
L i m i t e d D i s c r e p a n c y S e a r c h 

W i l l i a m D. Harvey and M a t t h e w L. Ginsberg 
CIRL 

1269 University of Oregon 
Eugene, Oregon 97403 

U.S.A. 
ginsberg@cs.uoregon.edu 

Abst rac t 

Many problems of practical interest can be 
solved using tree search methods because care­
fully tuned successor ordering heuristics guide 
the search toward regions of the space that are 
likely to contain solutions. For some problems, 
the heuristics often lead directly to a solution— 
but not always. Limited discrepancy search ad­
dresses the problem of what to do when the 
heuristics fail. 
Our intuition is that a failing heuristic might 
well have succeeded if it were not for a small 
number of "wrong turns" along the way. For a 
binary tree of height d, there are only d ways 
the heuristic could make a single wrong turn, 
and only d(d-i)/2 ways it could make two. A 
small number of wrong turns can be overcome 
by systematically searching all paths that dif­
fer from the heuristic path in at most a small 
number of decision points, or "discrepancies." 
Limited discrepancy search is a backtracking 
algorithm that searches the nodes of the tree 
in increasing order of such discrepancies. We 
show formally and experimentally that limited 
discrepancy search can be expected to outper­
form existing approaches. 

1 I n t roduc t i on 
In practice, many search problems have spaces that are 
too large to search exhaustively. One can often find solu­
tions while searching only a small fraction of the space by 
relying on carefully tuned heuristics to guide the search 
toward regions of the space that are likely to contain 
solutions. For many problems, heuristics can lead di­
rectly to a solution—most of the time. In this paper, we 
consider what to do when the heuristics fail. 

We will focus our attention on procedures for tree 
search. Our objective is simple: For search problems 
with heuristically ordered successors, we will develop a 
search procedure that is more likely to find a solution 
in any given time limit than existing methods such as 
chronological backtracking and iterative sampling [Lan-
gley, 1992]. The outline of this paper is as follows: In 

the next section, we discuss existing algorithms. Lim­
ited discrepancy search (LDS) is introduced in Section 3 
and compared to existing techniques in Section 4. We 
discuss variations of LDS that we believe will be useful 
for solving realistic problems in Section 5. We conclude 
by presenting our experimental results in Section 6. 

2 Exis t ing Strategies 

Consider a tree search problem for which the succes­
sor ordering heuristic is so good that it almost always 
leads directly to a solution. Such problems are com­
mon both in practice and in areas of AI research such 
as planning and scheduling [Smith and Cheng, 1993; 
Wilkins, 1988]. If the heuristic is good enough, one might 
be satisfied with an algorithm that follows the heuristic 
and just gives up if the heuristic fails to lead to a solu­
tion, an algorithm we will call "1-samp" [Harvey, 1994; 
Smith and Cheng, 1993]. If the performance of 1-samp 
is not satisfactory, however, one is confronted with the 
question of what search algorithm to use instead. Itera­
tive sampling and backtracking are two candidates. 

2.1 Iterative Sampling 
Iterative sampling [Langley, 1992], or isamp, is the sim­
ple idea of following random paths, or probes, from the 
root until eventually a path that leads to a solution is 
discovered. At each node on a path, one of the succes­
sors is selected at random and expanded. Then one of 
its successors is selected at random, and so on until a 
goal node or dead end is reached. If the path ends at a 
dead end, isamp starts a new probe, beginning again at 
the root. 

Since the algorithm samples with replacement, there is 
a uniform chance of finding a goal node on any particular 
probe. Provided that there is a goal node somewhere 
in the space, it follows that the probability of find a 
goal node increases uniformly toward 1 as the number of 
probes grows without limit. 

