
I m p r o v i n g S y s t e m P e r f o r m a n c e i n C a s e - B a s e d I t e r a t i v e O p t i m i z a t i o n 
t h r o u g h K n o w l e d g e F i l t e r i n g 

Kazuo Miyash i ta * 
Electrotechnical Laboratory 

1-1-4 Umezono, Tsukuba 
Ibaraki 305, JAPAN 
miyasita@etl.go.jp 

Ka t i a Sycara 
The Robotics Institute 

Carnegie Mellon University 
Pittsburgh, PA 15213, U.S.A. 

katia@cs.cmu.edu 

Abst rac t 

Adding knowledge to a knowledge-based sys­
tem is not monotonically beneficial. We dis­
cuss and experimentally validate this observa­
tion in the context of CABINS, a system that 
learns control knowledge for iterative repair in 
ill-structured optimization problems. In CAB­
INS, situation-dependent user's decisions that 
guide the repair process are captured in cases 
together with contextual problem information. 
During iterative revision in CABINS, cases are 
exploited for both selection of repair actions 
and evaluation of repair results. In this pa­
per, we experimentally demonstrated that un-
filtered learned knowledge can degrade problem 
solving performance. We developed and exper­
imentally evaluated the effectiveness of a set of 
knowledge filtering strategies that are designed 
to increase problem solving efficiency of the in­
tractable iterative optimization process with­
out sacrificing solution quality. These knowl­
edge filtering strategies utilize progressive case 
base retrievals and failure information to (1) 
validate the effectiveness of selected repair ac­
tions and (2) give-up further repair if the likeli­
hood of success is low. The filtering strategies 
were experimentally evaluated in the context of 
job-shop scheduling, a well known ill-structured 
problem. 

1 I n t r oduc t i on 
Recently, there has been increased interest in the is­
sue of the utility of knowledge in knowledge-based sys­
tems. Several studies [Markovitch and Scott, 1993; 
Minton, 1988] have defied the traditional belief that in­
creasing a problem solver's knowledge is a monotonically 
beneficial process. Utility of knowledge depends on the 
difference between its cost (e.g. cost of knowledge acqui­
sition, storage, matching) and its benefits (e.g. increased 
problem solving efficiency, increased solution quality). 
Operational definitions of utility of a knowledge item in 
the literature (e.g. [Minton, 1988]) state that it is the 
difference between the cost of solving a problem with 

* Previously at Matsushita Electric Industrial Co. Ltd. 

the knowledge item and solving it without it. Machine 
learning systems can acquire greater amounts of knowl­
edge than is possible to be hand-coded for them by their 
developers. Because less intelligence is involved in the 
automated knowledge acquisition by machine learning 
systems, the acquired knowledge may be of low qual­
ity (e.g. it could be incorrect, irrelevant or redundant). 
Hence it is very important for machine learning systems 
to consider the quality of the knowledge they employ 
and develop heuristic strategies to eliminate harmful 
knowledge, i.e. knowledge whose elimination from con­
sideration would improve problem solving performance. 
[Markovitch and Scott, 1993] has termed such strategies 
information filters because they filter out harmful knowl­
edge from being used in problem solving. Examples of in­
formation filters include discarding of least useful board 
positions in the Checkers Player [Samuel, 1959], select­
ing only misclassified instances in ID3 [Quinlan, 1986], 
and estimating the utility of newly acquired control rules 
and deleting those unlikely to be useful in PRODIGY 
[Minton, 1988] 

To ascertain the utility of information filtering, it has 
to be shown that learned unfiltered knowledge is harm­
ful in the sense that its addition to a system's knowl­
edge base deteriorates system performance along some 
evaluation criterion. In this paper, we experimentally 
show non-beneficial effects of unfiltered learned knowl­
edge in a system called CABINS and study the effec­
tiveness of three filtering strategies designed to fix the 
problem. CABINS is a case-based system that learns 
control knowledge through user interaction and utilizes 
it for solution improvement through iterative repair in 
job shop scheduling, an ill-structured domain [Miyashita 
and Sycara, 1995]. The information filtering idea can 
be applied in a CBR system in various ways. One way 
could be to eliminate cases from the case base ("for­
getting" [Kolodner, 1993]). Another way would be to 
prune out parts of the case base from consideration dur­
ing problem solving. Traditionally, this is done in CBR 
systems by using some sort of similarity metric. By ad­
justing the similarity metric a larger or smaller number 
of cases are allowed to pass this filter and be considered 
during problem solving. Alternatively, instead of adjust­
ing the similarity metric, various filtering tests could be 
applied to selectively narrow down retrieved knowledge 
from the cases. A fourth method could be filtering out 

