Derivation Procedures for Extended Stable Models

Luis Moniz Pereira and Joaquim N. Aparicio and Jose J, Alferes
Al Centre, Uninova and DCS, U. Nova de Lisboa
2825 Monte da Caparica
Portugal

Abstract

We present derivation proof procedures for ex-
tended stable model semantics. Given program
Il and goal G, G belongs to the well founded
model of El iff there is a WFM-derivation for
Gin Il. Likewise, given program Il and goal G,
G belongs to some extended stable model of Il
iff there is a XSM-derivation for G in Il. Cor-
rectness (completeness and soundness) of these
procedures is discussed. Example derivations
are exhibited, as well as a simple Prolog imple-
mentation that directly mirrors the procedures.

1 Introduction

Well Founded Semantics (WFS) [Van Gelder et al.,
1990] adequately captures various forms of hypotheti-
cal reasoning [Pereira et a/., 1991c, Pereira et a/., 1991d,
Pereira ct a/., 1991b, Pereira et al., 1991a] if we inter-
pret the well-founded model (WFM) of a program Il
as a (possibly incomplete) core view of the world, the
extended stable models (XSMs) specifying alternative
complementary consistent views of the world, all of each
containing the core WFM.

The paper is organized as follows: in section 2 we
review well founded semantics. In section 3 we de-
fine WFM-derivations, discuss their correctness, and
give examples. Next, in section 4, we define XSM-
derivations and discuss their correctness. Finally, in sec-
tion 5, a Prolog implementation is produced, directly
reflecting the derivation procedures mentioned. More
details can be found in an extended version of this paper
[Pereira et al., 1990].

By a logic program Il we mean a finite set of univer-
sally closed rules of the form: H «— L;,...,Ls where
> 0, His an atom and the Li's are literals. When
n =0, we also write H — t, where t stands for an atom
satisfied in all models. Negative literals are expressed
as ~4 where A is an atom. We denote by Lit(ll) the
set of literals in ground(ll), the Herbrand instantiation
of program |l. We denote the well founded model of a
program Il by W F M(Il), and an extended stable model
(which may be the well founded one) by XSM(II).

2 The Extended Stable Model
Semantics

In this section we characterize the Well Founded and
Extended Stable Models of a program, based on [Przy-
musinska and Przymusinski, 1990]. Alternative defini-
tions of the Well Founded Semantics can be found in
[Van Gelder ct a/., 1990] or in [Przymusinski, 1989]. Be-
cause the semantics is 3-valued, we begin by defining
3-valued interpretations.

Definition 2.1 A 3-valued Herbrand interpretation | of
a first-order language L is any pair (T; F), where T and
F are disjoint subsets of the Herbrand base H. T con-
tains all ground atoms true in 7, F contains all ground
atoms false in /, and the truth value of the remaining
atoms, those in IJ = H — {T'U F), is undefined (or un-
known).

An alternative way to represent an interpretation / =
(T;F)is I =TU{~L|L € F}.
Proposition 2.1 Any interpretation I = {T; F') can be
equivalently viewed as a function I : H — V where
V = {0,1/2,1}, defined by:

e J(A)=0ifAEF

e J{AY=1/2if AU

o [(A)=1ifAeT
Definition 2.2 The function I : H — V can be re-
cursively extended to the fruth valuation function i

Lit(ll) ----- > V defined on the set Lit(ll) of all literals of
the language as follows, where A is a ground atom:

o i{A) = I(A)

e i(~A) =1~ I(A)
Definition 2.3 A non-negative program is a program
whose premises are either positive atoms or the special
proposition u. Every interpretation | satisfies I{u) =

1/2, and so #{~u) = 1/2. u denotes the undefined (or
unknown) value.

Theorem 2.1 (Generalization of [Van Emden and
Kowalski, 1976]) Every non negative logic-program has

a unique least' 3-valued model.

'f I and J are two intgerpretations then we say that
I'< Jif I{A) € J(A) for any ground atom 4. H T isa

Pereira, Aparicio, and Alferes 863

Next we define the program transformation UM (Il
modulo M), which is a 3-valued extension to the 2-valued
transformation in [Gelfond and Lifschitz, 1988].