Iterative sampling has been shown to be effective on 
problems where the solution density is high [Crawford 
and Baker, 1994], but its performance as a fallback pro-
cedure for 1-samp is questionable because it ignores the 
successor-ordering heuristic. If the heuristic were the key 
to solving the problem despite a low solution density, one 

HARVEY AND GINSBERG 607 



would not expect iterative sampling to be effective.1 

2.2 Backtracking 
An alternative fallback procedure is simply to backtrack 
chronologically when 1-samp fails. Our experiments in 
Section 6 with scheduling show that this approach pro­
vides little improvement over 1-samp itself, and the anal­
ysis of mistakes provides an explanation [Harvey, 1995], 
There is a reasonable chance that, somewhere early in 
1-samp's path, it made a mistake by selecting a succes­
sor that had no goal nodes in the entire subtree below it. 
Once this early mistake is made and the successor's sub­
tree is committed to, none of the subsequent decisions 
makes any difference. 

If the subtree below a mistake is large, chronological 
backtracking will spend all of the allowed run time ex­
ploring the empty subtree, without ever returning to the 
last decision that actually matters. If one is counting on 
the heuristics to find a goal node in a small fraction of 
the search space, then chronological backtracking puts a 
tremendous burden on the heuristics early in the search 
and a relatively light burden on the heuristics deep in the 
search. Unfortunately, for many problems the heuristics 
are least reliable early in the search, before making de­
cisions that reduce the problem to a size for which the 
heuristics become reliable. Because of the uneven re­
liance on the heuristics, it is unlikely that chronological 
backtracking is making the best use of the heuristic in­
formation. 

3 Discrepancies 
Let us return to the search problems for which the suc­
cessor ordering heuristic is a good one. Our intuition 
is that, when 1-samp fails, the heuristic probably would 
have led to a solution if only it had not made one or two 
"wrong turns" that got it off track. It ought to be pos­
sible to systematically follow the heuristic at all but one 
decision point. If that fails, we can follow the heuristic 
at all but two decision points. If the number of wrong 
turns is small, we will find a solution fairly quickly using 
this approach. 

We call the decision points at which we do not fol­
low the heuristic "discrepancies." Limited discrepancy 
search embodies the idea of iteratively searching the 
space with a limit on the number of discrepancies al­
lowed on any path. The first iteration, with a limit of 
zero discrepancies, is just like 1-samp. The next iteration 
searches all possibilities with at most one discrepancy, 
and so on. 

The algorithm is shown in Figure 1. We will assume 
the search tree is binary. SUCCESSORS is a function that 
returns a list of the either zero or two successors, with 
the heuristic preference first. 

In Figure 1, x is the discrepancy limit. We iteratively 
call LDS-PROBE, increasing x each time. LDS-PROBE 
does a depth-first search traversal of the tree, limiting 
the number of discrepancies to x. When eventually x 

2We have experimented with biasing the random selec­
tion of successors according to the heuristic, but our results 
suggest this is not a viable approach [Harvey, 1995]. 

Figure 1: Limited Discrepancy Search. 

reaches d, the maximum depth of the tree, LDS-PROBE 
searches the entire tree exhaustively. Thus the search 
is guaranteed to find a goal node if one exists and is 
guaranteed to terminate if there are no goal nodes. 

Since each iteration of LDS-PROBE limits the num­
ber of discrepancies to x instead of restricting the search 
to those nodes with exactly x discrepancies, iteration n 
reexamines the nodes considered by previous iterations 
(see Figure 2). As with other iterative techniques, how­
ever, the final iteration is far and away the most expen­
sive and the redundancy is therefore not a significant 
factor in the complexity of the search. 

Figure 2 shows a trace of LDS exhaustively searching 
a full binary tree of height three. The heuristic orders 
nodes left to right. The twenty pictures show all the 
paths to depth three, in order. The dotted lines and open 
circles represent nodes that were not backtracked over 
since the previous picture, so the trace can be followed by 
examining at the pictures in sequence. Counting all the 
black circles gives the total number of nodes expanded 
in the search, forty. 

