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Abstract 
Localization is a general-purpose representational 
technique for part i t ioning a problem into subprob-
lems A localized problem-solver searches several 
smaller search spaces, one for each subproblem Un­
like most methods of part i t ioning, however, localiza­
tion allows for subproblems that overlap - 1 e mul­
tiple search spaces may be involved in constructing 
shared pieces of the overall plan In this paper we 
focus on two criteria for forming localizations scope 
and abstraction We describe a method for automati­
cally generating such localizations and provide empir­
ical results that contrast their use in an office-building 
construction domain 

1 Introduction 
Over the years, many researchers have focused on the 
use of abstraction to reduce search costs for planning 
and other types of problem-solving [1, 3, 4, 6, 13, 14] 
Abstraction techniques restructure a problem and the 
problem-solving process into a set of "abstraction lev­
els " At the top level of abstraction, a problem is de-
scribed at its most coarse-grained level of detail Each 
successive level is made more concrete by incrementally 
adding information to the problem description The use 
of abstraction can improve problem-solving performance 
if the solution found for an abstract level serves as a 
good starting point for problem-solving at the next level 
of detail Thus, abstraction may be viewed as a heuristic 
for ordering which pieces of a problem are solved first, 
and which later 

Our work also focuses on partit ioning a problem to 
improve problem-solving (in our case, planning) perfor­
mance Our technique, localization, restructures a plan­
ning problem by partit ioning its components into re­
gions Semantically, each region defines a "region of 
interaction" consisting of a subset of the overall prob­
lem requirements and action-type descriptions that are 
related in some way A problem's regional structure then 
forms a basis for part i t ioning the overall planning apace 

into a set of smaller spacea, one for each region Each 
space is focused on constructing a plan fragment that 
contains region actions and satisfies region requirements 

For example, consider the localization depicted in Fig­
ure 1 for a building construction domain This part i t ion­
ing is based on mixed criteria level of detail, contractor 
agents, and building-structure Each box represents a 
region and contains the names of action types within 
that region's frame of reference Some boxes also con­
tain other boxes - those of their subregions Each region 
would be associated wi th the requirements pertaining 
to its action types or the action types of its subregions 
For example, problem solving for p a i n t e r would focus 
strictly on painting activities and requirements In con­
trast, region roomA would focus on the decomposition of 
h i g h - l e v e l activities into lower-level e l e c t r i c i a n and 
p a i n t e r activities for roomA 

There are at least two ways in which localization dif­
fers from tradit ional uses of abstraction for planning 
First, localization more strictly partit ions the frame of 
reference for problem solving, region requirements are 
satisfied only wi th respect to a region plan fragment, 
not the entire global plan In contrast moat abstraction-
based frameworks conduct reasoning globally at the low­
est level of detail 

Second, localized search can accommodate complex 
region structures Instead of being confined to part i-
tionings composed of "levels," the regions comprising a 
localization may take on nearly any configuration - dis­
jo in t , hierarchical, overlapping Indeed, since regions 
may overlap, localized problem-solving typically flows 
back and forth among the regional search spaces (usually, 
to cope wi th region interactions) rather than searching 
a sequence of problem levels The localized search algo-
r i thm maintains consistency between these search spaces 
and the plan fragments that they generate, and also 
guarantees that all regional requirements are ult imately 
satisfied [9, 10] 

In contrast, a tradit ional abstraction-based planner 
can revisit a planning level only via backtracking Be-
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cause of this, abstraction researchers have focused on 
devising part i t ioning techniques that guarantee minimal 
interaction between levels (thus minimizing backtrack­
ing) Unfortunately, however, real-world problems do 
not often lend themselves to neat part i t ioning, as a re-
sult, levels tend to collapse 

Figure 1 A Construction Problem Localization 

As our sample domain illustrates, many criteria can 
be used to form a localization Indeed, one criteria is 
abstraction, a region could be formed to correspond to 
each abstraction level Localized search would then pro-
ceed from one region-level to the next, as in traditional 
abstraction-based planning One focus of this paper is to 
show how Knoblock's method for generating abstraction-
based partitionings [3] can be used to automatically 
generate abstraction-based localizations, even for non-
STRIPS-based planning frameworks As in Knoblock's 
work, our method yields a parti t ioning that guarantees 
monotonicity in the planning process if a solution ex­
ists for a particular region (level), it can be found by 
refining a solution found at the preceding region (level), 
without disturbing established requirements A region 
partit ioning based on this form of abstraction wil l thus 
yield a search process that visits each region space only 
once (except for backtracking) 