MIYASHITA AND SYCARA 371 



information retrieved from cases, for example filtering 
out failure information. Yet a fifth method could be to 
use retrieved knowledge to extract new indices for sub­
sequent retrieval thus using successive retrievals as fil­
ters. The filtering strategies we have developed involve 
progressive information filtering using a combination of 
successive retrievals and tests and utilizing success and 
failure information stored in cases. 

The use of failure information in CBR systems is not 
new. For example, CHEF [Hammond, 1989] assumes 
the existence of a model-based simulator for evaluat­
ing a derived plan and detecting failure and uses hand­
crafted domain rules for selecting repair actions. Work 
by [Kambhampati and Hendler, 1992] aims to speed-
up system performance through learning and case-based 
reuse of control rules in planning, where a correct satis-
ficing plan is sought and a strong domain model is as­
sumed. The contribution of our work is to experimen­
tally study failure-based information filtering strategies 
in case-based control knowledge learning for an optimiza­
tion task in a domain without a strong domain model 
CABINS was evaluated in the task of schedule optimiza­
tion in the job shop scheduling domain. Our experi­
mental results, presented in section 5.4 show that pro-
gressive filtering is superior to flat filtering in that it 
enables CABINS to increase both solution quality and 
search efficiency. In particular, CABINS uses its past 
failure experiences in progressive filtering to (1) validate 
use of a selected repair action, and (2) interrupt a re­
pair that is unlikely to produce useful results. Given our 
encouraging experimental results, we believe that our 
filtering strategies can be used as a domain-independent 
refinement of k-Nearest Neighborhood retrieval for con­
trol knowledge learning tasks. 

2 The Task Doma in 
Scheduling assigns a set of tasks over time to a set of 
resources with finite capacity. One of the most diffi­
cult scheduling problem classes is job shop scheduling. 
Job shop scheduling is a well-known NP-complete prob­
lem [French, 1982]. In job shop scheduling, each task 
(heretofore called a job or an order) consists of a set of 
activities to be scheduled according to a partial activity 
ordering. The dominant constraints in job shop schedul­
ing are: temporal precedence constraints that specify the 
relative sequencing of activities within a job and resource 
capacity constraints that restrict the number of activi­
ties that can be assigned to a resource during overlap­
ping time intervals. The activity precedence constraints 
along with a job's release date and due date restrict the 
set of acceptable start times for each activity. The capac­
ity constraints restrict the number of activities that can 
use a resource at any particular point in time and cre­
ate conflicts among activities that are competing for the 
use of the same resource at overlapping time intervals. 
The goal of a scheduling system is to produce sched­
ules that respect temporal relations and resource capac­
ity constraints, and optimize a set of objectives, such as 
minimize tardiness, maximize resource utilization etc. 

The tight interactions between temporal precedence 
and capacity constraints give rise to many nonlinear ef­

fects during search for an optimal schedule. It is in gen­
eral impossible to have a strong domain model that could 
help estimate the effects of system decisions on optimiza­
tion objectives. The use of heuristics and study of ex­
perimental results is the typically used method for job 
shop schedule optimization [French, 1982]. 

3 C A B I N S Overview 
In order to make the information filtering aspect compre­
hensible, we give here a brief and of necessity incomplete 
overview of CABINS. For more details on CABINS im­
plementation, operation and other experimental results 
that describe different CABINS capabilities, the reader 
is referred to [Miyashita and Sycara, 1995]. 

CABINS incrementally revises a complete but sub-
optimal schedule to improve its quality. Revision con-
sists in identifying and moving activities in the schedule". 
To move activities, CABINS uses a number of repair op­
erators, called repair tactics that it possesses. In the 
current implementation, CABINS has 11 repair tactics 
(e.g., jumpJeft, which moves an activity as much to the 
left on the timeline as possible without violating prece­
dence constraints). Because of the tight constraint in­
teractions, a revision in one part of the schedule may 
cause constraint violations in other parts. It is gener­
ally impossible to predict in advance either the extent of 
the constraint violations resulting from a repair action, 
or the nature of the conflicts because of interacting in­
fluences of constraint propagations. Therefore, a repair 
operator must be selected, applied and its repair out­
come must be evaluated in terms of the resulting effects 
on scheduling objectives. 

