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Abst ract 
Th is paper describes how a compet i t i ve tree 
learning a lgo r i t hm can be derived f r o m f i rst 
pr inciples. The a lgo r i t hm approximates the 
Bayesian decision theoret ic so lut ion to the 
learning task. Compara t ive exper iments w i t h 
the a lgo r i t hm and the several matu re AI and 
stat is t ica l famil ies of tree learning a lgor i thms 
cur rent ly in use show the der ived Bayesian a l ­
g o r i t h m is consistent ly as good or bet ter , a l ­
though sometimes at computa t iona l cost. Us­
ing the same strategy, we can design a lgor i thms 
for many other supervised and mode l learning 
tasks given jus t a probabi l is t ic representation 
for the k i n d of knowledge to be learned. As an 
i l l us t ra t ion , a second learning a lgo r i t hm is de­
r ived for learn ing Bayesian networks f r o m data. 
Impl icat ions to incrementa l learning and the 
use of mu l t i p le models are also discussed. 

1 In t roduc t ion 
Systems for learning classif ication trees [Quin lan, 1986; 
Cestnik et al, 1987] are common in machine learning, 
stat ist ics and pa t te rn recogni t ion. Despite these suc­
cesses, the s tudy presented here is not mot iva ted by 
a view tha t tree classifiers are inherent ly superior to 
other learn ing systems (see for instance, the argument 
against so-called universal learning a lgor i thms in [Bun-
t ine, 1990b]). Rather , th is s tudy is mot iva ted by the 
view tha t tree learning is an ideal benchmark p rob lem for 
s tudy ing learn ing theories. T h e prob lem is used here to 
gain ins ight i n to generic problems in empir ica l learning, 
and to explore a general s t rategy for designing learning 
a lgor i thms. 

F i rs t , current tree learning methods are matu re in tha t 
many modi f icat ions have been suggested in recent years, 
bu t l i t t l e real gain has been made 1 . There are now many 
different tree learning methods and none clearly superior 
[Mingers, 1989], The systems have stood the test of t ime 
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1 Except, perhaps, in the area of learning strictly logical 

rules where recent techniques learn new terms; but the focus 
of this paper is primari ly learning noisy or uncertain con­
cepts, where gains have been more incremental. 

and are now widely used for benchmark ing and compar­
a t ive studies. I f an a lgo r i t hm design strategy yields a 
superior tree learning a lgo r i t hm despite th is tough com­
pe t i t i on , i t is l ike ly the strategy w i l l be successful on 
other learning tasks. 

Second, tree learning is a common meet ing ground for 
the different areas of inqu i ry outside of AI tha t have 
learning theories of some f o r m or another such as classi­
cal stat ist ics [Bre iman et a/., 1984] and m i n i m u m encod­
ing approaches [Rissanen, 1989]. Th is provides a rare 
oppo r tun i t y to contrast these different learn ing theories 
theoret ical ly as wel l as empir ica l ly . Compara t i ve studies 
conducted to date in A I have prov ided l i t t l e understand­
ing about generic pr inciples of a lgo r i thm design, par t l y 
because comparisons have been made of a lgor i thms that 
use different knowledge representations, and compar­
isons have largely ignored the theoret ical pr inciples on 
wh ich the a lgor i thms were based. 

F ina l ly , classif ication trees have been the f ramework 
in wh ich a number of discoveries have been made in ma­
chine learning: the over f i t t ing p rob lem (related to the 
accuracy-complexi ty tradeoff and Ockham's razor) , in ­
cremental a lgor i thms [Schlimmer and Granger Jr., 1986], 
and interact ive induc t ion [Shapiro, 1987]. The learn­
ing prob lem tree systems tackle is d i f f icul t enough to 
be considered "unlearnable," yet simple enough so not 
requi r ing the specialized machinery to learn relations 
or do construct ive induc t ion . In this sp i r i t , th is s tudy 
presents a number of add i t iona l discoveries about prob­
lems generic to empi r ica l learning. 

Th is paper reviews the Bayesian development of a sys­
t em for learning tree classifiers, f r o m the theoret ical ba-
sis, th rough the hack ing required to make the system 
work , to comparat ive results w i t h other systems. The 
development is presented as a generic a lgo r i t hm design 
strategy in the second sect ion, and the results discussed 
in the t h i r d sect ion. More deta i l of the stat is t ica l as­
pects of the system can be found in [Bunt ine, 1990a; 
Bun t ine , 1990c]. Because of the large number of differ­
ent t r ia ls and da ta sets tha t were used, fu l l deta i l of the 
results are repor ted elsewhere [Bunt ine, 1990c]. 