Definition 2.4 Let Il be a logic program and let |
be a 3-valued interpretation. By the extended GL-
transformation of |l modulo | we mean a new (non-
negative) program 11/l obtained from Il by performing
the following three operations:

+ Removing from Il all rules which contain a negative
premise L =~A such that i(L) = 0.

* Replacing in all remaining rules those negative
premises L =~A which satisfy i(L) = 1/2 by u.

* Removing from all the remaining rules those nega-
tive L =~A which satisfy i(L) = 1.

Since the resulting program 11/7 is non-negative, by
theorem 2.5, it has a unique least 3 valued model. We
define T*(I) (a generalization of the T operator [Gelfond
and Lifschitz, 1988]) to be the 3-valued least model of
/1.

Definition 2.5 A 3-valued interpretation | of a logic
program |l is called an Extended Stable Model XSM of
I iff T (/) = /.

In order to check if / is an XSMof a program we give
a constructive definition of T* operator. For this pur-
pose we define ¥*, a generalization of the Van Emden-
Kowalski operator .

Definition 2.6 Let Il be a non-negative program, / an
interpretation of Il and A is a ground atom. Then ¥~([)
is an interpretation defined as follows:

e U*(IN(A)=1iff thereisarule A — 4,,..., 4, in
Il such that J{A4;)=1 for all i < n.

s U ({A) = 0 iff for every rule A — A4,,.
II there is an ¢ < n such that J{A;) =0,

s ¥ (I){A)=1/2, otherwise

We define ¥*17 = ¢*(¥* "~ and ¥ =< {},H >

Definition 2.7 Let I be an interpretation and II a
logic program. I'*(I) for Il can be defined as I'*(]) =
V1w (/I

This alternative definition of the WF semantics was
proved equivalent to the original one [Van Gelder et al.,
1990} in [Przymusinska and Przymusinski, 1990} by the
following theorem:

Theorem 2.2 The Well Founded Model of a program
1I is the F-least? Extended Stable Model of II. Conse-
quently the W FS coincides with the XSMS.

sy Apin

collection of interpretations, then an interpretation I € T is
called minimal in 7 if there is no interpretation J € T such
that J < J and 7 # J. An interpretation [is called least in
T if I < J, for any other interpretation J € I. A model of a
theory R is called minimal (regp. least) if it is minimal (resp.
least) among all medels of R.

If I = (T, F) snd ' = (T', F'} are two interpretations,
then we say that f <p I' i# T C 7' and ¥ € F'. An inter-
pretation I is called F-least in a collection of interpretations
I if I €5 J for any interpretation J € I [Fitting, 1985)

864 Logic Programming

To obtain a constructive definition of the WFAM of
a program Il we use the following sequence of {I,} of
interpretations of II:

o In={}L{}H

o Jop1 =T"(1,)

The W F model of Il is the least fixed point of this se-
quence, i.e. Iy [Przymusinska and Przymusinski, 1990).

3 Derivation Procedure for the Well
Founded Model

Now we present a derivation procedure such that given a
program Il and a goal G the derivation succeeds iff G is
in WFM(Il). The procedure is defined over the ground
instance of |1, the set of all ground instances of the rules
in Il with respect to its Herbrand Universe. Without
loss of generality we can assume that Il has been already
instantiated and thus consists of a (possibly infinite) set
of propositional rules.
Definition 3.1 A positive (resp. negative) interpreta-
tion / is a set of positive (resp. negative) literals from
Lit(H).
Definition 3.2 A contezt ', is an ordered set of pos-
itive or negative interpretations. Let 5; be a positive
or a negative interpretation; €, denotes the context
S182... 8. Cy is a negative (resp. positive} conlext if
S, is a negative interpretation (resp. positive interpreta-
tion). C, + G denotes the concatenation 5,5;...5,G.
A literal G is in context (', (G € Cy, for short) G € S,,.
A context €, implicitly defines an interpretation 7,,(C,,)
which is the set of literals in partial interpretations S,
i.e. I.{C,) = UicnyS:, and for no atom A both A and
~A belong to it.
Definition 3.3 A contestual formula {C-formula} is a
pair C#F, where C is a context and F is au expression
Luilt from atoms with conjunctions and negations. Aux
cmpty C-formula is the C-formula C#t.

