
Scope and Abstraction:
Two Criteria for Localized Planning

A m y L L a n e k y
L i se C G e t o o r

Recom Technologies/NASA Ames Research Center
Ar t i f ic ia l Intell igence Research Branch

MS 269-2, Moffett F ie ld , CA 94035-1000
LASKYOPTOLENT ARC MASA GOV GETOOROPTOLEMY ARC IA3A GOV

Abstract
Localization is a general-purpose representational
technique for part i t ioning a problem into subprob-
lems A localized problem-solver searches several
smaller search spaces, one for each subproblem Un­
like most methods of part i t ioning, however, localiza­
tion allows for subproblems that overlap - 1 e mul­
tiple search spaces may be involved in constructing
shared pieces of the overall plan In this paper we
focus on two criteria for forming localizations scope
and abstraction We describe a method for automati­
cally generating such localizations and provide empir­
ical results that contrast their use in an office-building
construction domain

1 Introduction
Over the years, many researchers have focused on the
use of abstraction to reduce search costs for planning
and other types of problem-solving [1, 3, 4, 6, 13, 14]
Abstraction techniques restructure a problem and the
problem-solving process into a set of "abstraction lev­
els " At the top level of abstraction, a problem is de-
scribed at its most coarse-grained level of detail Each
successive level is made more concrete by incrementally
adding information to the problem description The use
of abstraction can improve problem-solving performance
if the solution found for an abstract level serves as a
good starting point for problem-solving at the next level
of detail Thus, abstraction may be viewed as a heuristic
for ordering which pieces of a problem are solved first,
and which later

Our work also focuses on partit ioning a problem to
improve problem-solving (in our case, planning) perfor­
mance Our technique, localization, restructures a plan­
ning problem by partit ioning its components into re­
gions Semantically, each region defines a "region of
interaction" consisting of a subset of the overall prob­
lem requirements and action-type descriptions that are
related in some way A problem's regional structure then
forms a basis for part i t ioning the overall planning apace

into a set of smaller spacea, one for each region Each
space is focused on constructing a plan fragment that
contains region actions and satisfies region requirements

For example, consider the localization depicted in Fig­
ure 1 for a building construction domain This part i t ion­
ing is based on mixed criteria level of detail, contractor
agents, and building-structure Each box represents a
region and contains the names of action types within
that region's frame of reference Some boxes also con­
tain other boxes - those of their subregions Each region
would be associated wi th the requirements pertaining
to its action types or the action types of its subregions
For example, problem solving for p a i n t e r would focus
strictly on painting activities and requirements In con­
trast, region roomA would focus on the decomposition of
h i g h - l e v e l activities into lower-level e l e c t r i c i a n and
p a i n t e r activities for roomA

There are at least two ways in which localization dif­
fers from tradit ional uses of abstraction for planning
First, localization more strictly partit ions the frame of
reference for problem solving, region requirements are
satisfied only wi th respect to a region plan fragment,
not the entire global plan In contrast moat abstraction-
based frameworks conduct reasoning globally at the low­
est level of detail

Second, localized search can accommodate complex
region structures Instead of being confined to part i-
tionings composed of "levels," the regions comprising a
localization may take on nearly any configuration - dis­
jo in t , hierarchical, overlapping Indeed, since regions
may overlap, localized problem-solving typically flows
back and forth among the regional search spaces (usually,
to cope wi th region interactions) rather than searching
a sequence of problem levels The localized search algo-
r i thm maintains consistency between these search spaces
and the plan fragments that they generate, and also
guarantees that all regional requirements are ult imately
satisfied [9, 10]

In contrast, a tradit ional abstraction-based planner
can revisit a planning level only via backtracking Be-

1012 PLANNING

cause of this, abstraction researchers have focused on
devising part i t ioning techniques that guarantee minimal
interaction between levels (thus minimizing backtrack­
ing) Unfortunately, however, real-world problems do
not often lend themselves to neat part i t ioning, as a re-
sult, levels tend to collapse