Th i s paper also discusses some insights t ha t have come 
out o f th is s tudy: an emerging t rend in machine learning 
towards the use of mu l t i p le models [Kwok and Carter, 
1990; Gams, 1989; Jacobs et a/., 1991], a generic method 
to overcome the prob lem of repeated res t ruc tur ing in 
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incremental learning [Crawford, 1989], and a better un­
derstanding of learning theories and their role in helping 
us design learning algorithms. These are discussed in the 
fourth section. 

We can now design algorithms for many other super­
vised and model learning tasks given just a probabilistic 
representation for the kind of knowledge to be learned. 
As an il lustration, a method is outlined in the fifth 
section for learning Bayesian networks [Lauritzen and 
Spiegelhalter, 1988/, a common representation in medical 
expert systems. This is a model learning task. The de­
sign strategy can also be applied to other learning tasks 
such as probabilistic rule systems, n-gram models (such 
as bigram and trigram models) used in speech recogni­
tion and natural language, and the function-finding task 
that is the basis of scientific discovery algorithms. The 
strategy has also been applied to analyse the training 
of feed-forward neural networks [Buntine and Weigend, 
1991], where popular heuristic procedures for cost func­
tions and network pruning were found to conform well 
to corresponding methods developed from Bayesian first 
principles. 

2 The A l g o r i t h m Design Strategy 
The algorithm design strategy presented here is based on 
approximating Bayesian decision theory. The justifica­
tion for Bayesian decision theory comes from fundamen­
tal principles of how uncertain reasoning should be done 
[Berger, 1985]. The theory applies widely in inference 
and plausible reasoning and its use is continually ex­
panding in A I . But there is not a single "Bayesian learn­
ing algorithm," as some people mistakenly believe when 
they learn about Bayesian classifiers [Tou and Gonzalez, 
1974]. Rather, Bayesian decision theory presents com­
putational guidelines on how learning should be done for 
many different learning problems, including for instance, 
improving an approximate theory using data. 

The basic tenet of Bayesian decision theory is that 
if we do not know something wi th reasonable certainty, 
then we should look at some reasonable and mutually ex­
clusive alternatives and weigh them up, to help us make 
a "representative" decision. A reasonable alternative is 
one we currently have high subjective belief in. I wil l 
first explain how this applies to trees [Buntine, 1990a], 
to introduce the notation. This is done for the two-class 
problem with discrete tests at nodes, but easily extends 
to the multi-class problem, and adjustments for real-
valued tests at nodes exist [Buntine, 1990c, Sec.6.5.5]. 
The formulation is sufficiently general so that it could 
just as well be applied to other models such as proba-
bilistic rules, Bayesian networks, or one of many other 
knowledge representations that have a probabilistic in­
terpretation. 

Class probability trees have a vector of class proba-
bilities at their leaves [Breiman et a/., 1984], and they 
represent a conditional probability distribution of class 
value conditioned on example value. A particular class 
probability tree can be represented by its discrete com­
ponent T, the tree structure given by the shape of the tree 
and the tests at the leaves, and its continuous component 
0, the leaf class probabilities. This gives the conditional 

probability distribution ' which is the like-
lihood function for the class probability tree specified by 
T and 0 for the training example (c', x'). 

Suppose we are given a training sample of examples 
x and their classes c, together wi th a new example x' 
whose class we wish to predict. If the goal is to mini­
mize errors in prediction (other ut i l i ty functions can be 
handled similarly), decision theory says we should choose 
the class c' to maximize the posterior class probability 

Using the tree model, this is the pos­
terior average of the class probabilities predicted for d 
from all possible class probability trees: 

Formula (1) simply says to average the class predictions 
made for each tree structure, where ^ r) the 
posterior probability of the tree structure T, is the weight 
used in the averaging process. In this formula, 
is the prior on the space of class probability trees, and 

the likelihood of the training sample. 
The algorithm design strategy is based on designing 

a heuristic procedure to find a single structure or set of 
structures that can be used to approximate Formula (1). 
This is described by the following 6 steps, and Table 1 
gives the results of the analysis. 