Another interesting criterion for localization is scope 
- 1 e the relevance of problem requirements to specific 
portions of the plan Scope-based partitionings typically 
correspond to the natural structural characteristics of a 
problem For example, when planning how to construct 
a building, some problem requirements wil l be relevant 
only to plumbing activities and others only to electri­
cal activities Alternatively, requirements might be clus­
tered on the basis of building structure - e g , rooms and 
floors (again, see Figure 1) 

Localizations based on scope usually do not guarantee 
monotonic consideration of region requirements Region 
search spaces may be visited more than once, even with­
out backtracking For example, in the scenario depicted 
in Figure 1, we might begin by constructing a high-level 
plan in region high-level These high-level activities 
might then be further refined on a room-by-room basis 
The planner might start by planning electrical and paint­
ing activities for roomA, then plan out plumbing activi­

ties for roomB, and finally return to painting activities for 
roomB (thereby causing a return to the p a i n t a r search 
space) Although they may not guarantee monotonicity, 
scope-based localizations can provide powerful search re-
duction benefits, often surpassing those obtained using 
abstraction 

The primary goal of this paper is to demonstrate how 
localization can improve problem solving and, in par­
ticular, how scope and abstraction serve as criteria for 
localization We begin in Sections 2 and 3 by describ-
ing the localized planning architecture of the C O L L A G E 
planner [7, 9] and the kinds of search improvements that 
localization can provide Next, Sections 4 and 5 dis-
cuss how scope and abstraction can be used as criteria 
for generating localizations In particular, we describe 
how the LOC localization generator was used to generate 
scope and abstraction-based localizations Tor C O L L A G E 
Finally, in Section 6, we provide empirical results that 
contrast the uti l i ty of a variety of localizations for an 
office-building planning domain We also contrast our 
results with those obtained using SIPE-2 on the same 
domain [5, 14] 

2 Localized Planning 
C O L L A G E differs from traditional planners in two key 
ways its use of localization to part i t ion the planning 
search space and its use of non-traditional plan construc­
tion methods In this section we provide a short descrip-
tion of both For a more thorough description see [9] 

Intrinsic to C O L L A G E IS the notion of planning as con­
straint satisfaction Each C O L L A G E problem descrip-
tion includes a set of action types and a set of con­
straints The planner's task is to create a plan con­
sisting of actions of the types provided that satisfies 
all problem constraints Each plan (or plan fragment) 
consists of actions, relations between actions (forming a 
partial ordering), and binding requirements on action-
parameters that have been imposed as a result of the 
planning process 1 

In contrast to STRIPS-based action descriptors [2], a 
C O L L A G E action-tvpe description simply provides an ac­
tion name and the types of its parameters For instance, 

a c t i o n - t y p e 
( i n s e r t - s o c k e t ' s . i o c k e t ?w_wall * l _ l o c ) 

defines an i n s e r t - s o c k e t action type A specific in­
stance of this type might be ( i n s e r t - s o c k e t s o c k e t l 
w a l l 2 loc3) 

Rather than being denned in terms of state-based 
goals and preconditions, C O L L A G E problem require-
ments are defined in terms of action-based constraints 
Such constraints focus on desired forms of action instan­
t iat ion, action relationships, and action-parameter bind­
ing requirements For example, consider the constraint 

1A CSP-network [11] on action-parameter-variable* is embed­
ded in the plan and maintained as part of the planning process 
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(before 
( p a i n t - w a l l ?p_paint ?w_wal l ) 
( i n s e r t - s o c k e t ? s _ s o c k e t ?w_wall ? l _ l o c ) ) 

This requires that each i n s e r t - s o c k e t action be tempo-
rally preceded by a p a i n t - w a l l action at the same wal l , 
1 e a wall must be painted before sockets are finally in 
serted In a STRIPS-based framework, this requirement 
would be stated in terms of a state-based precondition 
for l n s e r t - s o c k e t actions C O L L A G E includes an ex­
tensive library of action-based constraint forms that can 
be utilized The advantages of action-based represen­
tat ion and its relationship to state-based representation 
are discussed at length elsewhere [7, 9] 

