
Der iva t ion Procedures for Ex tended Stable Mode ls

Lu is M o n i z Pere i ra and Joaqu im N. Apa r i c i o and Jose J ,
AI Centre, Uninova and DCS, U. Nova de Lisboa

2825 Monte da Caparica
Portugal

A l feres

A b s t r a c t

We present derivation proof procedures for ex­
tended stable model semantics. Given program
II and goal G, G belongs to the well founded
model of El iff there is a WFM-derivation for
G in I I . Likewise, given program II and goal G,
G belongs to some extended stable model of II
iff there is a XSM-der i va t ion for G in I I . Cor­
rectness (completeness and soundness) of these
procedures is discussed. Example derivations
are exhibited, as well as a simple Prolog imple­
mentation that directly mirrors the procedures.

1 I n t r o d u c t i o n

Well Founded Semantics (WFS) [Van Gelder et a/.,
1990] adequately captures various forms of hypotheti­
cal reasoning [Pereira et a/., 1991c, Pereira et a/., 1991d,
Pereira ct a/., 1991b, Pereira et al., 1991a] if we inter­
pret the well-founded model (WFM) of a program II
as a (possibly incomplete) core view of the world, the
extended stable models (XSMs) specifying alternative
complementary consistent views of the world, all of each
containing the core WFM.

The paper is organized as follows: in section 2 we
review well founded semantics. In section 3 we de­
fine WFM-der ivat ions, discuss their correctness, and
give examples. Next, in section 4, we define XSM-
derivations and discuss their correctness. Finally, in sec­
t ion 5, a Prolog implementat ion is produced, directly
reflecting the derivation procedures mentioned. More
details can be found in an extended version of this paper
[Pereira et al., 1990].

By a logic program II we mean a finite set of univer­
sally closed rules of the form: where

H is an atom and the Li's are literals. When
n = 0, we also wri te where t stands for an atom
satisfied in all models. Negative literals are expressed
as 4 where A is an atom. We denote by L i t (I I) the
set of literals in ground(I I) , the Herbrand instantiation
of program I I . We denote the well founded model of a
program I I by W F M (I I) , and an extended stable model
(which may be the well founded one) by XSM(II).

2 T h e E x t e n d e d Stable M o d e l
Semantics

In this section we characterize the Well Founded and
Extended Stable Models of a program, based on [Przy-
musinska and Przymusinski, 1990]. Alternative defini­
tions of the Well Founded Semantics can be found in
[Van Gelder ct a/., 1990] or in [Przymusinski, 1989]. Be­
cause the semantics is 3-valued, we begin by defining
3-valued interpretations.

D e f i n i t i o n 2.1 A 3-valued Herbrand interpretation I of
a first-order language L is any pair (T ; F) , where T and
F are disjoint subsets of the Herbrand base H. T con­
tains all ground atoms true in 7, F contains all ground
atoms false in /, and the t ru th value of the remaining
atoms, those in is undefined (or un­
known).

An alternative way to represent an interpretation / =

P r o p o s i t i o n 2.1 Any interpretat ion can be
equivalently viewed as a function where

, defined by:

D e f i n i t i o n 2.2 The function can be re­
cursively extended to the truth valuation function i :
Lit(II) -----> V defined on the set L i t (I I) of all literals of
the language as follows, where A is a ground atom:

D e f i n i t i o n 2.3 A non-negative program is a program
whose premises are either positive atoms or the special
proposition u. Every interpretat ion I satisfies
1/2, and so u denotes the undefined (or
unknown) value.

T h e o r e m 2.1 (Generalization of [Van Emden and
Kowalski, 1976]) Every non negative logic-program has
a unique least1 3-valued model.

Pereira, Aparicio, and Alferes 863

Next we define the program transformation U/M (I I
modulo M), which is a 3-valued extension to the 2-valued
transformation in [Gelfond and Lifschitz, 1988].

D e f i n i t i o n 2.4 Let II be a logic program and let I
be a 3-valued interpretat ion. By the extended GL-
transformation of II modulo I we mean a new (non-
negative) program 11/I obtained from II by performing
the following three operations:

• Removing from II all rules which contain a negative
premise L =~A such that i(L) = 0.

• Replacing in all remaining rules those negative
premises L = ~ A which satisfy i(L) = 1/2 by u.

• Removing from all the remaining rules those nega­
tive L =~A which satisfy i(L) = 1.

Since the resulting program 11/7 is non-negative, by
theorem 2.5, it has a unique least 3 valued model. We
define T*(I) (a generalization of the T operator [Gelfond
and Lifschitz, 1988]) to be the 3-valued least model of
I I / I .

D e f i n i t i o n 2.5 A 3-valued interpretat ion I of a logic
program II is called an Extended Stable Model XSM of
II iff T* (/) = / .