1. Precisely define the form of knowledge to be learned 
by representing it in terms of a parameterized likelihood 
function, A particular parameterization is referred to as 
a model which has a structural (discrete) and a continu­
ous component as described for trees. 

2. Develop a prior over the structural and contin­
uous components of the model. The form of the prior 
should be flexible enough so that it can be changed 
from application to application. In [Buntine, 1990a/, a 
range of priors are presented for trees. One is given 
in the table. The prior on the tree structures, 
is not given but could, for instance, be assumed uni­
form. The prior on the continuous component is a 
product of symmetric beta distributions over the prob­
abilities 0. The function B{n,m) given there is the 
beta function found in many mathematical handbooks. 

3. Given a training sample Sample, determine a 
suitably efficient way of computing or approximating the 
posterior of the structural component of the model. See 
[Buntine and Weigend, 1991] for an approximation in the 
more complex domain of feed-forward neural networks. 
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Table 1: Bayesian analysis of learning class probability trees 

4. Devise a heuristic search procedure for search­
ing the space of structures to find structures with high 
posterior. A simple one-ply lookahead procedure can be 
tried, which corresponds to the standard tree growing 
algorithm [Quinlan, 1986], although two-ply or three-
ply versions could also be tried. Start with the tr ivial 
structure, the empty tree. Then consider extending the 
structure by a single ply, which for trees means growing a 
single node by adding a test with leaves at the outcomes 
of the test. A heuristic measure to evaluate the qual­
i ty of the new growth is given in the table. To prevent 
overflow/underflow, this measure has to be calculated 
in log-space. The measure behaves similarly to Quin­
lan's information gain heuristic, but has some correction 
terms for multivalued attributes and small samples. This 
heuristic can also be used as a stopping rule [Cestnik et 
a/., 1987]. 

5. Given a training sample Sample and a structure 
T, determine a formula or approximation for the poste­
rior expected values of the parameters 0, as required for 
Formula (1). 

6. Devise a procedure for approximating the sum­
mation of Formula (1) by a small set of high posterior 
structures. Several suggestions are given below. This is 
currently an active area of research. 

Minimum encoding approaches [Rissanen, 1989; Wal­
lace and Freeman, 1987] to supervised learning and the 
so-called "most probable model" (Bayesian) approach 
are first-order approximations to Formula (1), because 
they attempt to find a single high posterior structure. 
Step 6 in the design strategy above is the main improve­
ment suggested here, because it suggests how to improve 
on this. 
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There are three techniques for performing Step 6. 
These correspond to different ways of estimating the sum 
in Formula (1): 

Smoo th ing : The sum can be computed in closed form 
if it is restricted to the set of tree structures obtained 
by pruning a large tree structure in all possible ways. 
A linear time algorithm is given in [Buntine, 1990c, 
Lemma 6.5.1]. This is called smoothing because it is 
equivalent to smoothing out the class probabilities 
at the leaf of a tree by averaging them with some 
class probabilities from interior nodes of the tree. 

Averaging: The sum can be approximated by search­
ing for and storing many dominant terms, i.e. many 
high posterior trees structures. We can build mult i­
ple tree structures, and combine them together effi­
ciently in an AND-OR representation called option 
trees. Growing option trees and then applying a 
similar summation process to smoothing is called 
tree averaging. 

Mult ip le Models: The sum can be approximated by 
using importance sampling and Monte Carlo esti­
mation. That is, a few tree structures are gener­
ated in approximate proportion with their posterior 
(this is done using the tree growing heuristic [Bun-
tine, 1990a]), and their class probability vectors uni­
formly averaged. 

3 Experimental Results 

Reimplementation8 of CART [Breiman et a/., 1984], C4 
[Quinlan, 1988], and a generic minimum encoding ap-



proach were compared with the Bayesian approaches2. 
The algorithms were applied to 12 different data sets 
wi th a range of characteristics. These included Quin­
tan's hypothyroid and XD6 data [Quinlan, 1988], the 
CART digital LED problem [Breiman et al., 1984], three 
medical domains made available by Bratko's induction 
group [Cestnik et a/., 1987], and a variety of other data 
sets from the Irvine Machine Learning Database such 
as "glass," "voting records," "hepatitus," and "mush­
rooms." Data sets where divided into training/test pairs, 
a classifier was built on the training sample and the ac­
curacy, predicted accuracy, and mean square error esti­
mated on the test sample. This was done for 20 random 
trials of the training/test pair, and for 4 different train­
ing set sizes, and significance of difference between two 
algorithms was checked using the paired t-test. 