Each constraint C is associated with three types of 
mechanisms that it inherits from its constraint form 
a check method, a set of fix methods, and an activator 
(along wi th an initial activation setting) The role of a 
check for C is to test whether or not C is satisfied by a 
plan Whenever a check is applied, it returns a list of 
bugs - descriptions of the ways in which C is violated 
The fix methods for C implement the various possible 
plan "repairs" that wi l l satisfy these bugs For exam­
ple, the check for our sample constraint would return all 
insert-socket actions that have no appropriate preced­
ing p a i n t - w a l l action For each such action, the fixes 
would either find an existing p a i n t - w a l l action for the 
same wall and make sure it precedes the i n s e r t - s o c k e t 
action, or alternatively, would create a new such action 

The purpose of C's activator (and ini t ia l activation 
setting) is to indicate when C may be violated Some 
constraints ( l e , C O L L A G E ' S analogue to "goals') are 
init ial ly active when planning begins Others can be 
violated only by the addition of actions into the plan 
Thus, C's activator is a set of action types If any in­
stance of one of these types IS added into the plan, C 
wil l be "triggered" or activated for consideration by the 
planner For instance, the constraint above is activated 
by the addition of i n s e r t - s o c k e t actions 

In addition to describing action types and constraints, 
a COLLAGE problem description also specifies how these 
types and constraints should be partitioned into regions 
This part i t ioning may take on nearly any desired struc­
ture, the only restriction IS that region-subregion rela-
tionships form a DAG Once specified, C O L L A G E ut i ­
lizes the regions and their constraints to drive plan­
ning search Instead of backward- or for ward-chaining 
on goals and preconditions, as a tradit ional planner 
would, C O L L A G E searches a localized constraint satis-
faction search space (see Figure 2) The planning space 
for each region R is focused on constructing a region 
plan fragment, PlanR, that contains actions of the types 
in R or any of R'S descendant regions At the end of 
planning, Plan R must satisfy all of R'S constraints 

Search control for each region is governed by an 
agenda-based mechanism constraints may be activated 
by the addition of actions into the plan, placed on a con­
straint agenda, and later handled by the region search 
mechanism A region agenda is used to regulate control 

flow between regions It keeps track of which regions 
have been activated for further planning (i e which re­
gions have active constraints) Agendas may also be 
associated wi th heunstics that determine the order in 
which activated constraints and regions are chosen 

Since regions may share subregions (and thus, region 
plans may share subregion plans), plan changes made 
by a fix in one region may activate constraints in other 
regions As a result, planning wi l l typically flow back 
and forth between regions, necessitating careful consis­
tency maintenance among the region planning spaces 
C O L L A G E ' S consistency maintenance algorithms are de­
scribed in [9] Analyt ical and empirical results for lo-
calized search [9, 10] have demonstrated that significant 
search-cost reduction can be obtained, and up to expo­
nential savings in domains that require substantial back­
tracking However, because of the need for consistency 
maintenance, localized reasoning can be complex There 
is a tradeoff between focusing the application of con­
straints as narrowly as possible and the cost of keeping 
all of the region spaces consistent A good localization 
balances both factors 

3 Improv ing Search Costs 

Nearly alt AI problem-solving systems conduct search 
wi th respect to some object of interest - be it a plan, 
schedule, or model Typically, each search node is asso-
ciated wi th a current value for the object and each arc is 
associated wi th an operation that transforms the object 
in some way For example, in a planning search space, 
each search space node is associated with a plan and each 
arc is associated with a plan construction operation that 
adds new actions, relations, or variable bindings into the 
plan Given this k ind of framework, planning search 
costs can be improved in at least three ways 
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1 Reducing ike coat of each arc operation One way 
to do this is to tune algorithms to problem require­
ments Another way is to reduce the size of the plan 
being considered at each node 

2 Using search heuristics Good search heuristics can 
result in less backtracking and may also improve 
solution quality 

3 Reducing the size of the implicit search space, typi­
cally by removing redundant or irrelevant nodes and 
arcs One way of doing this is to eliminate from con­
sideration those operations that are irrelevant to the 
plan at a particular node, or those that would oth­
erwise be considered elsewhere in the search space, 
to the same effect 

Localization may be viewed as a technique for tackling 
aspects of all three kinds of improvements By defini­
t ion, localized search applies each planning operation 
(constraint fix) only to a region plan - the portion of 
the overall plan that the constraint is "relevant to " 
Since the cost of plan-construction operations is often 
related to plan size (e g , the cost of temporal closure 
and CSP binding-propagation), applying operations to 
smaller plan fragments can reduce planning cost In our 
experience wi th C O L L A G E , this type of savings alone has 
yielded significant gains 