By the interpretation I(C#F) we mean the interpre-
tation I{C) assaciated with context C.
Definition 3.4 {WFM-derivation) Let
R; = (C;#F;,1;) where C; is a context, and I; a set
of literals, A W FM -dertvation from R; to R, is a se-
quence from < C;#Fi; I; > to < Co#tFy I, > such that
for any (Cie# Fi; Iie} (4 < k < n), the following derivation
rules apply (where we assuine Cpyy = Cp and L1, = I
unless stated otherwise).
D1.1. if Fp =~ and there is no rule G « B then

Riyr = (Cit ~G#t I U {~G}).
D1.2. if Fi =~G and ~G € Ci then Fiyy =t
D2.1. if F =~G and there are r rules for G with G,
(l1<i<r)ashead, ~G g Ct, GE& I}

Gy~ Bu,...,Bm

Gr -— Blra---sBm’r
in Il and G ¢ I, then
Rg+1 - (Ck+ "-'G# Gl, Ay Gp; Ik L {“'-'G}) where
G is a short hand for ~(By;,..., Bni)

D2.2. if F =~ (G,...,Gm) then Rpyy = {Ce#t ~
Gi; Ip) for some 1 € i < m.

D3.if Fr = G and G ¢ I, then
rule G « By,....Bpn € NI, B4y =
G#(Blv ey Bﬂ‘l);Ik U {G}>

D4. if Fi, = (9.G) then Heyy = (Co#tG; I if thereis
a derivation from (Ci#g; I} to (L#t; 1),

There is a W FM-derivation for & in II iff there is a
sequence from ({}#G; {}) to {L#t; I}, for some I.

We argue these rules are intnitive when one recalls the
definition of 3-valued model [cf. section 2]: rule D1.1
establishes the CW A, Rule D1.2 says that a literal
tuay support on itself when proving its falsity*. Rule
D2.1 says that for an atom to be interpreted as false it
lias to be proven false in all definitions for it. Rule D2.2
says that for a body of a rule to be false it is enough
o prove some literal in the body to be false®. Rule D3
says that for a literal to be truc it is enough to have a
rule with all body literals truc®. Rule D4 says that a
coujunction of formulas is true if each element is true.
Note that i = {J, ., LiW{Fr} if Fy is a literal. This means
we don’t need to explicitly record I at each step k but
situply consider all the C; in (F < k}. Note that rule D4
introduces a notion of sub-derivation. We now present
cxamples illustrating the application of the derivation
rafes.

for some

(Cr +

Example 1 For the program Il = {p —~gq}, a WFM-
derivation for p is:

{}#p
{p}# ~y D3
{p~q}#t Dl

Example 2 Let Il be the "work-tired” example [Prey-
musinski, 1990] with thie obvious abbreviations:

we—t {1)
t —~s {2)
& —map {3}
a—w,~p (4)
P
A failed derivation for ~a is:

{}# ~a

{~a}# ~(w,~p) D2.1 and (4)

{~a}# ~w D22

{~a ~w}# ~(~t} D2.1 and (1)

{~a Mw}#t D22 and ~(~t) =t

{~at ~tir, t)} ~s D3 and (2)

D2.2,D2.1 and ~(~w} = w and {3
failure to continue

{~a ~w,t, ~3}F#w

INote that according to the second point of the definition
of the ¥* operator, if an atom A has no rules in II, then
T (IN(A) = 0 for all interpretations I of P.

* According to the definition of ¥*!", we start with ¥*7¢ =
{{}. H)}. So every negative literal may depend on itself. There
is no corresponding rule for positive literals

% Again these two rales follow exactly the second point of
definition 2.6

5This is what is stated in the first point of the definition
of ¥*

and a successful derivation for ~ua:

{}# ~a
{~u}# ~{w,~p) D21 and 4
~a}fp D22, 021 and ~{~p) = p and {4)

{ru, p}#t D3

Example 3 There is no derivation for (p,) in program
H = {p Q—‘—-Nq, q 1——‘\7’}‘

{}#(IJ‘Q) IU = (0
{}#P IL.=0
{p.~q}i#tp I = {p.~q} (faiture

Note that even the selected literal order differed the
derivation definition is still applicable because we keep
a record of I at each derivation step,

3.1 WFM-Trees
A derivation from (P#G:0) to (L#t; 1) may be inter-

preted as the construction of certain trees 1o be intro-
duced now. These trees are obtained from the derivation
rules with the following in mind: at each derivation step
{Cr#t Lyt L), Cy is the ordered ancestor list of literal Ly
which is a node of the tree, and Jg is the set of all literals
in the nodes already visited by the derivation procedure,
In the following we will ount the special symbol t.