Figure 1 A Construction Problem Localization

As our sample domain illustrates, many criteria can
be used to form a localization Indeed, one criteria is
abstraction, a region could be formed to correspond to
each abstraction level Localized search would then pro-
ceed from one region-level to the next, as in traditional
abstraction-based planning One focus of this paper is to
show how Knoblock's method for generating abstraction-
based partitionings [3] can be used to automatically
generate abstraction-based localizations, even for non-
STRIPS-based planning frameworks As in Knoblock's
work, our method yields a parti t ioning that guarantees
monotonicity in the planning process if a solution ex­
ists for a particular region (level), it can be found by
refining a solution found at the preceding region (level),
without disturbing established requirements A region
partit ioning based on this form of abstraction wil l thus
yield a search process that visits each region space only
once (except for backtracking)

Another interesting criterion for localization is scope
- 1 e the relevance of problem requirements to specific
portions of the plan Scope-based partitionings typically
correspond to the natural structural characteristics of a
problem For example, when planning how to construct
a building, some problem requirements wil l be relevant
only to plumbing activities and others only to electri­
cal activities Alternatively, requirements might be clus­
tered on the basis of building structure - e g , rooms and
floors (again, see Figure 1)

Localizations based on scope usually do not guarantee
monotonic consideration of region requirements Region
search spaces may be visited more than once, even with­
out backtracking For example, in the scenario depicted
in Figure 1, we might begin by constructing a high-level
plan in region high-level These high-level activities
might then be further refined on a room-by-room basis
The planner might start by planning electrical and paint­
ing activities for roomA, then plan out plumbing activi­

ties for roomB, and finally return to painting activities for
roomB (thereby causing a return to the p a i n t a r search
space) Although they may not guarantee monotonicity,
scope-based localizations can provide powerful search re-
duction benefits, often surpassing those obtained using
abstraction

The primary goal of this paper is to demonstrate how
localization can improve problem solving and, in par­
ticular, how scope and abstraction serve as criteria for
localization We begin in Sections 2 and 3 by describ-
ing the localized planning architecture of the C O L L A G E
planner [7, 9] and the kinds of search improvements that
localization can provide Next, Sections 4 and 5 dis-
cuss how scope and abstraction can be used as criteria
for generating localizations In particular, we describe
how the LOC localization generator was used to generate
scope and abstraction-based localizations Tor C O L L A G E
Finally, in Section 6, we provide empirical results that
contrast the uti l i ty of a variety of localizations for an
office-building planning domain We also contrast our
results with those obtained using SIPE-2 on the same
domain [5, 14]

2 Localized Planning
C O L L A G E differs from traditional planners in two key
ways its use of localization to part i t ion the planning
search space and its use of non-traditional plan construc­
tion methods In this section we provide a short descrip-
tion of both For a more thorough description see [9]

Intrinsic to C O L L A G E IS the notion of planning as con­
straint satisfaction Each C O L L A G E problem descrip-
tion includes a set of action types and a set of con­
straints The planner's task is to create a plan con­
sisting of actions of the types provided that satisfies
all problem constraints Each plan (or plan fragment)
consists of actions, relations between actions (forming a
partial ordering), and binding requirements on action-
parameters that have been imposed as a result of the
planning process 1

In contrast to STRIPS-based action descriptors [2], a
C O L L A G E action-tvpe description simply provides an ac­
tion name and the types of its parameters For instance,

a c t i o n - t y p e
(i n s e r t - s o c k e t ' s . i o c k e t ?w_wall * l _ l o c)

defines an i n s e r t - s o c k e t action type A specific in­
stance of this type might be (i n s e r t - s o c k e t s o c k e t l
w a l l 2 loc3)

Rather than being denned in terms of state-based
goals and preconditions, C O L L A G E problem require-
ments are defined in terms of action-based constraints
Such constraints focus on desired forms of action instan­
t iat ion, action relationships, and action-parameter bind­
ing requirements For example, consider the constraint

1A CSP-network [11] on action-parameter-variable* is embed­
ded in the plan and maintained as part of the planning process

LANSKY AND GETOOR 1613

(before
(p a i n t - w a l l ?p_paint ?w_wal l)
(i n s e r t - s o c k e t ? s _ s o c k e t ?w_wall ? l _ l o c))