In general, the number of nodes expanded by LDS with 
a discrepancy limit of x is bounded by d*+1 (for iteration 
x, there are at most dx fringe nodes, with each path to 
a fringe node expanding at most d nodes). If d is large, 
the cost of any single iteration dominates the summed 
costs of the preceding ones. 

4 Comparison w i t h exist ing methods 
In practice, of course, we will typically not have time to 
search the space exhaustively. We would therefore like 
to know the likelihood of finding a solution, using the 
various methods, in the amount of time we are actually 
willing to wait. We will make this question precise by 
formalizing what we mean for the heuristic to make a 
"wrong turn." 

4.1 Wrong Turns 
For simplicity, we will consider only the case of a full 
binary tree. The two children of each choice point are 

608 CONSTRAINT SATISFACTION 



assumed to be in the order of heuristic preference. We 
will further assume that if a choice point has a goal node 
in the subtree below it, then with probability p (the 
heuristic probabihty) its first child has a goal node in 
its subtree. If the first child does not have a goal, the 
other child must have a goal since the choice point has 
only two children. In this case the heuristic has made a 
wrong turn by putting the children in the "wrong" order. 

The notion of a wrong turn is closely related to the 
mistake probability. We define a bad node to be a node 
that does not have any goal nodes in its subtree. We 
define a mistake to be a bad node whose parent is not 
bad. The mistake probability, m, is the probability that 
a randomly selected child of a good node is bad [Harvey, 
1995]. If the heuristic orders successors randomly, the 
heuristic probability is the complement of the mistake 
probability, p = 1 — m. If the heuristic does better than 
random selection, p > 1 — m. 

Figure 3 shows the four possibilities for a node and 
its children. An x indicates a bad node, a solid dot a 
good node. In the figure, p is the probability that a 
node is in class X or Y (the two classes with good left 
children) given that it is not in class W (the only class 
where the parent is bad). The mistake probability m is 
one half the probability that a node is in class Y or Z 
(the classes with one mistake child) given that it is not 
in class W. 

Experimentally, it appears that m is generally fairly 
constant throughout many search trees [Harvey, 1995]. 

In order to simplify our analyses, we will assume that p 
is constant as well, although the experimental evidence 
is that p tends to increase somewhat as we search the 
tree because most heuristics are more accurate at deep 
nodes than at shallow ones. 

The chance of finding a solution on a random path to 
depth d (i.e., using isamp) is simply (1 — m)d. Using 
heuristics and assuming a constant p, 1-samp has prob­
ability pd of finding a solution on its one and only path. 

This observation allows us to estimate p by running 1-
samp on a large training set of problems from the domain 
of interest. Let s be the success rate of 1-samp on the 
training set. Since the probability of success for 1-samp 
is pd, we have p — slld. If s is small, the training set may 
have to be impractically large to get a reliable estimate. 
For some problems, though, s is not small. Heuristics de­
veloped for job shop scheduling have been shown to yield 
a probability s that is nearly one for small research prob­
lems [Smith and Cheng, 1993]. We have found in earlier 
experimental work on the same problems [Harvey, 1994] 
that even standard CSP heuristics can yield a success rate 
of about 75%. On larger scheduling problems [Vaessens 
et a/., 1994] the success rate of 1-samp is less, but more 
sophisticated heuristics from operations research keep 1-
samp competitive with other search techniques [Cheng 
and Smith, 1994]. 

4.2 Theoretical results 
Given specific values for m and for p, Figures 4 and 5 
show the theoretical probability of success as a func­
tion of time for iterative sampling (isamp), chronologi­
cal backtracking (DPS), and limited discrepancy search 
(LDS) for various heuristic probabilities p.2 The graphs 
show the probability of finding a solution in some num­
ber of probes i, where we define a probe to be a search 
until a dead end is reached for isamp or LDS, or simply 
a search of an additional d nodes for DFS. The num­
ber of probes is limited by the height of the tree be­
cause the combinatorics of solving the problem beyond 
the one-discrepancy limit are intractable. The analyses 
are biased toward DFS because depth-first search is given 
the highest of the heuristic probabilities shown in each 
figure. 