Definition 3.5 (WFM-Tree) A WFM-tree for &

given program Il WEFAM (G II} is a finite tree with root
G, such that if N is the literal of a node of the tree then:

WFM-I If V is negative, let N =~L and:
1) if there are no rules for L then N is a leafl (rule
D1.1)
2} if ~L has an identical ancestor A and all hiterals
i the branch from ~L to 4 are negative then
N i3 a leaf (rule D1.2)
3V if there are r rules for L: (rules D2.14+D2.7)

L.'I._ Bl]!"'!Bkl

Ll" — Bll"\-" 1Bk"r

in I, then node ~L has r immediate descen-
dents ~B;y,..., ~DBy,., each one selected from
the body of a diffcrent rule.
WFM-II If N is positive then:

1} If thereis a fact N in II, then N is a leaf (rule
D3}

2) the n immediate descendents are those literals
By ... B,, such that a rule N « By,... B, ex-
ists in I1 {rule D4}

By considering all possible choices of rules and literals
all WFM-trees are obtained,

Propasition 3.1 For every program I1 and goal & there
is a WFM-derivation for & in II iff there is a WF M-
Tree(G,II}).

Note that a context C' in a C-formula C# L, expresses
a branch from the root of the tree to node L. Given
a tree and a node, its context is implicitly defined by
the ordered set of its ancestors, with its father being the

Pereira, Aparicio, and Alferes 865

most recent one in C (the rightmost). The condition
G ¢ fjb in D2.1 and D3 means that if a tree has a node
L (resp. ~E}J then it may have no node ~L (resp. L).
We may think of the derivation rules as stating con-
ditions for re-writing a literal, possibly by cancelation
with a previous ancestorin the tree. For the well founded
model derivation procedure the only possible cancelation
of a literal with an ancestor is provided by rule D1.2.

Example 4 The WFM-Tree for p given
{p g} is:

program

[2]
[~]

Example 5 The WFM-Tree for ~a for the program

below is:
— i (1} (]
ver W [~=]
8 —ran (3)
av—w,~p (4) -

n

Example 6 The WFM Tree for ~a for the program
below is:

a —~p,r (1}

a—~g (2
p—~p (3)
Note the WFM of this program is {~a,~r,~gq}.
3.2 Properties of WFM-Trees
By definition WFM-Trees are finite. The only type of

leaf nodes in a WFM-tree are:
1) a positive literal with no identical ancestor
2) a negative literal with no identical ancestor
3) a negative literal with an identical ancestor

Proposition 3.2 Every branch from the root literal has
at most one node with an identical ancestor.

Proposition 3.3 If aleaf node for literal L has an iden-
tical ancestor then L is a negative literal.

Proposition 3.4 Ifaleaf node for literal L has no iden-
tical ancestor and is a negative literal L =~H then there
are no rules for H in Il.

Proposition 3.5 If a leaf node has a positive literal L
then no node in the branch from the root literal to L
has an identical ancestor literal, and there is a fact L in
program I1I.

Lemma 3.1 (Leaves are in the WFM) If T is a

WFM(G,Il) tree for G in Il then:

1) a positive literal which is in a leaf node, and has
no identical ancestor, is in WFM(I)
2) a negative literal which is in a leaf node, and has
no identical ancestor, is in WFM(II)

866 Logic Programming

3) a negative literal which is in a leaf node, and has
an identical ancestor is in WFM(l)

Proof:

3.1.1) if a positive literal L is in a leaf node, and has no
identical ancestor, then there is a fact L in Il and
facts are always in WFM(I).

3.1.2) if a negative literal ~L is in a leaf node, and has
no identical ancestor, then there are no rules for L
in 1. For an atom L such that no rules for it exist
in Il, ~Lis in WFM(I).

