gfp-semantics for FLQ with cyclic
definitions without running into the troubles caused by
cycles in larger languages. Starting with the language
ALC of Schmidt-SchauB&Smolka (1988)—which allows
negation, conjunction and disjunction of concepts as well
as value-restrictions and exists-in-restrictions—we shall
disallow cyclic concept definitions, but instead shall add
the possibility of role definitions involving union,
composition, and transitive closure of roles. In contrast to
other terminological KR-systems which incorporate the
transitive closure operator for roles, we shall be able to
give a sound and complete algorithm for concept
subsumption.

1 Introduction

In knowledge representation (KR) languages based on KL-
ONE (Brachman&Schmolze (1985)), one starts with atomic
concepts and roles, and can use the language formalism to
define new concepts and roles. Concepts can be considered as
unary predicates which are interpreted as sets of individuals
whereas roles are binary predicates which are interpreted as
binary relations between individuals. The languages (e.g.,

FL and FL- of Levesque&Brachman (1987), TF and NTF

of Nebel (1990)) differ in what kind of constructs are
allowed for the definition of concepts and roles. Their com-
mon feature—besides the use of concepts and roles—is that
the meaning of the constructs is defined with the help of a
model-theoretic semantics. Most of these languages do not
go beyond the scope of first-order predicate logic, and they
usually have very restricted formalisms for defining roles.

This work was supported by the German "Bundesministerium
fur Forschung und Technologic" under Grant ITW 8903 0.

446 Knowledge Representation

However, for many applications it would be very useful
to have means for expressing things like transitive closure
of roles. For example, if we have a role child (resp. is-
direct-part-of) we might want to use its transitive closure
offspring (resp. is-part-of) in order to define concepts
like "man who has only male offsprings" (resp, "car which
has only functioning parts"). Obviously, we cannot just
introduce a new role offspring without enforcing the
appropriate relationship between offspring and child. Since
the transitive closure of binary relations cannot be expressed
in first-order predicate logic (see Aho&UIllman (1979)), the
concept languages mentioned above cannot be used for that
purpose.

There are two possibilities to overcome this problem. On
the one hand, one may introduce a new role-forming
operator trans, and define its semantics such that, for any
role R, Irans(R) is interpreted as the transitive closure of R.
This operator is e.g. contained in the terminological
representation language LOOM (MacGregor&Bates (1987)).
However, LOOM does not have a complete algorithm to
determine subsumption relationships between concepts.

On the other hand, cyclic concept definitions together
with an appropriate fixed-point semantics can be used to
express value-restrictions with respect to the transitive
closure of roles (see Baader (1990,1990a)). However, cyclic
definitions are prohibited in most terminological knowledge
representation languages because, from a theoretical point of
view, their semantics is not clear and, from a practical point
of view, existing inference algorithms cannot handle cycles.

The first thorough investigation of cycles in terminologi-
cal knowledge representation languages can be found in
Nebel (1990,1990a). Nebel has introduced three different
kKinds of semantics—namely, least fixed-point semantics
(Ifp-semantics), greatest fixed-point semantics (gfp-
semantics), and what he called descriptive semantics—for
cyclic definitions in his language NTF, Baader
(1990,1990a) considers terminological cycles in a small KL-
ONE-based language which allows only concept
conjunctions and value-restrictions. For this language,
which will be called FLo in the following, the effect of the
three above mentioned types of semantics can be completely
described with the help of finite automata. As a conse-
quence, subsumption determination for each type of
semantics can be reduced to a well-known decision problem
for finite automata. For the language FL,. the gfp-
semantics comes off best. The characterization of this

semantics is easy and has an obvious intuitive interpreta-
tion. It also shows that gfp-semantics is the appropriate
semantics for expressing value-restrictions with respect to
the transitive closure of roles.

However, the results described in Baader (1990a) have two
major drawbacks which we intend to overcome in the
present paper. First, the language FLo is too small to be
sufficient for practical purposes. As shown in Baader (1990),
the results can be extended to the language FI of
Levesque&Brachman (1987), and it seems to be relatively
easy to include number-restrictions. However, as soon as we
also consider disjunction of concepts and exists-in-
restrictions (see Def. 2.1), the unpleasant features which Ifp-
semanucs had for FLo (see Baader (1990,1990a)) also occur
for gfp-semantics in this larger language. If we should like
to have general negation of concepts, least or greatest fixed-
points may not even exist, thus rendering fixed-point
semantics impossible.