Figure 4 shows results for a problem of height 30, 
with a mistake probability m of 0.2. The problem has 
about a billion fringe nodes of which a few more than a 
million are goals.3 With a solution density of 1/1000, 
we would expect iterative sampling to sample about 
500 fringe nodes before finding a solution (807, to be 

2 The combinatoric manipulations underlying these figures 
are quite involved and appear elsewhere [Harvey, 1995]. 

3Thc number of goals is (2 - 2m)d. 

HARVEY AND GINSBERG 609 



exact).4 By many accounts, a problem with a solution 
density of 0.001 is a fairly easy problem. It takes only 
807-30 = 24, 210 nodes, on average, to find a solution us­
ing iterative sampling. The expected number of probes is 
slightly more than the number of probes required to have 
a 50% chance of finding a solution, 560 • 30 = 16, 800.5 

In practice, we may be interested in the number of 
nodes required to find a solution with a higher probabil­
ity of success. The number of nodes required by iterative 
sampling for a success probability of 0.8 on this problem 
is 1300 • 30 = 39, 000. Compare this to the performance 
of limited discrepancy search. For p = 0.95, LDS has 
probability of success 0.8 with just eleven probes, or 990 
nodes. The savings, nearly a factor of forty, depends on 
the heuristic to order successors correctly seven out of 
eight times when one of the successors is a mistake. 

For p = 0.8 = 1—TO, the heuristic orders the successors 
correctly half the time, no better than random selection. 
The p = 0.8 curve in the figure (almost completely ob-
scured by the isamp curve) shows that the performance 
of LDS is slightly worse than iterative sampling under 
these conditions. For p = 0.85, 0.9, and 0.95 the heuris­
tic orders nodes correctly five, six, and seven out of eight 
times. The curves show that the expected performance 
of LDS increases dramatically with the better p. 

The DPS curve for p = 0.95 rises only marginally above 
the probability 0.21 that its first fringe node is a goal.6 

The futility of DPS is even clearer in the deeper search 
shown in Figure 5. 

The problem of Figure 5 has height 100, and approxi­
mately 1080 nodes. The density of solutions for m — 0.1 
is about 2.6 x 10_5. Iterative sampling needs 26,096 
probes (2.6 million nodes) to have a 50% chance of suc­

cess. If, as in the earlier problem, the heuristic orders 
nodes correctly seven out of eight times (p — 0.975 for 
m = 0.1), LDS has a similar chance with just twenty 
probes (2,000 nodes), a savings of three orders of mag­
nitude over iterative sampling. The savings is similar if 
a success probability of 0.8 is desired instead. 

For higher probabilities of success, the three orders 
of magnitude savings is more doubtful, though perhaps 
not as doubtful as the graph seems to suggest. The one 
discrepancy iteration ends after 101 probes. The later 
probes of the one discrepancy iteration have much of 
their paths in common, so the likelihood that one of these 
later probes succeeds given that the others failed is small. 
After 101 probes, though, the two discrepancy iteration 
begins to explore "fresh" paths again. Consequently, we 
would expect the LDS curve to rise steadily once again 
where the graph leaves off.7 

5 Variat ions and Extensions 
The reason we have focused on analyzing the early iter­
ations of limited discrepancy search is that we believe in 
practice they are the only iterations that matter. Earlier, 
we argued on intuitive grounds that they would be more 
important than the later iterations. We will now take 
the position that in practice the later iterations don't 
matter at all. The reason is that if the objective is to 
maximize the probability of finding a solution in a given 
number of nodes, there are always better things to do 
than use those nodes on later iterations of limited dis­
crepancy search. 

This section discusses a few of the more promising 
choices. Since some involve combinations with other 
techniques and others depend on search space properties 
that are difficult to quantify, this discussion will be less 
precise than that of earlier sections. Here, we will view 
limited discrepancy search as a tool that can be used in 
combination with other techniques to craft an effective 
search procedure for a given real world problem. 

