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A l feres 

A b s t r a c t 

We present derivation proof procedures for ex­
tended stable model semantics. Given program 
II and goal G, G belongs to the well founded 
model of El iff there is a WFM-derivation for 
G in I I . Likewise, given program II and goal G, 
G belongs to some extended stable model of II 
iff there is a XSM-der i va t ion for G in I I . Cor­
rectness (completeness and soundness) of these 
procedures is discussed. Example derivations 
are exhibited, as well as a simple Prolog imple­
mentation that directly mirrors the procedures. 

1 I n t r o d u c t i o n 

Well Founded Semantics (WFS) [Van Gelder et a/., 
1990] adequately captures various forms of hypotheti­
cal reasoning [Pereira et a/., 1991c, Pereira et a/., 1991d, 
Pereira ct a/., 1991b, Pereira et al., 1991a] if we inter­
pret the well-founded model (WFM) of a program II 
as a (possibly incomplete) core view of the world, the 
extended stable models (XSMs) specifying alternative 
complementary consistent views of the world, all of each 
containing the core WFM. 

The paper is organized as follows: in section 2 we 
review well founded semantics. In section 3 we de­
fine WFM-der ivat ions, discuss their correctness, and 
give examples. Next, in section 4, we define XSM-
derivations and discuss their correctness. Finally, in sec­
t ion 5, a Prolog implementat ion is produced, directly 
reflecting the derivation procedures mentioned. More 
details can be found in an extended version of this paper 
[Pereira et al., 1990]. 

By a logic program II we mean a finite set of univer­
sally closed rules of the form: where 

H is an atom and the Li's are literals. When 
n = 0, we also wri te where t stands for an atom 
satisfied in all models. Negative literals are expressed 
as 4 where A is an atom. We denote by L i t ( I I ) the 
set of literals in ground( I I ) , the Herbrand instantiation 
of program I I . We denote the well founded model of a 
program I I by W F M ( I I ) , and an extended stable model 
(which may be the well founded one) by XSM(II). 

2 T h e E x t e n d e d Stable M o d e l 
Semantics 

In this section we characterize the Well Founded and 
Extended Stable Models of a program, based on [Przy-
musinska and Przymusinski, 1990]. Alternative defini­
tions of the Well Founded Semantics can be found in 
[Van Gelder ct a/., 1990] or in [Przymusinski, 1989]. Be­
cause the semantics is 3-valued, we begin by defining 
3-valued interpretations. 

D e f i n i t i o n 2.1 A 3-valued Herbrand interpretation I of 
a first-order language L is any pair (T ; F ) , where T and 
F are disjoint subsets of the Herbrand base H. T con­
tains all ground atoms true in 7, F contains all ground 
atoms false in /, and the t ru th value of the remaining 
atoms, those in is undefined (or un­
known). 

An alternative way to represent an interpretation / = 

P r o p o s i t i o n 2.1 Any interpretat ion can be 
equivalently viewed as a function where 

, defined by: 

D e f i n i t i o n 2.2 The function can be re­
cursively extended to the truth valuation function i : 
Lit(II) -----> V defined on the set L i t ( I I ) of all literals of 
the language as follows, where A is a ground atom: 

D e f i n i t i o n 2.3 A non-negative program is a program 
whose premises are either positive atoms or the special 
proposition u. Every interpretat ion I satisfies 
1/2, and so u denotes the undefined (or 
unknown) value. 

T h e o r e m 2.1 (Generalization of [Van Emden and 
Kowalski, 1976]) Every non negative logic-program has 
a unique least1 3-valued model. 
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Next we define the program transformation U/M ( I I 
modulo M), which is a 3-valued extension to the 2-valued 
transformation in [Gelfond and Lifschitz, 1988]. 

D e f i n i t i o n 2.4 Let II be a logic program and let I 
be a 3-valued interpretat ion. By the extended GL-
transformation of II modulo I we mean a new (non-
negative) program 11/I obtained from II by performing 
the following three operations: 

• Removing from II all rules which contain a negative 
premise L =~A such that i(L) = 0. 

