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A b s t r a c t 

The bu lk of previous work on goal and plan 
recogni t ion may be crudely stereotyped in one 
of two ways. "Nea t " theories — rigorous, jus­
t i f ied, but not yet pract ica l . "Scruffy" systems 
— heurist ic, domain specific, bu t pract ical . In 
contrast, we describe a goal recognit ion mod­
ule that is provably sound and po lynomia l - t ime 
and tha t performs well in a real domain . Our 
goal recognizer observes actions executed by a 
human, and repeatedly prunes inconsistent ac­
t ions and goals f r om a graph representation of 
the domain . We report on experiments on hu­
man subjects in the Un ix domain tha t demon­
strate our a lgo r i t hm to be fast in practice. The 
average t ime to process an observed action w i th 
an in i t i a l set of 249 goal schemas and 22 act ion 
schemas was 1.4 cpu seconds on a SPARC-10. 

1 I n t r o d u c t i o n and m o t i v a t i o n 
Plan recognit ion (e.g. [Kautz , 1987; Pol lack, 1990]) is 
the task of ident i fy ing an actor 's p lan and goal given a 
par t ia l view of tha t actor's behavior. We have focused 
on ident i fy ing the actor's goal. There are several poten­
t ia l appl icat ions for an effective goal recognizer. Goal 
recognit ion is useful for enhancing intel l igent user i n ­
terfaces [Goodman and L i t m a n , 1992]. Fur thermore, a 
goal recognizer would al low an autonomous agent to pro­
vide useful services to the people i t interacts w i t h , such 
as complet ing their current tasks and offering advice on 
how to better achieve fu ture goals. Th is paper describes 
a goal recognit ion module. We do not consider how to 
integrate a goal recognizer in to an agent's architecture. 

In our scheme, the system observes the actor executing 
a sequence of actions. The actor does not necessarily 
know she is being observed ( this is keyhole recognit ion). 
The system at tempts to ident i fy the actor's goal as early 
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as possible. W h a t does it mean to ident i fy the actor's 
goal? To a t t r i bu te a goal to an actor is to predict tha t 
the actor's actions, bo th observed and unobserved, w i l l 
be the execution of one of the plans for tha t goal. The 
actor's goal may be a conjunct ion of various goals such 
as "Tak ing out the trash and fixing the car" . 

The fo l lowing scenario i l lustrates the sort of conclu­
sions we want our goal recognizer to produce. The ob­
served actor is a computer user, enter ing commands in to 
a Un ix shell. Suppose we observe: 

>cd / p a p e r s 
There are many plausible goals at th is po in t . The actor 
might be searching for a par t icu lar f i le. Or perhaps she 
wants to know how much memory is used by the / p a p e r s 
directory. Bu t her goal is not to find a free pr inter . Nor 
is she reading her ma i l . W h y bother to change directo­
ries for these goals? Changing directories is i rrelevant to 
these goals and we assume the actor does not execute 
irrelevant commands. I f we al lowed a rb i t ra r i l y many ir­
relevant actions then we could not predict the actor's 
goal because al l the observed actions migh t be unrelated 
to her goal . Suppose that we next observe: 

> l s 
p a p e r . t e x p a p e r . p s 

The second l ine is the ou tpu t f r om I s . The goals we 
previously rejected are s t i l l rejected. Let 's reconsider 
the goal of determin ing the memory usage of / p a p e r s . 
The op t ima l approach is to execute du instead of I s . I f 
actors acted op t ima l ly , we could reject th is goal . Bu t 
actors do not always act op t ima l ly . T h i s actor may next 
execute I s -1 on p a p e r . t e x and on p a p e r . p s and add 
the memory usages of the files together. Thus , Is may 
be part of a subopt ima l p lan to determine the memory 
usage of / p a p e r s . Now we observe: 

>g rep m o t i v a t i n g p a p e r . t e x 
We now reject the memory usage goal . We also reject 
the goal of searching for a f i le named p a p e r . t e x because 
the g r e p command does not cont r ibu te to i t . The actor 
migh t , however, be look ing for a f i le t ha t contains "mo­
t i va t i ng " or perhaps for a f i le t ha t contains " m o t i v a t i n g " 
and is named p a p e r . t e x . 

In the fo l lowing sections we ar t icu la te the def in i t ions, 
assumptions, and a lgo r i t hm we use to express, jus t i f y , 
and produce these conclusions. A l t h o u g h we val idate 
our system in Un ix , our a lgo r i t hm and fo rma l results 
are domain independent. 
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2 Overview of the paper 
Our object ive is to bu i ld a goal recognizer tha t performs 
well in large, real domains. We need a way to quickly 
determine if a goal is inconsistent w i t h the observed ac­
t ions. In fo rmal ly , a goal is inconsistent w i t h the observed 
actions if the actor could not possibly have executed the 
actions as par t of a p lan to satisfy the goal. To determine 
consistency, we must reason about all plans for each can­
didate goal . To reason t ractably , we borrow techniques 
for construct ing and man ipu la t ing graph representations 
of p lann ing problems, or ig inal ly developed to produce 
search contro l for generative planners [Etz ion i , 1991; 
Sm i th and Peot, 1993]. By analyzing interact ions among 
the actions, act ion schemas, and goal schemas in our con-
sistency graphs (defined below), we detect cases where 
no val id p lan exists for a goal . 

Most p lan recogni t ion a lgor i thms run in exponential 
t ime and have not been shown to per form well on large 
problems. In contrast: 

• Our a lgo r i thm is sound (never rejects a goal G un­
less our assumptions entai l tha t G is not the ac-
tor 's goal) and runs in po lynomia l t ime in the size 
of the inpu t goal recognit ion problem. Th is input is 
smaller t h a n the corresponding i npu t to most plan 
recognizers. 