As remarked earlier, we are unfortunately unable to ver­
ify this essentially theoretical claim because the combina­
torics overwhelm us. 

610 CONSTRAINT SATISFACTION 



5.1 Variable Reordering 
Constraint satisfaction problems and SAT problems are 
formulated as tree search by fixing an order for the vari­
ables to be instantiated or determining the order dynam­
ically as the search progresses. In either case, a node in 
the search tree is a choice point for the possible instan­
tiations of a particular variable. If an effective heuristic 
does not solve the problem with a limit of one discrep­
ancy for some chosen variable order, it may still solve the 
problem with one discrepancy given a different variable 
order. The "wrong turn" instantiations that the heuris­
tic makes on the first variable order may even follow from 
unit propagation on the second. This suggests the simple 
technique of repeating the one discrepancy iteration of 
LDS with different variable orders. When variable order 
is determined dynamically, it may suffice simply to begin 
the search with a different variable on each iteration. A 
similar technique improves the efficiency of depth-first 
search as well (see Section 6). 

5.2 Using Different Heuristics 
If multiple heuristics exist for a particular problem, one 
can try repeating the one- or two-discrepancy limit iter­
ations of LDS with different heuristics. If one heuristic 
is unlucky and makes more than two wrong turns on a 
given problem, some other heuristic may be luckier. In 
general, what is hard for one heuristic may not be hard 
for another. LDS is an effective way to give one heuristic 
a reasonable chance before switching to another. 

5.3 Combining LDS w i th Bounded 
Backtrack Search 

LDS can also be combined with bounded backtrack 
search (BBS) [Harvey, 1995] to produce an algorithm 
that does not count "small" discrepancies (those that 
fail quickly) toward the discrepancy limit. This algo-
rithm can also be viewed as modifying the heuristic to 
avoid choices that can be seen to fail using a fixed looka-
head. (The algorithm itself appears in Appendix A.) 

The combined LDS-BBS algorithm outperforms both 
LDS and BBS on job shop scheduling problems. In fact, 
LDS-BBS appears to be the algorithm of choice among all 
systematic backtracking strategies in this domain. There 
is a compelling theoretical argument for this. Many mis­
takes result in quick, if not immediate, failures. If a 
heuristic makes few wrong turns to begin with, it makes 
even fewer wrong turns that exceed the backtrack bound. 
Adding a bounded backtrack enables limited discrepancy 
search to discover solutions with a discrepancy limit of 
no more than the number of wrong turns that actually 
exceed the backtrack bound, potentially reducing the 
number of required iterations. Since the cost of each 
LDS iteration grows by a factor of d, the savings can be 
substantial. The added cost of the backtrack bound is 
relatively insignificant. Adding a backtrack bound of one 
node can cost at most a factor of 2. A backtrack bound 
of / costs at most a factor 2l and, for small /, is likely 
to be cheaper than the cost of an additional iteration. 
This upper bound is conservative since the heuristic, by 
assumption, makes few mistakes. 

5.4 Local Optimization Using LDS 
For problems like scheduling, LDS can also be used to 
search the neighborhood of an existing solution. The 
one discrepancy iteration of LDS is modified to begin fol­
lowing the path of the previous best solution instead of 
following the heuristic. At the depth of the discrepancy, 
the algorithm diverges from the previous solution and 
follows the heuristic for the remaining decisions. If the 
path ends in a solution that is better than the previ­
ous best, it can be adopted immediately or stored as a 
contender for the basis of the next iteration. 