This requires that each i n s e r t - s o c k e t action be tempo-
rally preceded by a p a i n t - w a l l action at the same wal l ,
1 e a wall must be painted before sockets are finally in
serted In a STRIPS-based framework, this requirement
would be stated in terms of a state-based precondition
for l n s e r t - s o c k e t actions C O L L A G E includes an ex­
tensive library of action-based constraint forms that can
be utilized The advantages of action-based represen­
tat ion and its relationship to state-based representation
are discussed at length elsewhere [7, 9]

Each constraint C is associated with three types of
mechanisms that it inherits from its constraint form
a check method, a set of fix methods, and an activator
(along wi th an initial activation setting) The role of a
check for C is to test whether or not C is satisfied by a
plan Whenever a check is applied, it returns a list of
bugs - descriptions of the ways in which C is violated
The fix methods for C implement the various possible
plan "repairs" that wi l l satisfy these bugs For exam­
ple, the check for our sample constraint would return all
insert-socket actions that have no appropriate preced­
ing p a i n t - w a l l action For each such action, the fixes
would either find an existing p a i n t - w a l l action for the
same wall and make sure it precedes the i n s e r t - s o c k e t
action, or alternatively, would create a new such action

The purpose of C's activator (and ini t ia l activation
setting) is to indicate when C may be violated Some
constraints (l e , C O L L A G E ' S analogue to "goals') are
init ial ly active when planning begins Others can be
violated only by the addition of actions into the plan
Thus, C's activator is a set of action types If any in­
stance of one of these types IS added into the plan, C
wil l be "triggered" or activated for consideration by the
planner For instance, the constraint above is activated
by the addition of i n s e r t - s o c k e t actions

In addition to describing action types and constraints,
a COLLAGE problem description also specifies how these
types and constraints should be partitioned into regions
This part i t ioning may take on nearly any desired struc­
ture, the only restriction IS that region-subregion rela-
tionships form a DAG Once specified, C O L L A G E ut i ­
lizes the regions and their constraints to drive plan­
ning search Instead of backward- or for ward-chaining
on goals and preconditions, as a tradit ional planner
would, C O L L A G E searches a localized constraint satis-
faction search space (see Figure 2) The planning space
for each region R is focused on constructing a region
plan fragment, PlanR, that contains actions of the types
in R or any of R'S descendant regions At the end of
planning, Plan R must satisfy all of R'S constraints

Search control for each region is governed by an
agenda-based mechanism constraints may be activated
by the addition of actions into the plan, placed on a con­
straint agenda, and later handled by the region search
mechanism A region agenda is used to regulate control

flow between regions It keeps track of which regions
have been activated for further planning (i e which re­
gions have active constraints) Agendas may also be
associated wi th heunstics that determine the order in
which activated constraints and regions are chosen

Since regions may share subregions (and thus, region
plans may share subregion plans), plan changes made
by a fix in one region may activate constraints in other
regions As a result, planning wi l l typically flow back
and forth between regions, necessitating careful consis­
tency maintenance among the region planning spaces
C O L L A G E ' S consistency maintenance algorithms are de­
scribed in [9] Analyt ical and empirical results for lo-
calized search [9, 10] have demonstrated that significant
search-cost reduction can be obtained, and up to expo­
nential savings in domains that require substantial back­
tracking However, because of the need for consistency
maintenance, localized reasoning can be complex There
is a tradeoff between focusing the application of con­
straints as narrowly as possible and the cost of keeping
all of the region spaces consistent A good localization
balances both factors

3 Improv ing Search Costs

Nearly alt AI problem-solving systems conduct search
wi th respect to some object of interest - be it a plan,
schedule, or model Typically, each search node is asso-
ciated wi th a current value for the object and each arc is
associated wi th an operation that transforms the object
in some way For example, in a planning search space,
each search space node is associated with a plan and each
arc is associated with a plan construction operation that
adds new actions, relations, or variable bindings into the
plan Given this k ind of framework, planning search
costs can be improved in at least three ways

1614 PLANNING

1 Reducing ike coat of each arc operation One way
to do this is to tune algorithms to problem require­
ments Another way is to reduce the size of the plan
being considered at each node