3.1.3) if a negative literal ~L is in a leaf node and has
an identical ancestor, we have:

A

i.e. there is at least one chain from L to L, and
possibly a rule for L, such as (3) in the program

below:
(1) L~ ... H. .
{(2) H~...L...
(3 L~ DB,...8,
i.e. in Il there is a chain of positive literals

L..H..L, and the well founded model contains

el Lo H L~

Note that for the model not to contain ~L by (3)
all B; would have to differ from false. But in that
case the tree named B;, in the figure above could not
exist, nor the father node ~Ji.
Lemma 3.2 Given a WFM-tree for G then, for any
internal node literal H, if its immediate descendents
D\ ... D; are in the well founded model, then /I is in
the WFM.
ProofrThe prooffollows easily from the observation that
the only tree formation rules introducing descendents
nodes are WFM-1.3 and WFM-I1.2 and the definition
of 3-valued interpretation (cf. footnotes 5 and G).

Theorem 3.3 (Soundness of WFM-Trees) Let Il be a
program and L a literal. If there is a WFM-tree for L
then L is in WFM(I).

Proof: Follows directly from lemma 3.1 and lemma 3.2
above.

Corollary 1 Given program Il and literal G such that
G € WFM(II) then all literals in the WFM{G,ll) are
in WFM(U).

Theorem 3.4 (Completeness of WFM trees) Let |l be
a program and L a literal. If L is in WFM(II there is
a WFM-tree for L.

Proof: Appears in the extended version.

4 Derivation Procedure for Extended
Stable Models

We present now a derivation procedure such that, given
a program II and a literal G, the derivation succeeds if
G is in some X SM (II).

Definition 4.1 (XSM-Derivation)

Let R; = {(C;#F;;I;}) where C; is a context and Ia
set of literals. A X.‘.%M-derivntion from R, to R, 15 a
sequence from (Ci# Fi; 1) to {Co#Fn; 1) such that for
any (Co#tFo; L) (1 € k £ n) the following derivation
rules apply (where we assume Cp 1 = Crand Iy = 1
unless stated otherwise):

D1.1 if Fi =~ G and there is no rule G — B then
Rk+1 = (C&'P "-’G#f,]k U {"-’G})

D1.2 if Fy =~G and ~G € Coy, m < k then Fiyy =t

D21 i Fy =~G, ~G ¢ Ci, G € Ii, and there are r
rules for G' with & as head

Gi— Bu,....Bm

Ge+— DBipoio By
in II then Cry, = Cit+ ~G# Gh,...,Gy, and
Ihor = KU ~ G where G; is a short hand for
~(Biiy. s Bmi)

D2.2 if Fy =~(G;,...,Gm) then
Ry = {Co# ~Gi; 1) forsome 1 <i<m

D31if Fp, = G, ~G ¢ I, and G ¢ I, then for
some rule G — Biy,..., By in O, Ry = {(Cy +
G#(B1,....Bn); L U{G})

D3.2 if Frp = G and G € Cy, {m < k) then Fiyy =t

D4 if Fp = (g,G) then Reyy = (Cy#G; Igi) if there is
a derivation from {Cy#g; I} to (L#tt;1,).

Note these derivation rules include, as expected, those

for well WFM-derivations.

Example 7

u—~b (1)
be—na (2)

A X SM-derivation for a 1s as follows:

{}#a
{a}f ~b D3.1 and (1)

{a ~b}#a D2.1 and D2.2 and ~(~a) = a and (2)
{a ~b}#t D32

The X SM-derivation for ~a is as follows:

|
}r}va #‘2 D21 and D2.2 and ~(~b) = b and (1)
{~ab}# ~a D3.1 and (2)
{~ab}#t D1.2

4.1 XSM-trees

Definition 4.2 (XSM-tree) A XSM-tree for G given
program IT, X SM (G, II) is a finite tree with root &, such
that if N is the literal of a node of the tree then:
XSM-I If N is negative, then N = ~L and:

1) if there are no rules for L then N is a leaf (rule
D1.1)

2) if~L has an identical ancestor A and all literals
in the branch ~.L to A are negative then N is
a leaf (rule D1.2)

3) if there are r rules for L: {rutes D2.14D2.2)

Ly~ Byu,...,Bq

L, — Blt'a-'-,Bk"r

in 11, then node ~L has r immediate descen-
dents ~Bj; ... ~By,, each one selected from
the body of a different rule
4) if ~L has an identical ancestor A with some
positive literal in between, then TV is a leaf (rule
D1.2)
XSM-I1l If N is positive then:

1) if there is a fact N in Il, then N is a leaf (rule
D3.1)

2) the n immediate descendents are those literals
B; ... B,, such that a rule N «—B; . B, ex-
ists in Il (rule D4)

3) if N has an identical ancestor A, with some
negative literal in between, then TV is a leaf
(rule D3.2)

A XSM-Tree has two types of leaves not appearing
in the WFM-Tree, namely: i) positive literal leaf nodes
having an identical ancestor and with some negative lit-
eral in between; and ii) negative literal leaf nodes having
an identical ancestor and with some positive literal in
between.