Second, the characterization of gfp-semantics for fLo—
though relatively easy and intuitive—still involves notions
from formal language theory such as regular languages and
finite automata. In the present paper we shall show that the
concept defining facilities of Fl, with cyclic definitions and
gfp-semantics can also be obtained in a different way. One
may prohibit cycles and instead allow role definitions using
union, composition, and transitive closure of roles. The
regular languages which occur in the characterization of gfp-
semantics for FLp can directly be translated into role defini-
tions in this new language.

This proposes a way of retaining, in an extended lan-
guage, the pleasant features of gfp-semantics for FLo with
cyclic definitions without running into the troubles caused
by cycles in larger languages. Starting with the language
ALC of Schmidt-SchauB&Smolka (1988)-which allows
negation, conjunction and disjunction of concepts as well as
value-restrictions and exists-in-restrictions—we shall disal-
low cyclic concept definitions, but instead shall add the
possibility of role definitions involving union, composi-
tion, and transitive closure of roles. In contrast to other
terminological KR-systems which incorporate the transitive
closure operator for roles, we shall be able to give a sound
and complete algorithm for concept subsumption.

Because of the space limitations it is not possible to
include a complete formal description of this algorithm into
the present paper. Instead we shall first recall by an example
how the subsumption algorithm for ALC works. It will
then be explained how the ideas underlying this algorithm
can be generalized to the extended language. Two more
examples will be used to demonstrate what kind of new
problems may occur. A complete description of the
algorithm, together with the proof of its correctness can be
found in Baader (1990Db).

2 The Languages ALC and FLo

The language which we shall use as a starting point for the
extension described in Section 4 is called "attributive
concept description language with unions and comple-
ments”, for short ALC (Schmidt-SchauB&Smolka (1988)).
The reason for choosing ALC was that it is large enough to
exhibit most of the problems connected with such an

extension, Taking a larger language (e.g., including number
restrictions) would only mean more work without bringing
new insights.

Definition 2.1. (concept terms and terminologies)

Let C be a set of concept names and R be a set of role
names. The set of concept terms of ALC is inductively
defined. As a starting point of the induction, any element of
C is a concept term (atomic terms). Now let C and D be
concept terms already defined, and let R be a role name.
Then C n D (conjunction), C u D (disjunction), =C
(negation), VR:C (value-restriction), and 3R:C (exists-in-
restriction) are CONCEPL terms.

Let A be a concept name and let D be a concept term. Then
A = D is a terminological axiom. A terminology (T-box) is
a finite set of terminological axioms with the additional
restriction that no concept name may appear more than once
as a left hand side of a definition. O

The sublanguage FLqof ALL 1s defined as follows: the
concept defining operators are restricted to concept
conjunction and value-restriction.

A T-box T contains two different kinds of concept names.
Defined concepts occur on the left hand side of a terminolog-
ical axiom of T. The other concepts are called primirive
concepts. Cycles in terminologies are defined as follows.
Let A, B be concept names and let T be a T-box. We say
that A directly uses B in T iff B appears on the right hand
side of the definition of A. Let uses denote the transiuve
closure of the relation directly uses. Then T contains a
terminological cycle ifl there exists a concept name¢ Ain T
such that A uscs A

For example, assume that we want to describe all “aliens
having only melmacian ancestors on the mother’s side”,
using the primitive roles father, mother, and the primitive
concepts Alien, Melmacian. In FLg, this concept (for
short Mam) is defined by the cyclic terminology Mam =
Alien N VY mother;:Ma, Ma = Melmacian m V mother:Ma
rn Viather:Ma, which introduces the auxiliary concept Ma
for “aliens having only melmacian ancestors™,

The next definition gives a model-theoret¢ semantics for
the language introduced in Definition 2.1.