2 Using search heuristics Good search heuristics can
result in less backtracking and may also improve
solution quality

3 Reducing the size of the implicit search space, typi­
cally by removing redundant or irrelevant nodes and
arcs One way of doing this is to eliminate from con­
sideration those operations that are irrelevant to the
plan at a particular node, or those that would oth­
erwise be considered elsewhere in the search space,
to the same effect

Localization may be viewed as a technique for tackling
aspects of all three kinds of improvements By defini­
t ion, localized search applies each planning operation
(constraint fix) only to a region plan - the portion of
the overall plan that the constraint is "relevant to "
Since the cost of plan-construction operations is often
related to plan size (e g , the cost of temporal closure
and CSP binding-propagation), applying operations to
smaller plan fragments can reduce planning cost In our
experience wi th C O L L A G E , this type of savings alone has
yielded significant gains

One of the major contributions of abstraction is that
it is a good search heuristic - indeed, one that guar-
antees monotonic consideration of domain requirements
Although localization does not, in general, provide such
guarantees, it too serves as an excellent search heuris­
tic One reason is that domain constraints are tackled
on a region by region basis by default, COLLAGE ad
dresses all activated constraints within a region before
moving to another region's search space By design, the
constraints wi thin the same region tend to be the ones
"most related" to one another (they constrain each other
most t ight ly) Thus, localization can lead to a constraint
ordering that tends to resolve conflicts as rapidly as pos-
sible Since localized search proceeds according to how
constraints activate one another during planning, it also
serves to focus planning on the most relevant constraints
and plan fragments at each point in the search process

Localization can also be viewed as a way of reduc­
ing the size of the otherwise global space, since only re­
gional constraints are considered at each search node
Constraints associated wi th other regions are "less rele-
vant," so removing them from consideration eliminates
redundancy within the search space [12], other regions'
constraints can be tackled later with (usually) no sub­
stantial effect on the form of the final plan

4 Localization Criteria
Until recently, COLLAGE users were required to describe
how action types and constraints should be partitioned
- I e localization was based on a user's intuit ion about

problem structure We are now exploring how localiza-
tions can be generated automatically using L o c , a lo-
calization generator developed for C O L L A G E For the
remainder of this paper, we wil l focus on two criteria we
have examined abstraction and scope

4 1 Abstraction-Based Localization
Knobloek's method for generating planning abstraction
levels for STRIPS-based frameworks IS based on an anal­
ysis of problem goals and operator descriptors [3] A par­
tially ordered graph of state literals is derived, wherein
an arc from literal LI to literal Ul indicates that LI must
be at the same or higher level than Ul The strongly con­
nected components of this graph form the abstraction
levels A total ordering of these components determines
the order in which these levels are planned, each focused
on achieving the literals comprising its level The signif­
icance of Knobloek's technique lies in the fact that plan
operators introduced to achieve literals at each level are
guaranteed not to conflict wi th operators introduced at
higher (preceding) levels

How can this method be adapted to COLLAGE 'S
action-based planning framework (or to other types of
problem solving)? Looking at the graph construction
process in more detail, one notices that it is based on an
activation relationship between literals l e how achiev­
ing a literal L\ can activate or lead to achieving Ul The
result is a parti t ioning in which literals on a particular
level cannot lead to ("activate") planning for literals on
preceding levels

Knoblock's method can be adapted to C O L L A G E by
making the analogies in the table below In Knobloek's
framework, each plan-construction operation is focused
on achieving a particular literal in COLLAGE, each op-
eration is focused on satisfying a constraint Just as
achieving literal II may lead to achieving literal L2, sat­
isfying constraint C\ may lead to satisfying C2

Thus, to find an abstraction based localization for
C O L L A G E , one must focus on the activation relationships
between constraints From the syntactic description of
each C O L L A G E constraint, we derive the types of actions
it can add into a plan Given the activators for each
constraint (another set of action types), we then derive
a constraint activation graph, where an arc from con­
straint C1 to constraint C2 indicates that C1 might ac­
tivate C2 We then find the strongly connected compo-

LANSKY AND GETOOR 1616

nents of this graph Each of these components is used to
form a planning region consisting of the constraints for
that component Using region-agenda heuristics, these
regions are searched in an order consistent wi th the ac­
tivation graph