Example 8 Although the program {u —~bl —~u}
has no WFM-Tree it has the following XSM-Trees

(among others):
| 2]
|~ | L]
[& | =3

The soundness proofis similar to that of WFM-Trees,
but the equivalent to lemma 3.1 is now:

Lemma 4.1 (Leaves are in the XSM)li T is a XSM
tree for G then:

4.1.1) apositive literal in a leaf node, having no iden-
tical ancestor, is in some XSM (lI)

4.1.2) a negative literal in a leaf node, having no
identical ancestor, is in some XSM(U)

4.1.3) a negative literal in a leaf node, having an
identical ancestor, is in some A'SM(IT)

4.1.4) apositive literal in a leaf node, having an iden-
tical ancestor and some negative literal in between,
is in some XSM(I11)

4.1.5) a negative literal in a leaf node, having an
identical ancestor and some positive literal in be-
tween, is in some XSM(II)

Proof: Proofof 1,2 and 3 4.1.i, 4.1.ii and 4.1.iii fol-
lows from lemma 3.1 and the fact that all literals in the
WFM(II) are in all ATSM(II).

Pereira, Aparicio, and Alferes 867

4.2 Completeness of X SM-Tree
The completeness proof may be found in the full version.

5 A Prolog implementation

We present here a Prolog implementation of the above
procedures which provides them with an operational se-
mantics, Lines are numbered for referencing. The inter-
preter is basically the implementation of the derivation
rules of the procedures [cf. section 3 and 4] plus loop
cliecking. Thus the execution always terminates, The
cudle may be used for W F M -derivations as below, or for
X SM-derivations by deleting line (7.4).mb is the nember
predicate.

a{~ ({G1,6)),1,0,4n) :- #(~G1,I,0 ,dn). (1)

s(~ ({G1,6)).1,0,An) :-!,8(~(G) ,I,0 ,An). (2)
s((G1,6),1,0,An):-?,8(G1,I,II,An),e{(G,I11,0,An). (3)
a(~(~G) ,A ,B ,C) :-t, 8{G,A,B,C). (&)

8{(~G,I, ,An) :- mb{G ,I}, ', fail. (5)

a(G,F, ,4n) - 6 ~ (), mb(~6G,I), !, fail. (6)
a(G,1,[¢I1],An) :- d{G,An,D), (7T)
(Demez, G= {~_), ': D=z 1, fail;

D=a, !, tail; ¥% vim (7.4)
D=a, ')
s(m G, ,_ ,.) :- (G €<=), ', fail. (8)

g(~G,I,0,An} :- !, Ffindall((G<<-B),{(G«<<-B) ,L), (9
all out{~G,L,{~GII]),0,[~GlAn])).

8{G,I,[GII],An) :~ (G <<-). (10}

s{G,I,0 ,An) :- (G<<-B),n(B,[GII],0,IGiAn]).(11)

all out(~6G,[] ,I,I,An). (12
all.cut{~G,[{Gecc-(B1Y))Gn),I,0,An) :- (13)
s{~ (B1).1,II,An), all_out{~G,Gn,II,0,An).

d{~6G,[{~X)|&n],D) :- ', A{~G,[(~X)|An},e, 2HZ,D).
d(~G,[X tAnY.D):-1,d{~G,[X [An],o,ZNZ,D}.

a6, [(~X)1An),D):-1,d4(G,[{(~X)|dn] ,0,ZNZ,D)}.
d(¢.[XlAn),D):- d({ G,[X lAn],e,ZNZ,D).

d(G,[GIT] ,e ,Z ,2) :- var(ZzZ), 1.

d{G,[GIT) ,D ,nz,D) :- !.