Definition 2.2. (interprctations and models)

An interpretation 1 consists of a set dom(l), the domain of
the intcrpretation, and an interpretation function which
associates with each concept name A a subset Al of dom(T),
and with each role name R a binary relation R on dom(}),
i.e., a subset of dom(I} x dom(]).

The interpretation function--which gives an interpretation
for atomic terms—can be extended to arbitrary terms as
follows; Let C, D be concept terms and R be a role name.
Assume that C! and D! are already defined. Then (C n D)l
=ClA DI, (Cu DY :=Clu DI, (=C) := dom(I)\ !,
(VR:C) := {x € dom(l); for all y such that (x,y) € Rl we
have y ¢ C*}, and (AR:C)! := (x € dom(T); there exists y
such that (x,y) € Rland y € C1}.

An interpretation | is a mode! of the T-box T iff it satisfies
Al = DI for all terminological axioms A=DinT. 0

An important service terminological representation
systems provide is computing the subsumption hierarchy.

Baader 447

Let T be a terminology and let A, B be concept names.
Then we say that B subsumes A with respect to T
(symbolically A g B) iff Al C B! for all models 1of T

3 Extensions of F Ly

The semantics we have given in Definition 2.2 is not
restricted to non-cyclic terminologies. But for cyclic
terminologies this kind of semanuncs, which will be called
descriptive semantics in the following, turns out to be
unsatisfactory (see Baader (1990a), Example 2.3). For this
reason, alternative types of semantics for terminological
cycles have been considered, namely greatest fixed-point
semantics (gfp-semantics) and least fixed-point semantics
(Ifp-semantics). Roughly speaking, gfp-semantics (lfp-
semantics) means that, with respect to a given interpretation
of the primitive concepts and roles, the defined concepts are
interpreted as large (small) as possible in gfp-models (Lfp-
models) of the terminology (see Nebel (1990,1990a) or
Baader (1990,1990a) for details).

In Baader (1990,1990a) it was shown that a finile
automaton A7 can be associated to each terminology T of
FLg. The alphabet of At 1s the set Rt of all role names
occurring in T, the states of AT are the concept names
occurring in T, and the transitions of At are defined by the
terminological axioms of T (see Baader (1990,1990a) for
detaiis}. This automaton was used 1o describe the effect of
the three above mentioned types of scmantics with the help
of well-known notions from automata theory. The
characterization of gfp-semantics is easy, and it involves
only regular languages over the alphabet of role names.
More precisely, the automaton At defines a regular
languages L{A B) for each pair of concepts A, B occurring
in T. For an interpretation I and a word W = R R»..R,, over
R, W! denotes the composition RyloR,le... oR,! of the
binary relations Ry, R;}, ..., R, 1. For the empty word €, €!
denotes the identity relation, i.e., & = {(d,d); d € dom{)).

Theorem 3.1. Let T be a terminology of FLg, and let At
be the corresponding automaton. Let [be a gfp-model of T,
and let A be a concept name occurring in T.

For any d ¢ dom(I) we have d € Al iff for all primitive
concepts P, all words W € L(A.P), and all individuals ¢ €
dom(I), (d,e) € Wlimpliese € PL D

In our example which 1s about aliens from Melmac, we
have L{(Mam Melmacian) = (mother(tatheru mother)™)

The charactenzation in Theorem 3.1 means that, if we
start with an individual d = ALF and consider first his
mother, and then arbitrarily mothers or fathers of the
individuals alrcady obtained, then ALF is an alien having
only melmacian ancestors on the mother’s side if and only if
all the individuals reached that way come from Melmac.

Theorem 3.1 motivates the definition of regular value-
restrictions in the following “regular exiension” of FL,.

Definition 3.2. (1) Let L be a regular language over the
set of role names, and let C be a concept term already
defined. Then VL:C is a regular value-restriction. Its
semantics 18 defined as (VL.:C) := {d € dom(I); for all words
W ¢ L and all individuals e € dom(D), (d,) € W! implies ¢
e C').