Thus, at each decision point, CABINS must make 
three control decisions: which activity to move, which 
repair operator to apply and how to evaluate the repair 
result so as to eventually optimize overall schedule qual­
ity according to scheduling objectives. Each of these de­
cisions is very difficult for the following reasons. A sched­
ule typically contains many jobs, each of which contains 
many activities. There is no a priori knowledge as to 
the order of activity moves that will give the best result. 
Moreover, we have found no distinguishing features of 
an activity per se that would allow satisfactory match­
ing with previous similar activities. Therefore, CABINS 
orders the jobs randomly and within each job repairs ac­
tivities from the first to the last [Miyashita and Sycara, 
1995]. Since activities get moved during repair, an ac­
tivity may be repaired (moved) multiple times during a 
problem solving session. Selecting a repair operator to 
apply is also very difficult. Unlike traditional planning 
operators, the repair operators in CABINS have no well 
defined preconditions or postconditions. Hence learning 
operator selection is fraught with all the difficulties of 
learning control rules in traditional planning plus the 
additional complexity of not knowing the operator pre-
and post-conditions. CBR enables CABINS to learn a 
control model of repair operator selection. Finally, eval­
uation of the result of applying a repair operator is also 
very difficult, since the optimization objectives are often 
context and user dependent and reflect state-dependent 
tradeoffs that are difficult to describe in a simple man-

372 CASE BASED REASONING 



ner. CABINS learns through CBR what combinations 
of effects of application of a particular repair action con­
stitutes an acceptable or unacceptable repair outcome. 

In each repair iteration, CABINS focuses on one ac­
tivity at a time, the focaLactivity, and tries to repair it. 
A case in CABINS describes the application of a par­
ticular modification to a focaLactivity. A case in CAB­
INS comprises 3 types of the features: global features, 
local features and repair history. The global features 
reflect an abstract characterization of potential repair 
flexibility for the whole schedule. Associated with the 
focal_activity are local features that we have identified 
and which potentially are predictive of the effectiveness 
of applying a particular repair tactic. Because of the ill-
structuredness of job shop scheduling, local and global 
features are heuristic approximations that reflect prob­
lem space characteristics. 

The repair history records the sequence of applica­
tions of successive repair actions, the repair outcome and 
the effects. Repair effect values describe the impact of 
the application of a repair action on scheduling objec­
tives. A repair outcome is the evaluation assigned to 
the set of effects of a repair action and takes values in 
the set ['acceptable', 'unacceptable']. Typically the out­
come reflects tradeoffs among different objectives. An 
outcome is 'acceptable' (i.e. a success) if the user ac­
cepts the tradeoffs involved in the set of effects for the 
current application of a repair action. Otherwise, it is 
'unacceptable', a failure. The effect salience is assigned 
by the user when the outcome is 'unacceptable', and it 
indicates the significance of the effect to the repair out­
come. The user's judgment as to balancing favorable 
and unfavorable effects related to a particular objective 
constitute the explanations of the repair outcome. 

Once enough cases have been gathered through user 
interactive schedule repair, CABINS repairs sub-optimal 
schedules without further user interaction. CABINS re­
pairs the schedules by (1) sorting jobs in a random or­
der, (2) focusing on a focaLactivity to be repaired in 
each repair cycle, (3) invoking CBR with global and lo­
cal features as indices to decide the most appropriate 
repair tactic to be used for each focaLactivity, (4) in­
voking CBR using the repair effect features (type, value 
and salience) as indices to evaluate the repair result, and 
(5) when the repair result is deemed a failure, deciding 
whether to give up or which repair tactic to use next. 
The similarity metric that CABINS uses is a k-Nearest 
Neighborhood method. 