d{G, [{~_.),(~X)IT),E0,2,D):~!,d(G, [(~X)|T] ,ED,Z,D).
d(G,[(~.),(X) IT),e,_.D} :-1,d(G,{XIT] ,o,nz,D}.
AG, [(~_},(x} IT],5,.,D} :-!},d(G,[XIT] ,e,nz,D).
A6, [- ,(~X)IT),e,_,D) :-',d(G,[{~X)IT],0.nz,D).
a6, [. ,(~X)11),0,.,0) :-1,4(G,[{(~X)IT], e,nz,D).
d(¢,{. X IT].ED,Z D) :- &(G,EXIT),DE,Z,D). (25)

Lines (1)-(2) correspond to rule D2.2. Line (3) cor-
responds to rule D4, Line (4) is obvious. Lines (5)-{6)
cusure the condition G ¢ Ji. Lines (9). (12) and (13)
correspond to D2.1. Lines (14) - (25) do an ancestor
searclh for literal (@ the result of this search can be:
the literal G has an ancestor node in the current context
{D=z};the litcral G has an ancestor node in some context
other than the current one; the literal G has uo ances-
tor geal and the predicate dist/3 in rule (7) fails. Line
(7.2} corresponds to derivation rule D1.2. Line (7.5) cor-
respouds to rules D1.2 and D3.2. Line (12} accounts for
rule D1.1. Line (7.3) avoids the potential loop of a posi-
tive literal G with an identical ancestor ¢ with no nega-
tive literals in between. A literal G is in W F M (IT) (resp.
X SM(I)) if the query ?- a(G,[],L, [1) succeeds. The
procedure returns in L a set of literals in the WF M (11)
(resp. X SM(II)).

868 Logic Programming

Acknowledgements

We thank ESPRIT BRA COMPULOG (no. 3012),
INIC, JNICT and Gahinete de Filosofia do Conheci-
mcnto.

References

[Fitting, 1985] M. Fitting. A Kripke-Kleene semantics
for logic programs. Journal of Logic Programming,
2(4):295-312, 1985.

[Gelfond and Lifschitz, 1988] M. Gclfond and V. Lifs-
chitz. The stable model semantics for logic program-
ming. In International Conference on Logic Program-
ming, 1988.

[Pereira et a/., 1990] Luis M. Pereira, Joamiim N.
Aparicio, and Jose J. Alferes. A derivation procedure
for extended stable models. Technical report, Al Cen-
tre/Uninova, 1990.

[Pereira et al, 1991a] L. M. Pereira, J. N. Aparicio,
and J. J. Alferes. Counterfactual reasoning based
on revising assumptions. Technical report, Al Cen-
tre/Uninova, 1991.

[Pereira et al., 1991b] Luis M. Pereira, Jose J. Alferes.
and Joaquim N. Aparicio. Contradiction removal
within Well Founded Semantics. In First Logic Pro-
gramming and Non-Monotonia Reasoning Workshop.
MIT Press, 1991.

[Pereira et al., 1991c] Luis M. Pereira, Joaquim N.
Aparicio, and Jose J. Alferes. Hypothetical reasoning
with well founded semantics. In Third Scandinavian
Conference on Atrtificial Intelligence. 10S, 1991.

[Pereira et ai, 1991d] Luis M. Pereira, Joaquim N.
Aparicio, and Jose J. Alferes. Nonmonotonic reason-
ing with well founded semantics. In International Con-
ference on Logic Programming. MIT Press, 1991.

[Przymusinska and Przymusinski, 1990] Il. Przymusin-
ska and T. Przymusinski. Semantic Issues in De-
ductive Databases and Logic Programs. Formal Tech
niques in Artificial Intelligence. North Holland, 1990.

[Przymusinski, 1989] T. C. Przymusinski. Every logic-
program has a natural stratification and an iterated
fixed point model. In Eight Symposium on Principles
of Database Systems, pages 11-21. ACM SIGACT
SIGMOD, 1989.

[Przymusinski, 1990] T. Przymusinski. Extended stable
semantics for normal and disjunctive programs. In In-
ternational Conference on Logic Programming, pages
459 477,1990.

[Van Emden and Kowalski, 1976] A. Van Emden and
R. Kowalski. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM, 23(4):733
742, 1976.

[Van Gelder et al., 1990] A. Van Gelder, K. A. Ross,
and J. S. Schlipf. The well-founded semantics for gen-
eral logic programs. Journal of the ACM, 1990.