4 2 Scope-Based Loca l iza t ion
Another important criterion for localization is the scope
or relevance of constraints to various portions of a plan
Determining the precise scope of an action-based con­
straint is simple the action-types relevant to a con­
straint can be syntactically derived from its description
A problem's "most localized" or most finely-grained lo-
calization consists of a region for each action-type and
a region for each constraint Each constraint-region in­
cludes, as a subregion, each of the action-type-regions
it refers to This forms a two-tiered localization struc­
ture, wi th action-type regions below a layer of constraint-
regions However, this structure usually manifests a
great deal of overlap, since many constraints may refer
to the same action-types

Starting wi th this "most localized" part i t ioning,
scope-based localizations can be created by merging and
restructuring regions in a variety of ways For exam­
ple, if constraints Cl and C2 are relevant to exactly
the same set of action types, the Cl region should be
merged wi th the C2 region Alternatively, if C2's action
types are a subset of C l ' s action types, the C2 region
should be made a subregion of the Cl region Notice
that these transformations do not enlarge C l ' s and C2's
scope of application with respect to the emerging plan -
they merely optimize a localization by reducing the num­
ber of unnecessary regions and the need for consistency
maintenance

As another example, consider the following, more
heuristic, scenario Suppose that Cl is relevant to ac­
tion types { A 1 , A 2 , A 3 , A 4 , A5} and C2 is relevant to
{A2, A3, A4, Ab, A6} The scope of these two constraints
are similar, but not identical However, it might be
worthwhile to merge the two constraint regions together,
the scope of application of both Cl and C2 would be
slightly increased, but the amount of regional interac­
tion would be reduced Alternatively, suppose that C2
is relevant to {A3, A4, Ab, A6) In this case, we might
decide to make the C2 region a subregion of the Cl re­
gion This would reduce region interaction and would
increase the scope of Cl (to include AG), but would not
increase the scope of C2

Often, scope-based and abstraction-based localiza-
tions are similar After al l , if two constraints are relevant
to the same action types, they usually bear some acti­
vation relationship to one another However, these two
criteria are not identical For example, suppose that Cl
is relevant to { A l , A2 .A3 } , has activator set { A l , A2} ,
and can add actions of types {Al, -A3} Similarly, sup­
pose that C2 is relevant to {A2 .A3 , A4} , has activator
set { A 3 , A 4 } , and can add actions of types { A 2 , A 4 }
Clearly, the scope of these two constraints is different

Yet since they can activate one another (via A2 and
A3), they would be placed in the same region in an
abstraction-based localization

How can scope be used in a STRIPS-based framework7

Using our analogy (constraint l i teral, action operator),
we see that the scope of a literal is the set of operators
relevant to it This set can be derived from the problem
description for each predicate P, find those operators
that "add," "delete" or have a l i teral of type P u s pre-
condition A STRIPS-based planner localized according
to scope would test the modal truth criterion for P only
wi th respect to the plan operators that are "relevant"
to P C O L L A G E ' B predecessor system, G E M P L A N [8, 10]
localizes state-based reasoning in just this way

1616 PLANNING

To create an abstraction-based localization, we use the
method described in Section 4 1 to find the set of
activation-based clusterings of constraints Starting with
the "most-localized" localization, L o c applies a Merge
transform to each cluster of corresponding constraint re-
gions, yielding a set of regions corresponding to the set
of abstraction levels

Generating interesting scope-based localizations is a
bit more challenging We have identified eight distinct
scope-based uses of the three basic transforms, four of
which are described below

• Remove regions which serve no purpose If a child
region RC has only one parent RP and either Rc has
no constraints, or RP has only one child (Re) and
no action types of its own, then Subsume(Rp, Rc)

• Merge children regions with identical scoping fvnc
tionahty If {R1 Rn} have exactly exactly the
same parent regions and have no constraints of their
own, then Merge({R 1 Rn})

• Merge parent regions with identical scoping func­
tionality If {R1 Rn) have exactly the same sub-
regions and no action types of their own, then
Merge{{Rl Rn})

• Scoping hierarchy If the subregions of Re form a
subset of the subregions of Rp and Rc has no action
types of its own, CreateHierarchy(Rp,Rc.)