In order to check if I is an XSM of a program we give
a constructive definit ion of T* operator. For this pur­
pose we define , a generalization of the Van Emden-
Kowalski operator

D e f i n i t i o n 2.6 Let II be a non-negative program, I an
interpretation of II and A is a ground atom. Then
is an interpretat ion defined as follows:

864 Logic Programming

3 De r i va t i on P rocedure for the W e l l
Founded M o d e l

Now we present a derivation procedure such that given a
program II and a goal G the derivation succeeds iff G is
in WFM(II). The procedure is defined over the ground
instance of I I , the set of all ground instances of the rules
in II w i th respect to its Herbrand Universe. Without
loss of generality we can assume that II has been already
instantiated and thus consists of a (possibly infinite) set
of proposit ional rules.
D e f i n i t i o n 3.1 A positive (resp. negative) interpreta­
tion / is a set of positive (resp. negative) literals from
Lit(H).

Pereira, Aparicio, and Alferes 865

most recent one in C (the r ightmost). The condition
G /jb in D2.1 and D3 means that if a tree has a node
L (resp. ~" then it may have no node (resp. L).

We may th ink of the derivation rules as stating con­
ditions for re-wri t ing a l i teral , possibly by cancelation
wi th a previous ancestor in the tree. For the well founded
model derivation procedure the only possible cancelation
of a l i teral w i th an ancestor is provided by rule D1.2.

E x a m p l e 4 The W F M - T r e e for p given program
is:

E x a m p l e 5 The WFM-Tree for for the program
below is:

E x a m p l e 6 The WFM Tree for
below is:

for the program

Note the WFM of this program is

3.2 P r o p e r t i e s of WFM-Trees
By definit ion WFM-Trees are finite. The only type of
leaf nodes in a WFM-tree are:

1) a positive l i teral wi th no identical ancestor
2) a negative l i teral w i th no identical ancestor
3) a negative l i teral w i th an identical ancestor

P r o p o s i t i o n 3.2 Every branch from the root l i teral has
at most one node wi th an identical ancestor.

P r o p o s i t i o n 3.3 If a leaf node for l i teral L has an iden­
tical ancestor then L is a negative l i teral.

P r o p o s i t i o n 3.4 If a leaf node for l i teral L has no iden­
tical ancestor and is a negative l i teral L = then there
are no rules for H in I I .

P r o p o s i t i o n 3.5 If a leaf node has a positive l iteral L
then no node in the branch from the root l i teral to L
has an identical ancestor l i teral , and there is a fact L in
program I I .

L e m m a 3.1 (Leaves are in the WFM) If T is a
WFM(G,Il) tree for G in II then:

1) a positive l i teral which is in a leaf node, and has
no identical ancestor, is in WFM(II)

2) a negative l i teral which is in a leaf node, and has
no identical ancestor, is in WFM(II)

3) a negative l i teral which is in a leaf node, and has
an identical ancestor is in WFM(II)

P r o o f :

3.1.1) if a positive l i teral L is in a leaf node, and has no
identical ancestor, then there is a fact L in II and
facts are always in WFM(II).

3.1.2) if a negative l i teral is in a leaf node, and has
no identical ancestor, then there are no rules for L
in I I . For an atom L such that no rules for it exist
in II, is in WFM(Il).

3.1.3) if a negative l i teral is in a leaf node and has
an identical ancestor, we have:

i.e. there is at least one chain f rom L to L, and
possibly a rule for L, such as (3) in the program
below:

i.e. in II there is a chain of positive literals

L ... H ... L, and the well founded model contains

Note that for the model not to contain by (3)
all B i would have to differ from false. But in that
case the tree named B i, in the figure above could not
exist, nor the father node

L e m m a 3.2 Given a WFM-tree for G then, for any
internal node l iteral H, if its immediate descendents
D\ . . . D1 are in the well founded model, then II is in
the WFM.
Proo f rThe proof follows easily from the observation that
the only tree formation rules introducing descendents
nodes are WFM-I .3 and WFM- I I . 2 and the definition
of 3-valued interpretat ion (cf. footnotes 5 and G).

T h e o r e m 3.3 (Soundness of WFM-Trees) Let II be a
program and L a l i teral. If there is a WFM-tree for L
then L is in WFM(II).

P r o o f : Follows directly from lemma 3.1 and lemma 3.2
above.

C o r o l l a r y 1 Given program II and l i teral G such that
G WFM(II) then all literals in the WFM{G,II) are
in WFM(U).

T h e o r e m 3.4 (Completeness of WFM trees) Let II be
a program and L a l i teral. If L is in W F M (I I there is
a W F M - t r e e for L.

P r o o f : Appears in the extended version.