This variation of LDS requires some measure of the 
"goodness" of a solution. For scheduling problems, 
the schedule length is often the appropriate measure. 
Searching for a schedule that takes less than time L} if 
successful, produces a schedule that takes time L'. A set 
of standard LDS iterations can be repeated with the lower 
time bound L', or the optimization variant of LDS can 
be applied to consider variations of the previous schedule 
that differ by at most one discrepancy.8 

5.5 Non-Boolean problems 
Finally, we should at least comment on the possible ex­
tension of LDS to constraint-satisfaction problems in­
volving variables with domain sizes larger than 2. Al­
though we have focussed on Boolean problems in this 
paper (in part because the most natural encoding of job-
shop scheduling problems is Boolean [Smith and Cheng, 
1993]), the technique can obviously be applied in a wider 
setting. There are a variety of choices that will need to 
be made, however: Should the one-discrepancy search 
include every alternate value for the variable that vio­
lates the heuristic, or only the single next most attractive 
choice? If the number of nodes expanded is to increase 
by a factor of no more than d on each iteration, we will 
need to take the latter view. 

6 Exper imenta l Results 
Our experimental results comparing limited discrep-
ancy search with chronological backtracking and itera­
tive sampling are based on a set of thirteen job shop 
scheduling problems taken from a recent survey of oper­
ations research techniques [Vaessens et a/., 1994].9 Each 
of the problems involves scheduling the tasks that might 
be involved in producing widgets in a manufacturing set­
ting: Each job ji needs to be performed on a particular 
machine m* and takes time ti. There are constaints indi­
cating that some jobs need to be completed before others 
can be started, and so on. 

The most effective encoding of problems such as these 
focusses directly on the resource contentions that arise; 
if two jobs ji and jk require the same machine, we intro­
duce a variable Pik indicating whether it is job ji or job 
jk that uses the machine first [Smith and Cheng, 1993]. 

8 Alternatively, the time bound can be adjusted by binary 
division. A single iteration of LDS, though, is not a decision 
procedure, so failure to find a schedule for a given time bound 
is no proof that no such schedule exists. 

9The problems can be obtained by sending a message to 
o.rlibraryoic.ac.uk. 

HARVEY AND GINSBERG 611 



Because these variables are Boolean, the search space 
is far smaller than it would be if we were to make the 
variables the start times of the various jobs themselves. 

Our experimental work formulated each problem as a 
CSP with a loose bound on the schedule length. We then 
iteratively repeated the search, decreasing the bound 
each time to slightly less than the length of the last 
schedule found. We recorded the length of the best 
schedule found as a function of the total number of nodes 
expanded until reaching a final cutoff of 500,000 nodes 
per problem (see Figure 6). 

At any given node cutoff M < 500,000, each algo-
rithm had completed some number of iterations for each 
problem, resulting in schedules of various lengths. We 
evaluated the schedules by these lengths, measuring their 
percent above the optimal length for each problem.10 

We took the average percent above optimal (a function 
of M) as the overall measure of the performance of the 
search algorithms. 

In Figure 6, LDS is clearly superior to chronological 
backtracking and iterative sampling. We chose this par­
ticular benchmark, though, so that we could also com­
pare our results with other scheduling research in artifi­
cial intelligence and operations research. On this bench­
mark, contemporary OR scheduling programs score in 
the range 0.45% to 8.31% above optimal [Vaessens et a/., 
1994]. Although the performance of our implementation 
does not match the best of these programs, it appears to 
be in the same range. 

Our scheduling implementation uses general CSP 
heuristics, which are weak by scheduling standards. Rel-

10 The optimal lengths were taken to be the best reported 
lengths as of November, 1994. 

ative to the larger pool of programs, our implementa­
tion appears to be comparable using limited discrepancy 
search but disastrous using chronological backtracking 
and iterative sampling. Since limited discrepancy search 
relies heavily on the heuristics, we expect that the com­
bination of LDS with the more accurate heuristics of the 
dedicated scheduling programs would have the best per­
formance overall. Experiments in this vein are under 
way. 