4 Exper imenta l Design 
To test whether learned unfiltered knowledge is bene­
ficial or not, we used controlled experimentation on a 
benchmark suite of job shop scheduling problems. These 
problems are variations of the problems we have used to 
test other aspects of CABINS [Miyashita and Sycara, 
1995]. The benchmark problems have the following 
structure: each problem has 10 orders of 5 activities 
each. Six groups of 10 problems each were randomly gen­
erated by considering three different values of the range 
parameter, and two values of the bottleneck configura­
tion. 

A cross-validation evaluation method was used. Each 
problem set of each problem class was divided into two 
groups with the same size (i.e., each group contains 30 
problems). Currently we have collected about 12000 
cases for each group of training sets. These cases were 
then used for case-based repair of the test problems in 
the other group. The above process was repeated by 
interchanging the training sets. 

In the experiments reported here, we used the sum of 
tardiness and inventory costs as an explicit cost function 
to reflect optimization criteria1. We built a greedy hill-
climb rule-based optimizer (RBR) that goes through a 
trial-and-error repair process to optimize a schedule by 
minimizing the cost function. RBR was implemented to 
try what seems a best repair action first based on heuris­
tic evaluation of its possible repair effects and go through 
all the available repair actions before giving up further 
repair. For each repair, the repair effects were calcu­
lated and, on this basis, since RBR had a pre-defined 
cost function, it could evaluate repair results precisely. 
RBR was used as the experimental baseline where no 
learning of control knowledge takes place. RBR was also 
used as a case base builder for CABINS. Each time RBR 
repaired an activity, the repair decisions made by RBR 
such as repair action selection and repair result evalua­
tion were recorded in a case. In this set of experiments, 
RBR was used to create a case base with 12000 cases. 
Naturally, a cost function, though known to RBR, is not 
known to CABINS and is only implicitly and indirectly 
reflected in an extensional way in the case base. 

In our experiments, the number of repair tactic appli­
cations was used as a metric of search efficiency for a 
number of reasons: (1) tactic application involves con­
straint propagation and calculation of repair effects, thus 
being the most computationally expensive process in 
schedule repair, (2) the number of tactic applications is a 
machine independent measure, as opposed to for exam­
ple, CPU time, and (3) the number of tactic applications 
directly reflects the number of search states examined. 
Reduction of the number of tactic applications improves 
the efficiency of iterative schedule revision process. 

In Table 1 "Unfiltered" indicates the performance of 
CABINS, which retrieves similar successful repair expe­
riences and applies the repair tactic that was dominant 
in the most similar success cases. If the tactic is evalu­
ated as unacceptable, in the Unfiltered condition, CAB­
INS automatically tries another repair tactic used in the 
next most similar cases. 

Table 1 shows that unfiltered learned knowledge is in­
deed harmful in terms of problem solving efficiency al-

1Such a cost function is widely accepted in practical 
scheduling environments. 

MIYASHITA AND SYCARA 373 



though it produces solutions of similar quality as com­
pared to the base condition of RBR. This result means 
that the cost of utilizing the learned knowledge is ex­
cessive. We think that this is due to the Unfiltered 
repair's greediness and stubbornness. Greediness makes 
Unfiltered repair applies the tactic from the most similar 
success case no matter how small the similarity. Stub­
bornness makes the Unfiltered repair insists on trying to 
repair the current focal_activity without giving up if the 
likelihood of a successful repair seems small. 

5 I n fo rma t ion F i l t e r ing 
To decrease the number of tactic applications without 
sacrificing solution quality, filtering strategies must be 
found that retrieve more relevant tactics and better esti­
mate the likelihood of successful outcome before applica­
tion of a selected tactic. We hypothesized that incorpo­
rating failure information in filters would alleviate non-
beneficial effects of potentially harmful learned knowl­
edge by lowering the cost of excessive number of tac­
tic applications. So we focused on designing filters that 
would enable CABINS to (1) learn to avoid repeating 
similar previous failures, and (2) learn to avoid wasting 
lots of efforts in trying to solve too difficult problems. 

To analyze the correctness of the above hypothesis, the 
following three filtering strategies were experimentally 
implemented in CABINS: validated filtering, interruptive 
filtering and hybrid filtering. These filtering methods 
were tested using the same problems, cost function and 
case bases used for the experiment in Section 4. 