866 Logic Programming

2) if L has an identical ancestor A and all literals
in the branch L to A are negative then N is
a leaf (rule D1.2)

3) if there are r rules for L:

in I I , then node has r immediate descen-
dents . . . each one selected from
the body of a different rule

4) if has an identical ancestor A w i th some
positive l i teral in between, then TV is a leaf (rule
D1.2)

X S M - I I If N is positive then:
1) if there is a fact N in I I , then N is a leaf (rule

D3.1)
2) the n immediate descendents are those literals

B1 ... Bn, such that a rule N B1 ... Bn ex­
ists in II (rule D4)

3) if N has an identical ancestor A, wi th some
negative l iteral in between, then TV is a leaf
(rule D3.2)

A XSM-Tree has two types of leaves not appearing
in the W F M - T r e e , namely: i) positive l i teral leaf nodes
having an identical ancestor and w i th some negative l i t­
eral in between; and ii) negative l i teral leaf nodes having
an identical ancestor and wi th some positive l iteral in
between.
E x a m p l e 8 Al though the program
has no WFM-Tree it has the following XSM-Trees
(among others):

The soundness proof is similar to that of WFM-Trees ,
but the equivalent to lemma 3.1 is now:
L e m m a 4.1 (Leaves are in the XSM)li T is a XSM
tree for G then:

4.1.1) a positive l i teral in a leaf node, having no iden­
tical ancestor, is in some XSM (I I)

4.1.2) a negative l i teral in a leaf node, having no
identical ancestor, is in some XSM(U)

4.1.3) a negative l i teral in a leaf node, having an
identical ancestor, is in some A 'SM(IT)

4.1.4) a positive l i teral in a leaf node, having an iden­
tical ancestor and some negative l i teral in between,
is in some X S M (I I)

4.1.5) a negative l i teral in a leaf node, having an
identical ancestor and some positive l iteral in be­
tween, is in some X S M (I I)

P r o o f : Proof of 1,2 and 3 4.1.i, 4.1.ii and 4.1.iii fol­
lows from lemma 3.1 and the fact that all literals in the
WFM(II) are in all ATSM(I I) .

Pereira, Aparicio, and Alferes 867

Acknowledgements
We thank ESPRIT BRA C O M P U L O G (no. 3012),
IN IC , JN ICT and Gahinete de Filosofia do Conheci-
mcnto.

References
[F i t t ing, 1985] M. F i t t ing . A Kripke-Kleene semantics

for logic programs. Journal of Logic Programming,
2(4):295-312, 1985.

[Gelfond and Lifschitz, 1988] M. Gclfond and V. Lifs-
chitz. The stable model semantics for logic program­
ming. In International Conference on Logic Program-
ming, 1988.

[Pereira et a/., 1990] Luis M. Pereira, Joamiim N.
Aparicio, and Jose J. Alferes. A derivation procedure
for extended stable models. Technical report, AI Cen-
tre/Uninova, 1990.

[Pereira et al, 1991a] L. M. Pereira, J. N. Aparicio,
and J. J. Alferes. Counterfactual reasoning based
on revising assumptions. Technical report, AI Cen-
tre/Uninova, 1991.

[Pereira et al., 1991b] Luis M. Pereira, Jose J. Alferes.
and Joaquim N. Aparicio. Contradiction removal
within Well Founded Semantics. In First Logic Pro­
gramming and N on-Monotonia Reasoning Workshop.
M I T Press, 1991.

[Pereira et al., 1991c] Luis M. Pereira, Joaquim N.
Aparicio, and Jose J. Alferes. Hypothetical reasoning
wi th well founded semantics. In Third Scandinavian
Conference on Artificial Intelligence. IOS, 1991.

[Pereira et ai, 1991d] Luis M. Pereira, Joaquim N.
Aparicio, and Jose J. Alferes. Nonmonotonic reason-
ing wi th well founded semantics. In International Con-
ference on Logic Programming. M I T Press, 1991.

[Przymusinska and Przymusinski, 1990] I I . Przymusin-
ska and T. Przymusinski. Semantic Issues in De-
ductive Databases and Logic Programs. Formal Tech
niques in Art i f ic ia l Intelligence. Nor th Holland, 1990.

[Przymusinski, 1989] T. C. Przymusinski. Every logic-
program has a natural stratif ication and an iterated
fixed point model. In Eight Symposium on Principles
of Database Systems, pages 11-21. A C M SIGACT
SIGMOD, 1989.

[Przymusinski, 1990] T. Przymusinski. Extended stable
semantics for normal and disjunctive programs. In In-
ternational Conference on Logic Programming, pages
459 477,1990.

[Van Emden and Kowalski, 1976] A. Van Emden and
R. Kowalski. The semantics of predicate logic as a pro­
gramming language. Journal of the ACM, 23(4):733
742, 1976.

[Van Gelder et al., 1990] A. Van Gelder, K. A. Ross,
and J. S. Schlipf. The well-founded semantics for gen­
eral logic programs. Journal of the ACM, 1990.

868 Logic Programming