Of the algorithms tried, a generic minimum encod­
ing approach, (re-)CART, (re-)C4, Bayesian smoothing 
and Bayesian averaging, the averaging approach using a 
uniform prior on tree structures was the only approach 
that consistently produced the best predictions. In most 
cases it was pairwise significantly better than all other 
non-Bayesian approaches at the 5% level. Bayesian av­
eraging wi th a two-ply lookahead during growing yielded 
improvement in predictive accuracy averaged over 20 t r i ­
als as often as high as 2-3%, sometimes more. Wi th a 
one-ply lookahead, the improvement is not as dramatic 
but sti l l significant. One has to be cautious in interpret­
ing this result, however, because option trees are more 
than just a single decision tree, they effectively involve 
an extension of the model space. Also the growing of 
option trees sometimes involved extra orders of magni­
tude in time and space. Although this only occurred 
for small samples, or where trees were inappropriate for 
the learning problem (like XD6 which is a DNF concept 
poorly expressed using a tree). Certainly the Bayesian 
approaches are competitive, and they appear to be su­
perior for smaller samples. 

For many of the data sets, it was appropriate to se­
lect a prior that had stronger preference towards smaller 
trees. When this was done, Bayesian smoothing of a 
single tree gave good predictions, often as good as the 
Bayesian averaging with one-step lookahead. This is use­
ful because we would not always wish to go to the com­
putational expense of Bayesian averaging, or we may re­
quire just a single tree for explanatory purposes. 

A second point of comparison of the algorithms is 
the parameters available when driving the algorithms. 
CART and C4 have default settings for their parame­
ters. Wi th CART, heavy pruning can be achieved using 
the 1-SE rule rather than the 0-SE rule. The number 
of partitions to use in cross validation cost complexity 
pruning can also be changed, but the effect of this is 
unclear, especially since leaving-one-out cross validation 
cost complexity pruning gives poor predictive accuracy. 
The minimum encoding approaches are (according to the 
purist) free of parameters. However, these approaches 
often strongly overprune, so Quinlan and Rivest [Quin-

2 The tree algorithms were written in C and integrated 
with an experiment control package. The entire suite is avail­
able from the author. 

Ian and Rivest, 1989] introduce a parameter that al­
lows lighter pruning. So all approaches Bayesian and 
non-Bayesian have parameters that allow more or less 
pruning. These can be set depending on the amount 
of structure believed to exist in the data. In the fuller 
Bayesian approach with option trees and Bayesian aver­
aging, choices available also allow greater search during 
growing and fuller elaboration of the available optional 
trees. These parameters have the useful property that 
predictive accuracy (or some other ut i l i ty measure) and 
computational expense are on average monotonic in the 
value of the parameter. The parameter setting allows 
improved predictive accuracy at computational expense. 

4 Discussion 
4.1 M u l t i p l e models 

Machine learning research, as with classical statistics and 
minimum encoding methods, has been largely concerned 
to date with trying to find the best single tree, the best 
non-redundant rule set, or the best relational rule ex­
plaining the data. 

Several researchers have now reported being able to 
significantly improve learning performance by instead 
working with multiple models. This is an approximate 
method for doing the averaging presented in Section 2, 
and is different from the technique of combining inde­
pendent sources of knowledge multiplicatively, using the 
probability formula for independence (the basis of " id-
iot" Bayes classifiers). 

Kwok and Carter used a heuristic approximation to 
Bayesian decision theory [Kwok and Carter, 1990]; they 
built multiple decision trees and when processing a new 
example, processed it wi th each tree individually and av­
eraged the multiple class predictions. Gams discussed 
the notion of "redundant knowledge" [Gams, 1989], 
where he weighs up the predictions of several overlap­
ping rules when classifying a new example. Jacobs et al. 
present another approach that does adaptive mixing of 
multiple feed-forward networks [Jacobs et a/., 1991]. A 
survey of some related theoretical work in "aggregrating 
learning strategies" and "weighted majori ty" is given in 
[Haussler et a/., 1991]. 

Suggested modifications to learning algorithms rarely 
perform consistently better (see for instance [Mingers, 
1989]). The most striking thing about the use of multiple 
models is that it does appear to give consistently better 
performance, and can often be implemented as a control 
module on top of an existing algorithm. 