5.1 Validated Fi l tering 
The validated filtering method allows CABINS to apply 
a repair action only after it has been validated as possibly 
effective for repairing the current problem. Validation 
techniques have been used in case-based reasoning sys­
tems (e.g. [Hammond, 1989; Simoudis and Miller, 1991]). 
For example, in CASCADE and COAST [Simoudis and 
Miller, 1991], a validation process extracts from the case 
base only those cases that appear to be closely relevant to 
the current problem using a validation model of the do­
main which consists of knowledge of interrelations among 
diagnostic tests and knowledge about individual diagnos­
tic tests and their expected values in previous cases that 
would match a current problem. 

The above systems utilized established models based 
on deep understanding of their domain for validation. 
Domain models act as filters that allow only validated 
information to be used in problem solving. However, 
in ill-structured domains like job shop scheduling, nei­
ther causal model nor validation model of the domain 
are readily available. In the job shop scheduling prob­
lem, non-linearity of objectives and tight interactions of 
constraints make it hard to predict the effects of a local 
optimization decision on global optimality, thus making 
the analysis of the domain structure required to build 
a causal model and a validation model extremely diffi­
cult. Therefore, CABINS must validate the potential ef­
fectiveness of a retrieved repair tactic without such mod­
els. To compensate for lack of these models, CABINS 

Figure 1: Validation filtering process in CABINS 

Fig. 1 shows the schematic diagram of the validation 
filtering process in CABINS. First, using global and lo­
cal features as indices, candidate cases are retrieved from 
success cases that store successful repair episodes in a 
case base. Then, another CBR retrieval is done from 
failure cases using as additional indices the repair tactics 
indicated in the already retrieved successful cases. This 
retrieval results in a set of rejecting cases. The candidate 
repair tactics found in rejecting cases with low credibil­
ity (i.e. low similarity to the current problem), are then 
allowed to be used since they have been validated to be 
possibly effective (i.e. not likely to fail). 

The repair tactic selection procedure using validated 
filtering is as follows: 

1. Select k 2 nearest cases of the current problem that 
succeeded in repair using global and local case fea­
tures as indices (these are labelled "candidate cases" 
in Fig. 1). 

2. Among the candidate cases, obtain the sum of case 
similarity 3 to the current problem for each of the 
repair tactics which was successfully appiled in the 
cases. 

3. Sort the repair tactics of step 2 in decreasing order 
of the corresponding value of the similarity sums. 

4. Until no repair tactic remains in the sorted queue, 
do the followings: 
(a) Pick up the next repair tactic in the sorted re­

pair tactics queue. 
(b) Using as indices, global and local features and 

the picked-up repair tactic, select k nearest 
cases of the current problem, in which an appli­
cation of the picked-up tactic resulted in failure 
("rejecting cases" in Fig. 1). 

(c) Sum up the similarity of the selected k "reject­
ing cases". 

(d) If the sum is smaller than a pre-defined thresh­
old value, return the tactic as a validated tactic. 

5. Return "give.up" as a repair tactic, i.e. give up 
trying to repair the current activity. 

2In our experiments, we heuristically decided k as 5. 
3For details of the similarity calculation, see [Sycara and 

Miyashita, 1994]. 

374 CASE BASED REASONING 



The validated filtering procedure allows only validated 
tactics to be considered for repair application. CABINS 
judges the likelihood that a selected repair tactic will fail 
in the current problem from the past failure experiences 
of the same tactic. If CABINS judges that a tactic is 
not likely to fail in the current problem (i.e. the sum of 
similarity of rejecting cases associated with the tactic is 
less than some threshold), CABINS considers the repair 
tactic as validated. 

Since in difficult problems such as schedule repair, fail­
ures usually outnumber successes, if the value of the 
threshold (in step 4(d) of the above procedure) is defined 
as moderately high, overly pessimistic results could be 
produced (i.e. CABINS seldom validates a tactic). To 
avoid this, a threshold value was set as 4.99. Since the 
value of k was 5 in the experiments, validation rejection 
was less likely to occur. 

5.2 Interrupt ive Filtering 
In validated filtering, CABINS gives up repairing a par­
ticular activity either when there are no validated tac­
tics, or when all validated tactics have resulted in failure 
(i.e. an unacceptable repair outcome). The interruptive 
filtering method allows CABINS to shift its repair atten­
tion to another activity when repair of the current ac­
tivity is estimated too difficult. CABINS gives up a fur­
ther repair when it determines that it would be a waste 
of time. If there are enough failure cases in the past 
similar situations to the current one, CABINS gives up 
repairing the current activity, and switches its attention 
to another. 