• Replacing in all remaining rules those negative 
premises L = ~ A which satisfy i(L) = 1/2 by u. 

• Removing from all the remaining rules those nega­
tive L =~A which satisfy i(L) = 1. 

Since the resulting program 11/7 is non-negative, by 
theorem 2.5, it has a unique least 3 valued model. We 
define T*(I) (a generalization of the T operator [Gelfond 
and Lifschitz, 1988]) to be the 3-valued least model of 
I I / I . 

D e f i n i t i o n 2.5 A 3-valued interpretat ion I of a logic 
program II is called an Extended Stable Model XSM of 
II iff T* (/) = / . 

In order to check if I is an XSM of a program we give 
a constructive definit ion of T* operator. For this pur­
pose we define , a generalization of the Van Emden-
Kowalski operator  

D e f i n i t i o n 2.6 Let II be a non-negative program, I an 
interpretation of II and A is a ground atom. Then 
is an interpretat ion defined as follows: 
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3 De r i va t i on P rocedure for the W e l l 
Founded M o d e l 

Now we present a derivation procedure such that given a 
program II and a goal G the derivation succeeds iff G is 
in WFM(II). The procedure is defined over the ground 
instance of I I , the set of all ground instances of the rules 
in II w i th respect to its Herbrand Universe. Without 
loss of generality we can assume that II has been already 
instantiated and thus consists of a (possibly infinite) set 
of proposit ional rules. 
D e f i n i t i o n 3.1 A positive (resp. negative) interpreta­
tion / is a set of positive (resp. negative) literals from 
Lit(H). 
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most recent one in C (the r ightmost). The condition 
G /jb in D2.1 and D3 means that if a tree has a node 
L (resp. ~" then it may have no node (resp. L). 

We may th ink of the derivation rules as stating con­
ditions for re-wri t ing a l i teral , possibly by cancelation 
wi th a previous ancestor in the tree. For the well founded 
model derivation procedure the only possible cancelation 
of a l i teral w i th an ancestor is provided by rule D1.2. 

E x a m p l e 4 The W F M - T r e e for p given program 
is: 

E x a m p l e 5 The WFM-Tree for for the program 
below is: 

E x a m p l e 6 The WFM Tree for 
below is: 

for the program 

Note the WFM of this program is  

3.2 P r o p e r t i e s of WFM-Trees 
By definit ion WFM-Trees are finite. The only type of 
leaf nodes in a WFM-tree are: 

1) a positive l i teral wi th no identical ancestor 
2) a negative l i teral w i th no identical ancestor 
3) a negative l i teral w i th an identical ancestor 

P r o p o s i t i o n 3.2 Every branch from the root l i teral has 
at most one node wi th an identical ancestor. 

P r o p o s i t i o n 3.3 If a leaf node for l i teral L has an iden­
tical ancestor then L is a negative l i teral. 

P r o p o s i t i o n 3.4 If a leaf node for l i teral L has no iden­
tical ancestor and is a negative l i teral L = then there 
are no rules for H in I I . 

P r o p o s i t i o n 3.5 If a leaf node has a positive l iteral L 
then no node in the branch from the root l i teral to L 
has an identical ancestor l i teral , and there is a fact L in 
program I I . 

L e m m a 3.1 (Leaves are in the WFM) If T is a 
WFM(G,Il) tree for G in II then: 

1) a positive l i teral which is in a leaf node, and has 
no identical ancestor, is in WFM(II) 

2) a negative l i teral which is in a leaf node, and has 
no identical ancestor, is in WFM(II) 

3) a negative l i teral which is in a leaf node, and has 
an identical ancestor is in WFM(II) 

P r o o f : 

3.1.1) if a positive l i teral L is in a leaf node, and has no 
identical ancestor, then there is a fact L in II and 
facts are always in WFM(II). 