4.2 I nc remen ta l learn ing a lgor i thms 

Incremental learning applies when new training exam­
ples are continually being supplied and we wish to up­
date our current hypothesises) given the few additional 
examples. The contrasting approach is batch learning 
where examples are supplied in one batch. The major 
approach for developing an incremental algorithm is to 
modify a batch learning algorithm. This has the advan­
tage that the long sequence of theoretical and empirical 
work that led to the development of the algorithm is not 
wasted. Some algorithms, however, are designed to be 
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incremental from the beginning [Gennari et a/., 1990]. 
These algorithms can suffer from order-sensitivity [Lan-
gley and McKusick, 1990], which is an incremental man­
ifestation of the overfitting problem, a problem which is 
largely solved for batch algorithms. 

There are two broad cases where a batch algorithm 
can be easily converted to an incremental algorithm. In 
the first case, Bayesian classifiers and many classical sta-
tistical methods are naturally incremental because they 
are calculated from simple summary statistics such as 
means and variances that are readily updated wi th ad­
ditional data. These summary statistics are an example 
of sufficient statistics, discussed in most advanced statis­
tical texts. In the second case, Perceptrons, most neural 
net methods, Autoclass [Cheeseman et al., 1988], and 
many classical statistical clustering algorithms use itera­
tive convergence methods. These are not naturally incre­
mental, because their performance is generally poor wi th 
only one iteration of the training sample. But because 
of their iterative nature, they can be easily modified to 
form incremental versions. For instance, one could add 
the new training data to the next iteration. 

Some batch algorithms do not lend themselves nat­
urally to incremental versions. In these cases, as done 
with trees [Schlimmer and Granger Jr., 1986], the batch 
learning algorithm is differentiated. That is, an incre­
mental algorithm is designed that attempts to do the 
least amount of work to modify a tree given new data 
so that it looks as if the tree was constructed from the 
entire training sample using the corresponding batch al­
gorithm. Crawford reports this leads to the problem of 
repeated restructuring [Crawford, 1989]. This occurs in 
trees when some subtree is repeatedly restructured dur­
ing incremental updating due to vacillation in what is 
currently considered the "best" test at the root of the 
subtree. This occurs particularly with learning noisy 
concepts (earlier incremental studies looked at logical 
concepts). The Bayesian methods offer a generic rem-
edy for this problem. Essentially, we only restructure 
if we strongly believe the new substructure wi l l be bet­
ter, rather than immediately restructuring the moment 
some new substructure seems slightly better. The loga­
r i thm of the lookahead measure given in Table 1 returns 
a measure whose units are in log-odds. So one can easily 
implement an algorithm that only changes the current 
test at a node if there is another test that has a good 
log-odds (e.g. > 1.0) of being better. This would prevent 
vacillation, and experiments show it does not unduly ef­
fect predictive accuracy. 

4.3 Compar isons of learn ing theor ies 

A basic tool of learning theory in pattern recognition 
and computational learning theory is uniform conver­
gence. If a sample size is large enough, uniform con­
vergence theory provides bounds on the predictive per­
formance of classifiers learned by minimizing empirical 
error [Vapnik, 1982]. In practice when sample sizes are 
not large enough, one needs to make a tradeoff between 
the complexity of the hypothesis chosen and the accuracy 
of the f i t to the data. Here, uniform convergence meth­
ods give less guide, only asymptotic (i.e. large sample) 

theory regarding their performance (see, for instance, 
the principle of structural risk minimization in [Vapnik, 
1982]). These techniques have no theoretical justification 
that they wi l l provide good average-case performance 
on smaller samples. Some experimental comparisons are 
given in [Buntine, 1990c]. Learning theoreticians are now 
using Bayesian methods [Haussler et al., 1991] to analyse 
the smaller sample case, as suggested earlier by Buntine 
[Buntine, 1989]. 

Statisticians overcome these overfitting problems with 
a variety of resampling techniques (as applied to trees, 
see [Breiman et a/., 1984; Crawford, 1989]) that have 
good intuit ion and performance, but again only have 
asymptotic theory. The tree experiments (using cross-
validation) show these techniques work well, however 
they can overprune, so do not have the consistency of 
the full Bayesian approach when sample sizes are smaller. 
They are quick to code in many cases and hence offer a 
viable alternative. 