We also experimented with a variety of nonsystem-
atic algorithms [Harvey, 1995]. Depth-first search with 
restarts, iterative broadening, and bounded backtrack 
search scored 4.9%, 4.6%, and 4.2% above optimal on the 
benchmark and all outperformed pure limited discrep-
ancy search slightly (LDS was also 4.9% above optimal).11 

However, since all of these nonsystematic methods rely 
less on the heuristics than LDS, we believe that LDS is 
likely to benefit more significantly from future improve­
ments to the heuristics. As we commented in Section 5.3, 
limited discrepancy search can also be combined with 
bounded backtrack search. The results are shown in Fig­
ure 7.12 

The combination of limited discrepancy with bounded 
backtrack search had the best performance of all the sys­
tematic and nonsystematic methods we tested. At 3.68% 
over optimal, its performance with a four-node backtrack 

11 Although the overall difference of 0.7% between the best 
and worst of these algorithms may appear slight, it is sub­
stantial in this domain, since the problems can be expected 
to become exponentially more difficult as one approaches the 
crossover point corresponding to optimality [Crawford and 
Auton, 1993]. 

12 The parameter / in the figure is the depth of backtrack 
allowed in checking for heuristics that led to dead ends. 

612 CONSTRAINT SATISFACTION 



bound is respectable when compared to the dedicated 
scheduling programs. 

7 Conclusion 

We have shown both theoretically and experimentally 
that limited discrepancy search is an effective way to 
exploit heuristic information in tree search problems. It 
is more effective than either chronological backtracking 
or iterative sampling, and we have attempted to explain 
why. 

The scheduling problems that we used in our experi­
ments, while large by contemporary research standards, 
are not large relative to the types and sizes of scheduling 
problems it would be useful to solve in the real world. 
Because of the complexity of scheduling, it is likely that 
the challenge of scaling up from research problems to real 
world problems will be met more quickly by advances in 
heuristics than by the evolution of brute force methods. 
We expect that in the future, techniques that depend on 
heuristics yet recover gracefully by searching alternatives 
when the heuristics fail will be the methods of choice for 
solving real world problems. 

Acknowledgement 

This work has been supported by the Air Force Office 
of Scientific Research under contract 92-0693 and by 
ARPA/Rome Labs under contracts F30602-91-C-0036 
and F30602-93-C-00031. The authors would like to 
thank to Andrew Baker, Ari Jonsson, Jimi Crawford and 
David Etherington for valuable feedback in the course of 
this research. 

References 
[Cheng and Smith, 1994] C. Cheng and S. Smith. Gen­

erating feasible schedules under complex metric con­
straints. In Proc. of the Twelvth National Conference 
on Artificial Intelligence, 1994. 

[Crawford and Auton, 1993] J. Crawford and L. Auton. 
Experimental results on the crossover point in satisfi­
ability problems. In Proc. 11th AAAI, 1993. 

[Crawford and Baker, 1994] J. Crawford and A. Baker. 
Experimental results on the application of satisfiabil­
ity algorithms to scheduling problems. In Proc. 12th 
AAAI, 1994. 

[Harvey, 1994] W. Harvey. Search and job shop schedul­
ing. Technical Report CIRL TR 94-1, CIRL, Univer­
sity of Oregon, 1994. 

[Harvey, 1995] W. Harvey. Nonsystematic Backtracking 
Search. PhD thesis, Stanford University, 1995. 

[Langley, 1992] P. Langley. Systematic and nonsystem­
atic search strategies. In Artificial Intelligence Plan­
ning Systems: Proceedings of the First International 
Conference, 1992. 

[Smith and Cheng, 1993] S. Smith and C. Cheng. Slack-
based heuristics for constraint satisfaction scheduling. 
In Proc. of the Eleventh National Conference on Ar-
tificial Intelligence, 1993. 

[Vaessens et al., 1994] R. Vaessens, E. Aarts, and 
J. Lenstra. Job shop scheduling by local search. Tech­
nical Report COSOR 94-05, Eindhoven University of 
Technology, 1994. 

[Wilkins, 1988] D. Wilkins. Practical Planning: Ex­
tending the Classical AI Planning Paradigm. Morgan 
Kaufman, San Mateo, California, 1988. 

HARVEY AND GINSBERG 613 