The transforms above do not alter the scope of constraint
application, they merely optimize a partit ioning by re-
moving unnecessary regions The other four transforms
are heuristic versions of the tranforms above They have
more relaxed application requirements and tend to re-
move excessive overlap at the expense of increasing con­
straint scope We are currently developing evaluation
criteria for controlling their use

6 Experimental Results
In order to compare the effects of our localization crite-
ria on planning performance, we conducted a suite of
experiments in an office-building construction domain
that was also the subject of a study using SIPE-2 [5]
We developed three localizations that make use of the
abstraction-based and non-heunstic scope-based trans­
forms described in Section 5 The first, scoped, is the re-
sult of applying the scope-based transforms to the "most
localized" localization, L The second, abstracted, is the
result of applying the abstraction-based merges to L In
this domain, its structure remains identical to L, ex­
cept for one very large region, resulting from the need to
merge several constraints that potentially activate one
another Finally, a third localization, abstracted-scoped,
results from applying the scope-based transforms to ab-
stracted This localization combines the two criteria of
scope and abstraction within a single localization It
contains the same large region as abstracted, but removes
some unnecessary regions and regional overlap

Each of these localizations was applied to the same
suite of problems, for buildings ranging in size from one
to ten floors wi th identical floor plans on each floor
We also conducted tests wi th a hand-crafted localiza­
t ion, user-specified, and wi th a global localization, global
abstracted The latter consists of a single region con­
taining all action types and constraints, and utilizes a
constraint-ordering heuristic to simulate the effect of im­
posing abstraction levels on the Bearch process That is,
the constraints are applied in an order that conforms
wi th the constraint clumps used in abstracted, however,
they are applied wi th in a global search context rather
than & localized search context

The graph below shows total run-time for all five test
scenarios as well as for SIPE-2 on the same domain One

obvious conclusion is that scoped performs best The
most important factor is that this localization manifests
less unnecessary regional collapse than abstracted and
abstracted-scoped In particular, due to potential con­
straint activation relationships, the abstraction-based lo-
calizations contain a very large region containing all ac­
tions involved in constructing the office-building frame
Since temporal closure is one of the expensive opera­
tions in this domain, closure over large region plans can
be quite costly An important reason why scoped (and
user-speeified) performs so well is that it generates fewer
closure relations (though the skeletal temporal structure
of the plans generated by all of the localizations was the
same) Since localized planning generates only locally
derivable closure relations, localizations wi th smaller re-
gions have cheaper closure costs

Although scoped performs best, notice that global-
abstructed outperforms both of the abstraction-based lo-
calizations (as well as SIPE-2) in the long run Although
global abstracted performs completely global planning
operations (whereas abstracted and abstracted are at least
somewhat localized), in the end the latter two are un­
duly weighed down by the need to perform consistency
maintenance Thus, they poorly balance the increased-
partit ioning vs consistency maintenance tradeoff

It is also interesting to note that our hand-crafted lo-
calization for this domain, user specified, is nearly identi­
cal to scoped Indeed, scoped surpasses the performance
of user specified These facts support the viabil i ty of
Loc as an automatic localization generator Also of im-
port is the performance of C O L L A G E relative to that of
SIPE-2 Although these results are admittedly for en­
tirely different planners implemented on different hard­
ware, it is clear that the slope of the C O L L A G E curves
(even global abstracted) increase much more slowly than
that of the SIPE-2 curve This result is the best proof
we have to date of the relative efficiency and scalability
of action-based (in contrast to STRIPS-based) planning,
even without the use of localization

LANSKY AND GETOOR 1517

7 Conclusions
This paper described localization and localized search
techniques for part i t ioning a planning problem into sub-
problems and searching a set of smaller, though possibly
interacting, subproblem spaces Since localized search
can cope wi th complex, overlapping localization struc­
tures, it provides a powerful mechanism for coping wi th
real-world planning problems And since it is a generally
applicable technique, we believe localization has great
potential for other types of problem-solving as well