One of the major contributions of abstraction is that 
it is a good search heuristic - indeed, one that guar-
antees monotonic consideration of domain requirements 
Although localization does not, in general, provide such 
guarantees, it too serves as an excellent search heuris­
tic One reason is that domain constraints are tackled 
on a region by region basis by default, COLLAGE ad 
dresses all activated constraints within a region before 
moving to another region's search space By design, the 
constraints wi thin the same region tend to be the ones 
"most related" to one another (they constrain each other 
most t ight ly) Thus, localization can lead to a constraint 
ordering that tends to resolve conflicts as rapidly as pos-
sible Since localized search proceeds according to how 
constraints activate one another during planning, it also 
serves to focus planning on the most relevant constraints 
and plan fragments at each point in the search process 

Localization can also be viewed as a way of reduc­
ing the size of the otherwise global space, since only re­
gional constraints are considered at each search node 
Constraints associated wi th other regions are "less rele-
vant," so removing them from consideration eliminates 
redundancy within the search space [12], other regions' 
constraints can be tackled later with (usually) no sub­
stantial effect on the form of the final plan 

4 Localization Criteria 
Until recently, COLLAGE users were required to describe 
how action types and constraints should be partitioned 
- I e localization was based on a user's intuit ion about 

problem structure We are now exploring how localiza-
tions can be generated automatically using L o c , a lo-
calization generator developed for C O L L A G E For the 
remainder of this paper, we wil l focus on two criteria we 
have examined abstraction and scope 

4 1 Abstraction-Based Localization 
Knobloek's method for generating planning abstraction 
levels for STRIPS-based frameworks IS based on an anal­
ysis of problem goals and operator descriptors [3] A par­
tially ordered graph of state literals is derived, wherein 
an arc from literal LI to literal Ul indicates that LI must 
be at the same or higher level than Ul The strongly con­
nected components of this graph form the abstraction 
levels A total ordering of these components determines 
the order in which these levels are planned, each focused 
on achieving the literals comprising its level The signif­
icance of Knobloek's technique lies in the fact that plan 
operators introduced to achieve literals at each level are 
guaranteed not to conflict wi th operators introduced at 
higher (preceding) levels 

How can this method be adapted to COLLAGE 'S 
action-based planning framework (or to other types of 
problem solving)? Looking at the graph construction 
process in more detail, one notices that it is based on an 
activation relationship between literals l e how achiev­
ing a literal L\ can activate or lead to achieving Ul The 
result is a parti t ioning in which literals on a particular 
level cannot lead to ("activate") planning for literals on 
preceding levels 

Knoblock's method can be adapted to C O L L A G E by 
making the analogies in the table below In Knobloek's 
framework, each plan-construction operation is focused 
on achieving a particular literal in COLLAGE, each op-
eration is focused on satisfying a constraint Just as 
achieving literal II may lead to achieving literal L2, sat­
isfying constraint C\ may lead to satisfying C2 

Thus, to find an abstraction based localization for 
C O L L A G E , one must focus on the activation relationships 
between constraints From the syntactic description of 
each C O L L A G E constraint, we derive the types of actions 
it can add into a plan Given the activators for each 
constraint (another set of action types), we then derive 
a constraint activation graph, where an arc from con­
straint C1 to constraint C2 indicates that C1 might ac­
tivate C2 We then find the strongly connected compo-
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nents of this graph Each of these components is used to 
form a planning region consisting of the constraints for 
that component Using region-agenda heuristics, these 
regions are searched in an order consistent wi th the ac­
tivation graph 

4 2 Scope-Based Loca l iza t ion 
Another important criterion for localization is the scope 
or relevance of constraints to various portions of a plan 
Determining the precise scope of an action-based con­
straint is simple the action-types relevant to a con­
straint can be syntactically derived from its description 
A problem's "most localized" or most finely-grained lo-
calization consists of a region for each action-type and 
a region for each constraint Each constraint-region in­
cludes, as a subregion, each of the action-type-regions 
it refers to This forms a two-tiered localization struc­
ture, wi th action-type regions below a layer of constraint-
regions However, this structure usually manifests a 
great deal of overlap, since many constraints may refer 
to the same action-types 

Starting wi th this "most localized" part i t ioning, 
scope-based localizations can be created by merging and 
restructuring regions in a variety of ways For exam­
ple, if constraints Cl and C2 are relevant to exactly 
the same set of action types, the Cl region should be 
merged wi th the C2 region Alternatively, if C2's action 
types are a subset of C l ' s action types, the C2 region 
should be made a subregion of the Cl region Notice 
that these transformations do not enlarge C l ' s and C2's 
scope of application with respect to the emerging plan -
they merely optimize a localization by reducing the num­
ber of unnecessary regions and the need for consistency 
maintenance 