Figure 2: Interruptive filtering process in CABINS 

Fig. 2 shows the schematic diagram of the interrup­
tive filtering process in CABINS. In the process, cases 
that match the current problem are retrieved from failure 
cases (the retrieved cases are called interrupting cases in 
Fig. 2). If the interrupting cases have high credibility 
(i.e. high similarity to the current problem), the pro-
cess of retrieving candidate cases to use in repairing the 
current focal .activity is not allowed to proceed and the 
problem solver seeks another activity to repair. 

The repair tactic selection procedure using interrup­
tive filtering in CABINS is as follows: 

1. Using global and local features as indices, retrieve 
k nearest cases of the current problem from failure 
cases (i.e., "interrupting cases" in Fig. 2). 

2. Sum up the similarity of the selected k "interrupting 
cases". 

3. If the sum exceeds a pre-defined threshold value, re­
turn "give_up" as a repair tactic, i.e. give up repair­
ing the current focaLactivity. 
Otherwise, select k nearest cases of the current 
problem using global and local features as indices 
from successful cases (these are the "candidate 
cases" in Fig. 2 and they are the same as the "can­
didate cases" in Fig. 1 for a given focaLactivity). 

4. Among the candidate cases, obtain the sum of case 
similarity to the current problem for each of the 
repair tactics which was successfully appiled in the 
cases. 

5. Sort the repair tactics of the previous step in de­
creasing order of the corresponding value of the sim­
ilarity sums. 

6. Return the first repair tactic in the sorted repair 
tactic queue as the selected repair tactic. 

In the above procedure, CABINS judges the likelihood 
that a current problem cannot be repaired from failure 
experiences in past similar problems. If CABINS judges 
that the current problem is not likely to be repaired (i.e. 
the number of failures of similar past problems is high 
enough), CABINS gives up repairing the current prob­
lem. If CABINS decides that the current problem is 
not too difficult, it proceeds to repair it selecting repair 
tactics from success cases without tactic validation. As 
was discussed in the validated filtering method, in dif­
ficult problems such as schedule repair, failures usually 
outnumber successes and if the value of the threshold 
(in step 3 of the above procedure) is defined moderately 
high, overly pessimistic results could be produced (i.e. 
CABINS suggests giving up too often). To avoid this, a 
value of the threshold was set as 4.99. 

The ways failure cases are used in validated and inter­
ruptive filtering seem to be independent and compatible 
with each other. Each filtering strategy filters different 
knowledge at different stages of repair action retrieval 
and evaluation. Hence, the two strategies can be com­
bined in a serial fashion to form a hybrid filtering strat­
egy. 

5.3 Hybr id Filtering 
In hybrid filtering, CABINS first decides whether to give 
up repairing the current focaLactivity using "interrupt­
ing cases" (as in Interruptive Filtering). If it is decided 
that repair of the current focaLactivity should proceed, 
CABINS uses Validated filtering to validate the selected 
tactics that will be tried in the repair. 

The repair tactic selection procedure using hybrid fil­
tering in CABINS is as follows: 

1. Using global and local features as indices, retrieve 
k nearest cases of the current problem from failure 
cases (i.e. "interrupting cases" in Fig. 2). 

2. Sum up the similarity of the selected k "interrupting 
cases". 

3. If the sum exceeds a pre-defined threshold value, re­
turn "give.up" as a repair tactic, i.e. give up repair­
ing the current focaLactivity. 

MIYASHITA AND SYCARA 375 



Table 2 shows performance comparison among the un-
filtered condition, RBR, and the three filtering strate­
gies. The results in the table show that CABINS with 
validated filtering improved its efficiency about 58% as 
compared with the unfiltered condition without unduly 
sacrificing schedule quality. CABINS with validated fil­
tering was even faster than RBR. Table 2 also shows 
that CABINS with interruptive filtering improved its ef­
ficiency about 46% as compared with unfiltered condi­
tion while maintaining high schedule quality. 

From the results in the table, it is also shown that 
CABINS with the hybrid repair improved its efficiency 
about 65% compared with the unfiltered condition with­
out reducing schedule quality. The results also suggest 
that CABINS with hybrid filtering produced high qual­
ity schedules more efficiently than RBR. 