Only Bayesian decision theory is able to claim that it 
is the most rational alternative in the information poor 
environment of learning from smaller samples [Berger, 
1985]. Minimum encoding approaches [Rissanen, 1989] 
are sometimes touted as alternatives, however they are, 
mathematically, an interpretation of the Bayesian "most 
probable model" approach, which itself is an approxima­
tion to Bayesian decision theory [Wallace and Freeman, 
1987; Buntine, 1990c]. Experiments support this approx­
imation view, and also indicate the minimum encoding 
approximation can degrade significantly as the sample 
size decreases. This happens because the encoding meth­
ods do not consider multiple models, as suggested here. 

In Bayesian theory, priors are viewed as assumptions 
that are essential when making inference from limited 
information such as a small training sample. Uniform 
convergence theory constrains samples so they are large 
enough to make the effect of the prior assumptions neg­
ligible [Buntine, 1990c, Lemma 4.2.1]. According to 
Bayesian theory, methods applied to smaller samples 
have implicitly built in particular assumptions which 
correspond to a choice of prior. Breiman et a/.'s cost 
complexity pruning with cross validation and the 0-
SE rule, for instance, favors smaller trees. And the 
various minimum encoding approaches [Rissanen, 1989; 
Quinlan and Rivest, 1989] have a very strong preference 
towards smaller trees. Bayesian methods differ in that 
they make these unavoidable prior assumptions explicit, 
allowing them to be specified by the user, or providing 
fairly objective assumptions as a fall-back. 

5 Learning Bayesian Networks 
To illustrate the algorithm strategy again, I wi l l outline 
the development of an algorithm for learning Bayesian 
networks. This yields a one-step lookahead heuristic 
search algorithm, wi th smoothing on the final structure. 
The algorithm is analogous to the tree algorithms just 
presented. A similar method has been independently de­
veloped and implemented by Herskovits and Cooper and 
they report good experimental results [Cooper and Her­
skovits, 1991]. The different approach of Geiger et al 
is concerned with learning networks from known depen-
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dency information [Geiger et al, 1990] (for instance, as 
extracted from a large sample) so is not relevant to the 
problem of learning from a smaller sample when depen­
dency information is uncertain. 

Bayesian networks in their simplest formulation spec­
ify dependence properties between variables by using a 
directed acyclic graph. They describe probabilistic mod­
els useful for non-directed classification. Figure 1 shows 

Figure 1: Bayesian network for a simple system 

a simple Bayesian network. The set of variables that 
have outgoing arcs to a variable are called the parents of 
the variable. These parents specify the network struc­
ture. Each variable also has an associated conditional 
probability table which gives probabilities for different 
values of the variable given values of its parent variables. 
For instance for the graph in the figure, we need values 
for - The parent struc­
ture and the conditional probabilities specify the model, 
as given by the likelihood function in Table 2. For ease of 
presentation, the learning algorithm presented here as­
sumes variables are binary; this can be easily extended 
to multivalued or to real-valued variables. 

The following notation is used. A Bayesian network 
consists of a set of binary discrete variables where each 
variable has a set of parent variables I I X . Assume 
variables take the values 1 or 2. For instance, for the 
graph in the figure, The set 
of values for the cartesian product of variables in IIx is 
v(IIx). The number of examples in the training sample 
Sample wi th assuming every 
example in Sample has variable values fully specified. 
The conditional probabilities for variables are given by 
the probabilities as specified in the likelihood function 
in Table 2. 

The learning algorithm is developed analogously to 
the tree learning algorithm. The corresponding results 
of the Bayesian analysis are given in Table 2. The net­
work model has a structural component I I , the parent 
function, and a continuous component 0, the conditional 
probabilities. The prior on the continuous component is 
similar to the tree prior. A form for P r ( I I ) is not given 
in the table; it could be chosen to be uniform, or take 
some other simple form. A one-step lookahead heuristic 
search procedure for growing a high posterior structure 
can be developed analogous to the tree case. Start with 
the tr ivial structure where no variables have parents, and 
repeatedly add a new parent to maximize the posterior 
at each stage. Notice the adding of parents also has to 
be constrained so that the resultant graph has no cycles. 
A suitable heuristic measure for lookahead is given in the 
table. This gives the increase in posterior due to making 

y a parent of x. Notice the lookahead values calculated 
for a variable x remain unchanged if a new parent has 
just been added to another variable x'. This means at 
each cycle when choosing the next best parent to add, 
l itt le recalculation needs to be done. 
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