448 Knowledge Representation

(2) In the regular extension Fireg of FLg we allow to use
regular value-restrictions and concept conjunction as concept
forming operators. Q

Theorem 3.1 implies that, with respect 10 gfp-semantics,
cyclic terminologies of F1Lo can be expressed by acyclic
terminologies of ¥ L,.,. On the other hand, it can be shown
that any acyclic ierminclogy of FZ,g can be expressed by a
possibly cyclic terminology of FiLo. Moreover, any cyclic
terminology of Ly, (considered with gfp-semantics) can
be transformed int0 an equivalent acyclic terminology of
F L., (Baader {1990b)). In our example, we can describe
Mam by the following concept term of Flipey:

Alien M ¥ (mother(lather molher)"):lﬁelm acian

Proposition 3.3. Possibly cyclic lerminologies of FLg
considered with gfp-semantics, acyclic terminologies of
¥ Lreg, and possibly cyclic ierminologies of FL,c,
consicfcrcd with gfp-semantics have the same expressive
pOWET. -

In place of cyclic definitions or regular languages in
value-restrictions, we shail now aliow role terms involving
union, composition and transitive closure of roles in the
following “‘transitive extension” of FLgq. All these role
forming operators have already been considered in KL-ONE
based systems, though not necessanily together. 1t will turn
out that we get a language having exactly the same
expressiveness as F Ly,

Definition 3.4. (1) Let R be a set of role names. The
sct of role terms 18 inductively defined as follows. As a
starting point of the induction, any role name is a role term
(atomic role), and the symbol @ is a role term (empty role).
Now assume that R and § are role terms already defined.
Then R u S {(union), ReS (composition), and trans(R)
(transitive closure) are role terms. The semantics of the role
forming operators is defined in the obvious way: @ = @,
(R u)1 := Ry 81, (ReSY := RIS!, and (trans(R)) :=
Unst(RD, ie., (ransR)Y is the transitive closure of RY.
(2) In the transitive extension FLyans Of FLo we allow to
use role terms instead of simply roles in value-restrictions.(

It is now easy 1o sce that there is a direct correspondence
between the regular languages in value-restrictions of 7Ly,
and the role terms in value-restrictions of FLiryn:.
Consequently, acyclic (resp. cyclic) terminologies of
FLaeans have the same expressive power as acyclic (resp.
cyclic) terminologies of FL,.,, and thus as possibly cyclic
ierminologies of 7/ considered with gfp-semantics.

In FLians we can use the following term to define the
concept Mam of our example:

Alien N V¥ mother:Melmacian n
V (motherotrans(fatherumother)):Melmacian.

4 The Extension of 4L

In the previous section we have seen that the expressiveness
of possibly cyclic terminologies of FLg considered with
gfp-semantics can also be obtained without involving cyclic
defimtions; we just have 1o include the appropriate role

forming operators into the language. These role forming
operators can now be integrated into the larger language
ALC without causing any of the troubles we should have
with cyclic definitions in 4LL.

Definition 4.1. (1) In the transitive extension ALC, .,
of ALL we allow to use role terms (as defined in part (1) of
Definition 3.4) instead of simply roles in value-restrictions
and exists-in-restrictions. The semantics of AL yyn, is
defined as in Definition 2.2 and 3.4,

(2) In the regular extension AL ., of ALC we allow to
use regular value-restrictions and regular exists-in-
restrictions in place of the usual restrictions of ALC. The
semantics of the regular value-restrictions is defined as in
part (1) of Definittion 3.2. The semantics of the regular
cxists-in-restricuons will be defined in a way such that
—(3L:C) is e?uivalcm to VL:(—C). That means that we
define (AL:C)' := {d € dom(I); there exists a word W € L
alind an individual e € dom(1) such that (de) ¢ Wiande e
C'}). Q

Please note that the regular exists-in-restriction is very
similar to what is called “Functional Uncertainty” in
computational linguistic (see Kaplan&Maxwell (1988)).

As for FLyeg and F Lirans, acyclic terminologies of
ALCirans and acyclic terminologies of AL, have the
same expressive power. This shows that we may restrict our
atiention to one of these two languages. The definition of
AL irans 1S more intuitive, and thus AL .. may be more
appropriate if we want to apply the language to actual
representation problems. But AL g tumns out to be more
convenient for describing the subsumption algorithm. We
can now state the main result of the paper.