As another example, consider the following, more 
heuristic, scenario Suppose that Cl is relevant to ac­
tion types { A 1 , A 2 , A 3 , A 4 , A5} and C2 is relevant to 
{A2, A3, A4, Ab, A6} The scope of these two constraints 
are similar, but not identical However, it might be 
worthwhile to merge the two constraint regions together, 
the scope of application of both Cl and C2 would be 
slightly increased, but the amount of regional interac­
tion would be reduced Alternatively, suppose that C2 
is relevant to {A3, A4, Ab, A6) In this case, we might 
decide to make the C2 region a subregion of the Cl re­
gion This would reduce region interaction and would 
increase the scope of Cl (to include AG), but would not 
increase the scope of C2 

Often, scope-based and abstraction-based localiza-
tions are similar After al l , if two constraints are relevant 
to the same action types, they usually bear some acti­
vation relationship to one another However, these two 
criteria are not identical For example, suppose that Cl 
is relevant to { A l , A2 .A3 } , has activator set { A l , A2} , 
and can add actions of types {Al, -A3} Similarly, sup­
pose that C2 is relevant to {A2 .A3 , A4} , has activator 
set { A 3 , A 4 } , and can add actions of types { A 2 , A 4 } 
Clearly, the scope of these two constraints is different 

Yet since they can activate one another (via A2 and 
A3), they would be placed in the same region in an 
abstraction-based localization 

How can scope be used in a STRIPS-based framework7 

Using our analogy (constraint l i teral, action operator), 
we see that the scope of a literal is the set of operators 
relevant to it This set can be derived from the problem 
description for each predicate P, find those operators 
that "add," "delete" or have a l i teral of type P u s pre-
condition A STRIPS-based planner localized according 
to scope would test the modal truth criterion for P only 
wi th respect to the plan operators that are "relevant" 
to P C O L L A G E ' B predecessor system, G E M P L A N [8, 10] 
localizes state-based reasoning in just this way 
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To create an abstraction-based localization, we use the 
method described in Section 4 1 to find the set of 
activation-based clusterings of constraints Starting with 
the "most-localized" localization, L o c applies a Merge 
transform to each cluster of corresponding constraint re-
gions, yielding a set of regions corresponding to the set 
of abstraction levels 

Generating interesting scope-based localizations is a 
bit more challenging We have identified eight distinct 
scope-based uses of the three basic transforms, four of 
which are described below 

• Remove regions which serve no purpose If a child 
region RC has only one parent RP and either Rc has 
no constraints, or RP has only one child (Re) and 
no action types of its own, then Subsume(Rp, Rc) 



• Merge children regions with identical scoping fvnc 
tionahty If {R1 Rn} have exactly exactly the 
same parent regions and have no constraints of their 
own, then Merge( {R 1 Rn}) 

• Merge parent regions with identical scoping func­
tionality If {R1 Rn) have exactly the same sub-
regions and no action types of their own, then 
Merge{{Rl Rn}) 

• Scoping hierarchy If the subregions of Re form a 
subset of the subregions of Rp and Rc has no action 
types of its own, CreateHierarchy(Rp,Rc.) 

The transforms above do not alter the scope of constraint 
application, they merely optimize a partit ioning by re-
moving unnecessary regions The other four transforms 
are heuristic versions of the tranforms above They have 
more relaxed application requirements and tend to re-
move excessive overlap at the expense of increasing con­
straint scope We are currently developing evaluation 
criteria for controlling their use 

6 Experimental Results 
In order to compare the effects of our localization crite-
ria on planning performance, we conducted a suite of 
experiments in an office-building construction domain 
that was also the subject of a study using SIPE-2 [5] 
We developed three localizations that make use of the 
abstraction-based and non-heunstic scope-based trans­
forms described in Section 5 The first, scoped, is the re-
sult of applying the scope-based transforms to the "most 
localized" localization, L The second, abstracted, is the 
result of applying the abstraction-based merges to L In 
this domain, its structure remains identical to L, ex­
cept for one very large region, resulting from the need to 
merge several constraints that potentially activate one 
another Finally, a third localization, abstracted-scoped, 
results from applying the scope-based transforms to ab-
stracted This localization combines the two criteria of 
scope and abstraction within a single localization It 
contains the same large region as abstracted, but removes 
some unnecessary regions and regional overlap 