A key focus of this paper was on the kinds of search
cost improvements that localization can obtain In par­
ticular, we concentrated on two criteria for localiza­
tion abstraction and scope Abstract ion-based localiza­
tions are derived from constraint-activation information
Scope-based localizations are based on the relevance of
constraints to specific pieces of the plan We described
how LOC, an automatic localization generator, can be
used to generate localizations based on both criteria In
empirical tests we showed that scope-based localizations
attained the best results

Future work with localization and Loc wi l l focus on
feeding information about the planning process and the
form of the final plan back into Loc , enabling it to im­
prove a localization by analyzing planning behavior For
example, currently, Loc applies transforms solely on the
basis of the problem description - e g the potential
scope (or activation) of constraints However, during
planning, specific constraints may actually be applied to
much narrower portions of the plan Similarly, differ­
ent applications of the same constraint may be focused
on different portions of the plan (e g the same electri­
cal constraint might be applied to activities on different
floors) We would like to extend Loc to include spl i t t ing
transforms, thereby allowing constraints to be applied in
narrower contexts One excellent candidate for focussing
the spl i t t ing process wil l be the actual parameter bind­
ings assigned to plan variables Another motivation for
uti l izing feedback is to guide the application of heuris­
tic scope-based transforms For example, if consistency
maintenance costs are particularly high for certain re-
gions, they would be good candidates for merging

Acknowledgments
Thanks to John Allen, Rich Keller, Rich Levinson, Bar­
ney Pell and the members of the FIA-SPOT reading
group for useful comments and stimulating discussions

References
[1] Christensen, J "A Hierarchical Planner that Gen­

erates Its Own Hierarchies," in Proceedings of the
Eighth National Conference on Artificial Intelli­
gence (AAAI90), Boston, Massachusetts, pp 1004-
1009 (1990)

[2] Fikes, R E, Hart , P E , and Nilsson, N J "Learn­
ing and Executing Generalized Robot Plans," Ar­

tificial Intelligence, Volume 3, Number 4, pp 251-
288,(1972)

[3] Knoblock, C A "Learning Abstraction Hierarchies
for Problem Solving," in Seventh International
Workshop on Machine Learning, pp 923-928
(1990)

[4] Knoblock, C A , Tenenberg, J D , and Q Yang
"A Spectrum of Abstraction Hierarchies for Plan­
ning," Proceedings of the 1990 Workshop on Auto­
matic Generation of Approximations and Abstrac
lions, Boston, Massachusetts, pp 24-35 (1990)

[5] Khartam, N A Investigating the Utility of Artifi­
cial Intelligence Techniques for Automatic Gener­
ation of Construction Project Plans, Doctoral Dis­
sertation, Stanford University Department of Civi l
Engineering (1969)

[6] Korf, R E "Planning as Search A Quantitative
Approach," Artificial Intelligence (88,1) pp 65-88
(1987)

[7] Lansky, A L "Action-Based Planning," in Proceed­
ings of AIPS-94, the Second International Con­
ference on AI Planning Systems, Chicago, Ill inois
(June 1994)

[8] Lansky, A L "Localized Event-Based Reasoning for
MuUiagent Domains," Computational Intelligence
Journal, Special Issue on Planning (4,4) (1988)

[9] Lansky, A L "Localized Planning with Diverse
Plan Construction Methods," NASA Technical
Note FIA-TR-94-05, NASA Ames Research Cen­
ter (1994) Under review for Artificial Intelligence
Journal

[10] Lansky, A L "Localized Search for Multiagent Do­
mains," Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI
91), Sydney, Australia, pp 252-258 (1991)

[I I] Mackworth, A K "Consistency in Networks of Re­
lations," Artificial Intelligence, Volume 8, pp 99-
118 (1977)

[12] Kambhampati , S "On the Ut i l i t y of Systematicity
Understanding Tradeoffs Between Redundancy and
Commitment in Partial-Ordering Planning," Pro­
ceedings of the 1998 AAAI Spring Symposium on
Foundations of Automatic Planning The Classical
Approach and Beyond, pp 67-72 (1993)

[13] Sacerdoti, E "Planning in a Hierarchy of Abstrac­
tion Spaces," Artificial Intelligence, 5, pp 115-135
(1974)

[14] Wilk ins, DE Practical Planning, Morgan Kalf-
mann Publishers (1988)

1618 PLANNING