Theorem 4.2, There exists a sound and complete
algorithm for testing subsumption relationships w.r.L.
acyclic terminologies of AL .y (or equivalently

AL ieqry)- O

All the existing system which incorporate transitive
closure of roles have only sound but incomplete algorithms,
i.e., these algorithms may sometimes fail 10 detect
subsumption relationships.

Since we only allow acyclic termimologies of AL .,
subsumption with respect 1o terminologies can be reduced to
subsumption of concept terms by expanding concept
definitions (see e.g., Nebel (1990)). For two concept terms
C, D we say that C is subsumed by D (symbolically C & D)
iff C! ¢ D! for all interpretations 1. As for ALC, the
subsumption probiem for concept terms can further be
reduced to the satisfiability problem, where a concepl term
C is called satisfiable iff there exists an interpretation 1 such
that C! = @. In fact, for concept terms C, D and an
interpretation 1, we have Cl ¢ DU iff CI\D' =@, i.e., iff (C
n -D) = @. This shows that C is subsumed by D iff C n
=D is unsatisfiable. Thus it is sufficient 10 have an
algorithm which decides satisfiability of concept terms.

This algorithm will use the idea of constraint
propagation, as proposed by Schmidi-SchauB&Smolka
(1988) for AL, and successfully used by Hollunder ¢t al.
(1990) and Hollunder&Nutt (1990) for various other
languages. However, an algorithm for AL, has to treat

regular restnctions of the form JL:C, VL:C insiead of
simple restrictions JR:C, VR:C.

In order to clarify this difference, let us first recall by an
examplo how satisfiability can be checked for concept terms
of ALC (see Schmidi-SchauB&Smolka (1988), and
Hollunder&Nunt (1990) for details).

4.1 The Satisfiability Test for AL

Assume that C is a concept term of ALC which has to be
checked for satisfiability. In a first siep we can push all
negatons as far as possible into the term using the fact thai
the terms D and D, ~(D n E) and -D u —E, —~(D u E)
and =D n —E, ~(JR:D) and VR:(=D), as well as ~(VR:D)
and 3R:(—D) are equivalent. We end up with a term C’ in
negation normal form where negation is only applied to

concepl names.

Example 4.3, Assume that we want to know whether the
term JR:A n 3R:B is subsumed by 3R:(A n B). That
means that we have to check whether the term C :=3R:A N
dR:B n —(dR:(A n B)) is unsatisfiable. The negation
normal form of C is the term C’ ;= JR:A n JR:B n
V‘R(_IA u -B).

In a second step, we try 10 construct a finite interpretation
I such that C'! # @. That means that there has to exist an
individual in dom(F) which is an element of C’L, Thus the
algorithm generates such an individual b and imposes the
constraint b € C'I on it. In the example, this means that b
has to satisfy the following constraints: b ¢ 3R:A) be
(AR:BY, and b € (VR:(—A u—-B))L

From b € (3R:A} we can deduce that there has to exist
an individual ¢ such that (b,c) € Rl and c € Al
Analogously, b € (3R:B)! implies the existence of an
individual d with (b.d) € Rl and d € Bl. We should not
assume that ¢ = d since this would possibly impose too
many constraints on the individuals newly introduced to
satisfy the exists-in-restrictions on b. Thus the algorithm
introduces for any exists-in-restriction a new individual as
role-successor, and this individual has to satisfy the
constraints expressed by the restriction.

Since b also has to satisfy the value-restriction VR:(—A u
—B), and c, d were introduced as R!-successors of b, we also
get the constraints ¢ € (—A u —B), and d € (—A u —B).
Now ¢ has 10 satisfy the constraints c € Alandce (AU
—B)! whereas d has to satisfy the constraints d € Blandd €
(—A u =B}, Thus the algorithm uses value-resrictions in
interaction with already defined role-relationships to impose
new constraints on individuals.