3.1.2) if a negative l i teral is in a leaf node, and has 
no identical ancestor, then there are no rules for L 
in I I . For an atom L such that no rules for it exist 
in II, is in WFM(Il). 

3.1.3) if a negative l i teral is in a leaf node and has 
an identical ancestor, we have: 

i.e. there is at least one chain f rom L to L, and 
possibly a rule for L, such as (3) in the program 
below: 

i.e. in II there is a chain of positive literals 

L ... H ... L, and the well founded model contains 

Note that for the model not to contain by (3) 
all B i would have to differ from false. But in that 
case the tree named B i, in the figure above could not 
exist, nor the father node  

L e m m a 3.2 Given a WFM-tree for G then, for any 
internal node l iteral H, if its immediate descendents 
D\ . . . D1 are in the well founded model, then II is in 
the WFM. 
Proo f rThe proof follows easily from the observation that 
the only tree formation rules introducing descendents 
nodes are WFM-I .3 and WFM- I I . 2 and the definition 
of 3-valued interpretat ion (cf. footnotes 5 and G). 

T h e o r e m 3.3 (Soundness of WFM-Trees) Let II be a 
program and L a l i teral. If there is a WFM-tree for L 
then L is in WFM(II). 

P r o o f : Follows directly from lemma 3.1 and lemma 3.2 
above. 

C o r o l l a r y 1 Given program II and l i teral G such that 
G WFM(II) then all literals in the WFM{G,II) are 
in WFM(U). 

T h e o r e m 3.4 (Completeness of WFM trees) Let II be 
a program and L a l i teral. If L is in W F M ( I I there is 
a W F M - t r e e for L. 

P r o o f : Appears in the extended version. 
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2) if L has an identical ancestor A and all literals 
in the branch L to A are negative then N is 
a leaf (rule D1.2) 

3) if there are r rules for L:  

in I I , then node has r immediate descen-
dents . . . each one selected from 
the body of a different rule 

4) if has an identical ancestor A w i th some 
positive l i teral in between, then TV is a leaf (rule 
D1.2) 

X S M - I I If N is positive then: 
1) if there is a fact N in I I , then N is a leaf (rule 

D3.1) 
2) the n immediate descendents are those literals 

B1 ... Bn, such that a rule N B1 ... Bn ex­
ists in II (rule D4) 

3) if N has an identical ancestor A, wi th some 
negative l iteral in between, then TV is a leaf 
(rule D3.2) 

A XSM-Tree has two types of leaves not appearing 
in the W F M - T r e e , namely: i) positive l i teral leaf nodes 
having an identical ancestor and w i th some negative l i t­
eral in between; and ii) negative l i teral leaf nodes having 
an identical ancestor and wi th some positive l iteral in 
between. 
E x a m p l e 8 Al though the program  
has no WFM-Tree it has the following XSM-Trees 
(among others): 

The soundness proof is similar to that of WFM-Trees , 
but the equivalent to lemma 3.1 is now: 
L e m m a 4.1 (Leaves are in the XSM )li T is a XSM 
tree for G then: 

4.1.1) a positive l i teral in a leaf node, having no iden­
tical ancestor, is in some XSM ( I I ) 

4.1.2) a negative l i teral in a leaf node, having no 
identical ancestor, is in some XSM(U) 

4.1.3) a negative l i teral in a leaf node, having an 
identical ancestor, is in some A 'SM(IT) 

4.1.4) a positive l i teral in a leaf node, having an iden­
tical ancestor and some negative l i teral in between, 
is in some X S M ( I I ) 

4.1.5) a negative l i teral in a leaf node, having an 
identical ancestor and some positive l iteral in be­
tween, is in some X S M ( I I ) 

P r o o f : Proof of 1,2 and 3 4.1.i, 4.1.ii and 4.1.iii fol­
lows from lemma 3.1 and the fact that all literals in the 
WFM(II) are in all ATSM(I I ) . 
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