To analyze the effects of combining two repair meth­
ods in the hybrid repair, the number of tactic application 
using validated filtering and using interruptive filtering 
were compared with that of hybrid filtering. By hypoth­
esis testing, it was found that CABINS with hybrid filter­
ing should be more efficient than CABINS with interrup­
tive repair or CABINS with validated repair. Therefore, 
by combining the validated repair and the interruptive 
repair, a synergistic effect emerges in improving the effi­
ciency of the repair process. 

Although experimental results show that the three in­
formation filtering strategies were effective in reducing 
the number of tactic applications in CABINS, it could be 
argued that knowledge filtering will also consume com­
putational resources. CPU time is a generally accepted 
metric of overall problem solving cost. The averaged 
CPU time results in Table 2 show a pattern similar to 
the one observed for number of tactic applications (i.e., 
validated repair, interruptive repair and hybrid repair 
consume less CPU time than unfiltered repair) in our 
experiments. These results are encouraging. 

6 Conclusions 
We discussed the phenomenon of non-beneficial effects, 
in terms of degradation of the performance of a problem 
solver, of learned knowledge. We showed the existence 
of this phenomenon in the context of case-based learning 
of control knowledge. This knowledge is used to to guide 

revision-based optimization in an ill-structured domain, 
job shop scheduling. To alleviate the non-beneficial ef­
fects of learned knowledge, we designed and experimen­
tally demonstrated the effectiveness of three knowledge 
filtering strategies. These strategies, validated filtering, 
interruptive filtering and hybrid filtering employ a com­
bination of successive case retrievals and in particular 
exploit failure information found in cases in order to (1) 
validate learned control actions, or (2) avoid wasting ef­
fort in attempting repairs where the likelihood of success 
is low. Our experimental results show that the knowl­
edge filtering strategies were effective in increasing the 
efficiency of problem solving without compromising so­
lution quality. We are currently exploring automated 
adaptation of the filtering control parameters (value of 
k and of the threshold). 

4 
References 
[French, 1982] Simon French. Sequencing and Schedul­

ing: An Introduction to the Mathematics of the Job-
Shop. Ellis Horwood, London, 1982. 

[Hammond, 1989] Kristian J. Hammond. Case-Based 
Planning : Viewing Planning as a Memory Task. Aca­
demic Press, New York, NY, 1989. 

[Kambhampati and Hendler, 1992] Subbarao 
Kambhampati and James A. Hendler. A validation-
structure-based theory of plan modification and reuse. 
Artificial Intelligence, 55(2-3):193-258, 1992. 

[Kolodner, 1993] Janet Kolodner. Case-Based Reason­
ing. Morgan Kaufmann, San Mateo, CA, 1993. 

[Markovitch and Scott, 1993] Shaul Markovitch 
and Paul D. Scott. Information filtering: Selection 
mechanisms in learning systems. Machine Learning, 
10:113-151,1993. 

[Minton, 1988] S. Minton. Learning Effective Search 
Control Knowledge: An Explanation-Based Approach. 
Kluwer Academic Publishers, Boston, MA, 1988. 

[Miyashita and Sycara, 1995] Kazuo Miyashita and Ka-
tia Sycara. CABINS: A framework of knowledge ac­
quisition and iterative revision for schedule improve­
ment and reactive repair. Artificial Intelligence, 1995. 
To appear. 

[Quinlan, 1986] J. Ross Quinlan. Induction of decision 
trees. Machine Learning, 1(1):81—106, 1986. 

[Samuel, 1959] A. L. Samuel. Some studies in machine 
learning using the game of checkers. IBM Journal, 
3:211-229,1959. 

[Simoudis and Miller, 1991] E. Simoudisand J.S. Miller. 
The application of CBR to help desk applications. In 
Proceedings of the Case-Based Reasoning Workshop, 
pages 25-36. DARPA, 1991. 

[Sycara and Miyashita, 1994] Katia Sycara and Kazuo 
Miyashita. Case-based acquisition of user preferences 
for solution improvement in ill-structured domains. In 
Proceedings of the Twelfth National Conference on Ar­
tificial Intelligence, pages 44-49, Seattle, WA, 1994. 
AAAI. 

376 CASE BASED REASONING 