Now ¢ € (—A u —B) means that c € (—A) or ¢ € (-B),
and we have to choose one of these possibilities. If we
assume r € (—A), this clashes with the other constraint ¢ €
A’ Thus we have to choose ¢ € (—B)L.. Analogously, we
have to choose d € (—A Y in order to satisfy the constraint d
€ (—~A u ~BY without creating a contradiction to d € BL,
Thus, for disjunciive constraints, the algorithin tries both
possibilities in successive attempts. It has 10 backtrack, if it
reaches a contradiction, i.e., if the same individual has to
satisfy complementary constraints.

In the example, we have now satisfied all the constraints
without getting a contradiction. This shows that C’ is
satisfiable, and thus JR:A rn dR:B 1s not subsumed by

Boader 449

IR:{A n B). We have generated an interpretation I as
witness for this fact: dom(I) = {b, c, d}; Rl = {(bc), (b,d));
Al = {c} and B! = {d}. For this interpretation, b € C'l. That
means that b e (3R:A n 3R:BY, but b ¢ GR:(A n B)).

Termination of the algorithm is ensured by the fact that
the newly introduced constraints are always smaller than the
constraints which enforced their introduction.

4.2 The Generalization to AL e

A satisfiability algorithm for ALC,., has 10 treat regular
restrictions of the form 3L:C and VL:C instead of simple
restrictions 3R:C and YR:C. In order to satisfy a constraint
of the form b € (AR:C)L, the algorithm described above
introduces a new individual ¢ which has to satisfy bRIc and ¢
e Cl. This is not so easy if we have ta satisfy a regular
constraint of the form b e (AL:C)\. All we know is that
there has 10 exist some word W € L and an individual ¢
such that bWl and ¢ € CL. But we do not know which W
does the job, and if L is infinite, there are infinilely many
canditates. Thus trying them on¢ after another will not do.

Obviously, the concept terms JL.:C and C u L\ {€]):C
are equivalent. For that reason we may without loss of
generality assume that L does not contain the empty word.
Thus the correct word W € L has some role symbol R as 1its
first symbol. That means that there exists a word U such
that W = RU. The alphabet of role symbols over which L is
built is finite, and thus there are only finitely many
possibilities for choosing a symbol R. Once we have
chosen R, we stll do not know which word U does the job.
All we know about U is that it is an element of the set
RIL:={V;RVe L)

Definition 4.4. Let L be a language and let W be a word.
The left guotient W-IL of L with respect to W is defined as
WilL={V;WVel]l Q

For a regular language L, the language W-IL is also
regular (see Eilenberg (1974), p. 37), and obviously, this is
also true for WL\ {€). For words V, W we have (VW)'IL
= W-1(V-1L). For example, let L be the regular language
(RS)*. Then R'IL = S(RS)*, S'IL = @, and (RS)'IL =
S-I(R-IL) = (RS)".

In the satisfiability test, we can now choose between two
possibilities: U € R°IL can be the empty word (provided
that R € L) or U can be nonempty (provided that RIL\ (£}
+ @). if we assume U = €, then the new individual ¢ has to
satisfy bRlc and ¢ € C!, and the exists-in-restriction is
worked off. If we assyme U # £, then b(RU)c ensures the
existence of an individual d such that bRYd, dUk, and ¢ €
CL. We still do not know the appropriate U, but the
existence of such a word U and an individual ¢ with dU'c,
and ¢ (;1 CI can be expressed by the constraint d € (3(R-1L\
{EN:CY.

Thus we have seen how the treatment of exists-in-
restrictions in the satisfiability algorithm for 2L can be
generalized (0 AL(C,ey. We shall now turn to value-
restrictions.

Assume that we have a constraint b € (VL:C), and—to
satisfy an exists-in-constraint on b—we have introduced an
individual ¢ such that bRIc. Obviously, if R € L, we have
to add the constraint ¢ € CL; but this is not sufficient for the
following reason. Assume that U is an element of R1L\

450 Knowledge Representation

(€], iLe., U ts a nonempty word such that RU € L. If, in
some step of the algorithm, an individual d is introduced
such that cUId holds, then d has to satisfy the constraint d €
CL. This is so because b(RUYd, RU € L, and b has to
satisfy b € (VL:C). We can keep track of this possibility
by imposing the constraint ¢ € (VR L\ {€)):CY onc.