Each of these localizations was applied to the same 
suite of problems, for buildings ranging in size from one 
to ten floors wi th identical floor plans on each floor 
We also conducted tests wi th a hand-crafted localiza­
t ion, user-specified, and wi th a global localization, global 
abstracted The latter consists of a single region con­
taining all action types and constraints, and utilizes a 
constraint-ordering heuristic to simulate the effect of im­
posing abstraction levels on the Bearch process That is, 
the constraints are applied in an order that conforms 
wi th the constraint clumps used in abstracted, however, 
they are applied wi th in a global search context rather 
than & localized search context 

The graph below shows total run-time for all five test 
scenarios as well as for SIPE-2 on the same domain One 

obvious conclusion is that scoped performs best The 
most important factor is that this localization manifests 
less unnecessary regional collapse than abstracted and 
abstracted-scoped In particular, due to potential con­
straint activation relationships, the abstraction-based lo-
calizations contain a very large region containing all ac­
tions involved in constructing the office-building frame 
Since temporal closure is one of the expensive opera­
tions in this domain, closure over large region plans can 
be quite costly An important reason why scoped (and 
user-speeified) performs so well is that it generates fewer 
closure relations (though the skeletal temporal structure 
of the plans generated by all of the localizations was the 
same) Since localized planning generates only locally 
derivable closure relations, localizations wi th smaller re-
gions have cheaper closure costs 

Although scoped performs best, notice that global-
abstructed outperforms both of the abstraction-based lo-
calizations (as well as SIPE-2) in the long run Although 
global abstracted performs completely global planning 
operations (whereas abstracted and abstracted are at least 
somewhat localized), in the end the latter two are un­
duly weighed down by the need to perform consistency 
maintenance Thus, they poorly balance the increased-
partit ioning vs consistency maintenance tradeoff 

It is also interesting to note that our hand-crafted lo-
calization for this domain, user specified, is nearly identi­
cal to scoped Indeed, scoped surpasses the performance 
of user specified These facts support the viabil i ty of 
Loc as an automatic localization generator Also of im-
port is the performance of C O L L A G E relative to that of 
SIPE-2 Although these results are admittedly for en­
tirely different planners implemented on different hard­
ware, it is clear that the slope of the C O L L A G E curves 
(even global abstracted) increase much more slowly than 
that of the SIPE-2 curve This result is the best proof 
we have to date of the relative efficiency and scalability 
of action-based (in contrast to STRIPS-based) planning, 
even without the use of localization 
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7 Conclusions 
This paper described localization and localized search 
techniques for part i t ioning a planning problem into sub-
problems and searching a set of smaller, though possibly 
interacting, subproblem spaces Since localized search 
can cope wi th complex, overlapping localization struc­
tures, it provides a powerful mechanism for coping wi th 
real-world planning problems And since it is a generally 
applicable technique, we believe localization has great 
potential for other types of problem-solving as well 

A key focus of this paper was on the kinds of search 
cost improvements that localization can obtain In par­
ticular, we concentrated on two criteria for localiza­
tion abstraction and scope Abstract ion-based localiza­
tions are derived from constraint-activation information 
Scope-based localizations are based on the relevance of 
constraints to specific pieces of the plan We described 
how LOC, an automatic localization generator, can be 
used to generate localizations based on both criteria In 
empirical tests we showed that scope-based localizations 
attained the best results 

Future work with localization and Loc wi l l focus on 
feeding information about the planning process and the 
form of the final plan back into Loc , enabling it to im­
prove a localization by analyzing planning behavior For 
example, currently, Loc applies transforms solely on the 
basis of the problem description - e g the potential 
scope (or activation) of constraints However, during 
planning, specific constraints may actually be applied to 
much narrower portions of the plan Similarly, differ­
ent applications of the same constraint may be focused 
on different portions of the plan (e g the same electri­
cal constraint might be applied to activities on different 
floors) We would like to extend Loc to include spl i t t ing 
transforms, thereby allowing constraints to be applied in 
narrower contexts One excellent candidate for focussing 
the spl i t t ing process wil l be the actual parameter bind­
ings assigned to plan variables Another motivation for 
uti l izing feedback is to guide the application of heuris­
tic scope-based transforms For example, if consistency 
maintenance costs are particularly high for certain re-
gions, they would be good candidates for merging 
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