Unlike the situation for AL one can no longer be sure
of the termination of the algorithm, unless one imposes an
appropriate control structure, and tests for cycles. The
problem of nontermination will be demonstrated by the
following exampie.

Example 4.5. We consider the following concept term of
AL eg: C:= An3JR:A n VR*:(3R:A).

(1) We introduce an individual ag which has to satisfy the
constraints ap € Al, ag e (3R:AY, a5 € (VR:(3R:A)N.

(2) Because of the exists-in-restriction for ag we introduce a
new individual a; such that agR!a;, and this individual has
to satisfy the constraint a; € Al

(3) Now the interaction between agRia; and the value-
restriction ag € (VR*:(3R:A))! has to be taken into account.
Because of R € R* we obtain the consiraint a; € GR:A)L
In addition, we have RIR*\ [€) = R* # @, which yields the
constraint a; € (VR*:(BR:A%)I. To sum up, a; has to
satisfy the constraints a; € Al a; € (3R:A), and a; €
(VR*:(3R:A)), i.e., the same constraints as previously ag.
If we continue with the constraints on a; we get an
individual a; which, in the end, has to satisfy the same
constraints as a;. This yields an individual a3, and so on. In
other words, the algorithm has run into a cycle,

On the other hand, we could just identify ag with a;. This
would yield the following interpretation J: dom(J) := {ap);
R):={ (ap.ap) }; AT := {aujl. It is easy lo see that this
interpretation satisfies ag € C-. O

The phenomenon that such cycles may occur i1s not
particular for this example. After sufficiently long
computation, the algonithm will always reproduce sets of
constraints which have already been considered. Basically,
this is a consequence of the following fact, which in tum is
an easy consequence of the guotient criterion for regular
languages (see Eilenberg (1974), Theorem §.1).

Proposition 4.6. Let K be a finite set of regular
languages. Then the set {WIL\ (€); whereL € K and W is
a word] is also finite. »

However, it turns out that there are two different types of
cycles: “good cycles” and “bad cycles”. The cycle of
Example 4.5 1s a “good cycle”; its occurrence indicated that
the concept term under consideration is in fact satisfiable.

The following example will demonstrate how *“bad cycles”
may arise.

Example 4.7. We consider the following concept term of
AL eq: D:=—=A N 3R*:A n VR*:(-A).

(1) We introduce an individual ag which has to satisfy ag €
(—AY, a9 € 3R*:A), and ag € (VR*:(—A)).

(2) Because of the exists-in-restriction for ay we introduce a
new individua! a; such that agRIa;. But now we have R €
R* as well as R'IR*\ {€} = R* # @. Thus we have to
choose between two possibilities for the constraint on a.

(3) First, we may consider the constraint a); € Al
(corresponding to the case U = € from above). But agRa,
together with the value-restriction ag € (VR*:(-A))! yields
aj € (=AY, and we have a clash with a; € Al

(4) Thus we have to backtrack and choose the constraint ay
e (GR*:A)! (corresponding to the case U # € from above).
As before, agR!a, together with the value-restriction on ag
yields a) € (—~A)! and a; € (VR*:(-~A)).. Thus a; has to
satisfy the same constraints as previously ag. This shows
that we have again run into a cycle; but this time the
situation 1s different. In fact, it is easy to see that the
concept term D 1s unsatisfiable whereas the term C of
Example 4.5 was satisfigble. J

We may now ask what makes the difference between the
cycle of Example 4.5 and that of Example 4.7. In the second
example we have postponed satisfying the exists-in-
restriction for a, by introducing the new exists-in-restriction
for a4. It is easy to see that we should have to postpone
satisfying the restriction forever because trying to actually
satisfy it will always result in a clash. In the first example
however, we had already satisfied the exists-in-restriction
before the cycle occurred

Building up on these ideas, an algorithm for deciding
satisfiability of concept terms of ALC,, is presented, and
proved to be sound, complete, and terminating in Baader
(1990Db). The algorithm uses so-called concept trees (which
are similar to AND/OR search trees) to impose an
appropriate control on the search for a finite model. This
makes it possible to detect cycles at the right moment, and
to distinguish between good ones and bad ones. The
termination proof mainly depends on Proposition 4.6, that
IS, on a result from formal language theory.

5 Conclusion

Augmenting ALC by a transitive closure operator for roles
means not just adding yet another construct to this
languages, and thus getting a language and an algorithm
which are only slightly different from those previously
considered. The transitive closure is of a rather different
quality.

This claim is substantiated by the following observa-
tions. Firstly, by adding transitive closure, we are leaving
the realm of first order logic. Secondly, the algorithm de-
pends on new methods, namely on the use of results from
formal language theory, and on a more sophisticated data
structure to cope with the nontermination problem. Thirdly,
adding features (i.e., functional roles) and feature agreements
would make the subsumption problem undecidable (Baader
et al. (1991)), whereas this was never a problem for the
languages considered by Hollunder&Nutt (1990).

Finally, the expressiveness of ALC,.y is also demon-
strated by the fact that concept terms of this language can be
used to simulate general concept equations, i.e., equations of
the form C = D where both C and D may be complex
concept terms of ALC OR ALC,4 (see Baader (1990Db),
Section 6, Baader et al. (1991)). For this reason, the
algorithm for ALC,y4 can be used to decide satisfiability and
subsumption of concepts with respect to finite sets of
concept equations. As a special case, one thus gets
algorithms for satisfiability and subsumption of concepts

with respect to cyclic T-boxes of ALC, provided that these
T-boxes are interpreted with descriptive semantics.

References

Aho, A.V., and Uliman, J.D. 1979. Universality of Data
Retrieval Languages. In Proceedings of the 6th ACM

Symposium on Principles of Programming Languages,
110-120.

Baader, F. 1990. Terminological Cycles in KL-ONE-based
KR-languages. Research Report, RR-90-01, DFKI,
Kaiserslautem.

Baader, F. 1990a. Terminological Cycles in KL-ONE-based
Knowledge Representation Languages. Proceedings of the

8" National Conference on Attificial Intelligence, AAAI-
90.

Baader, F. 1990b. Augmenting Concept Languages by
Transitive Closure of Roles; An Alternative to
Terminological Cycles. DFKI Research Report RR-90-13,
DFKI, Kaiserslautem.

Baader, F., Bilrckert, H.-J., Nebel, B., Nutt, W. Smolka,
G. 1991. On the Expressivity of Feature Logics with

Negation, Functional Uncertainty, and Sort Equations.
Research Report, RR-91-01, DFKI, Kaiserslautem.

Brachman, RJ., and Schmoize, J.G. 1985. An Overview of
the KL-ONE Knowledge Representation System.
Cognitive Science 16: 171-216.

Eilenberg, S. 1974. Automata, Languages and Machines,
Vol A. New York/London; Academic Press.

Hollunder, B., Nutt, W., Schmidt-SchauB, M. (1990).
Subsumption Algorithms for Concept Languages.

Proceedings of the 9" European Conference on Artificial
Intelligence. ECAI-90.

Hollunder, B., Nutt, W. 1990, Subsumption Algorithms for
Concept Languages, Research Report RR-90-04, DFKI,
Kaiserslautem.

Kaplan, R.M., Maxwell 111, J. T. 1988. An Algorithm for
Functional Uncertainty. Proceedings of the COLIN 88.

Levesque, HJ., and Brachman, RJ. 1987. Expressiveness
and Tractability in Knowledge Representation and
Reasoning, Computational Intelligence 3: 78-93.

MacGregor, R., and Bates, R. 1987. The Loom Knowledge
Representation Language. Technical Report IS1/RS-87-
188, Information Science Institute, Univ. of Southern
California.

Nebel, B. 1990. Reasoning and Revision in Hybrid
Representation Systems. Lecture Notes in Artificial
Intelligence, Subseries of Lecture Notes in Computer
Science 422.

Nebel, B. 1990a. Terminological Cycles; Semantics and
Computational Properties. To appear in Sowa, J. ed.
1990. Formal Aspects of Semantic Networks.

Schmidt-SchauB, M.; Smolka, G, 1988. Attributive
Concept Descriptions with Unions and Complements.
SEKI Report SR-88-21. To appear in Artificial
Intelligence.

Baader 451