• Our imp lementa t ion is fast. We have tested our sys­
tem on data collected f r om human subjects in the 
Un ix domain . The average t ime to process an ob­
served act ion w i t h an in i t i a l set of 249 goal schemas 
and 22 act ion schemas was 1.4 cpu seconds.1 

In our f o rmu la t i on , goal recognit ion is semi-decidable. 
I t fol lows tha t our po lynomia l - t ime a lgor i thm is incom­
plete, i.e. it is not guaranteed to reject every inconsistent 
goal . In our exper iments, however, the a lgor i thm rejects 
most inconsistent goals. 

Th i s paper is organized as fol lows. Section 3 defines 
our terms, the i npu t and ou tpu t of a goal recognizer, and 
states our assumptions. Section 4 introduces consistency 
graphs, describes our a lgo r i t hm, and works through an 
i l lus t ra t ive example. Section 5 describes our empir ical 
va l ida t ion . F ina l ly , sections 6 and 7 discuss related work, 
the l im i ta t i ons of our system, and future work. 

3 Problem formulat ion 
We begin w i t h the in fo rma l story. The actor constructs 
and then executes a plan to solve her current goal. A l ­
though plans may contain condit ionals, the observable 
behavior t ha t results f r o m the execution of any plan is a 
sequence of act ions. The system observes a prefix of this 
act ion sequence. A p lan is consistent w i t h the observed 
actions A i f f t h a t p lan has an execution w i t h prefix A. A 
goal is consistent w i t h A i f f there exists a consistent p lan 
for t ha t goal . A key question is what constitutes a plan 
for a goal? We assume the actor constructs plans w i t h ­
out any irrelevant act ions. We fur ther assume the actor 
constructs p lan P for goal G only if P might achieve G 

: T h e data we have collected is publicly available. Send 
mail to neal@cs.washington.edu for details. 

given the actor's beliefs about the wor ld . Th i s assump­
t ion suggests the system has access to the actor's beliefs. 
The system is given, as inpu t , an arb i t ra ry subset of the 
actor's beliefs. The more of the actor's beliefs the system 
is given, the more goals it can prove inconsistent. 

3.1 P l a n n i n g l a n g u a g e 
Our fo rmula t ion is general enough to accommodate 
many p lanning languages. We use U W L [Etz ioni et ai, 
1992], an extension of the STRIPS language, because it 
can express in format ion-gather ing goals and actions w i t h 
sensory effects. Th is is necessary to dist inguish between 
Unix commands such as pwd and cd. In U W L , states 
are sets of l i terals. A literalis a possibly negated atomic 
formula. The conjunct ion of l i terals in a state describes 
al l relevant relationships in tha t wor ld state. Models 
and goals are also sets of l i terals. The conjunct ion of 
the l i terals in a model or goal is a par t ia l descript ion 
of a state. A goal schema is a set of l i terals which can 
contain variables. A schema can be instantiated by re­
placing variables w i t h constants. For example, the goal 
schema for searching for a file w i t h some name ?n (where 
?n is a variable) can be instant iated to f o rm the goal of 
searching for a fi le named p a p e r . t e x . An action schema 
consists of a name, a precondi t ion set, and an effects set. 
An action is an instance of an act ion schema, w i th a 
unique id number. The CD act ion schema, for example, 
can be instant iated in to many different actions, such as 
cd / p a p e r s or cd b i n . Mu l t i p l e executions of the same 
action are dist inguished by their id numbers. 

In formal ly , plans are programs composed of nested 
condit ionals and actions. For brevi ty, we w i l l not de­
fine plans but instead make use of a func t ion , Executor, 
which acts as an interpreter for plans. Executor is a 
many-to-one mapp ing that maps a plan and state to the 
action sequence tha t results f rom executing the plan in 
the state. We often refer to an act ion being in a p lan , or 
one act ion coming before another. Ac t i on A i is in plan 
P iff there exists a state S such that Executor(P ,S) —* 
[..,Ai,..]. If Ai and Aj are bo th actions in plan P, then 
A1 is before A3 i f f in every execution of P in which A j 

appears, A1 appears pr ior to A j. 

3 . 2 C o n s i s t e n c y 
A plan is consistent w i t h the observed actions if some 
execution of the plan might produce those observations. 

D e f i n i t i o n 1 Plan P is consistent with sequence of ac­
tions A iff there exists state S such that Executor maps 
P and S to a sequence of actions of which A is a prefix. 

Consistency of a goal is defined relat ive to a set of 
action schema A and a model M. A goal is consistent 
w i th the observed actions only if there exists a consistent 
p lan, bu i l t out of A, for tha t goal. A p lan for a goal must 
potentially-achieve the goal, given model M, and contain 
no irrelevant actions. We now define these terms. 

D e f i n i t i o n 2 Plan P potential ly-achieves goal G given 
model M iff there exists a state S such that M C S and 
G is satisfied by executing P in S. 

If P potential ly-achieves G given M then P also 
potential ly-achieves G given any subset of M. Th is 
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• A goal recognizer takes a goal recognit ion problem 
II as inpu t and returns a set of goal schemas G '. 

• The inpu t II = (A,M,A,G) where 

— A is a sequence of actions. A is assumed to be 
a pref ix of the actions executed by the actor. 

— M is a set of beliefs. M is assumed to be a 
subset of the actor's beliefs. 

— A is a set of act ion schemas. A is assumed to 
be a superset of the act ion schemas the actor 
plans w i t h . 

— G is a set of goal schemas. The actor's goal is 
assumed to be an instance of an element in G. 

• The ou tpu t Q' is a subset of G such that for every 
goal schema in GQ' there exists an instance of tha t 
goal schema G,- and a p lan P such tha t : 

— P could achieve goal G, given the actor's 
beliefs (constrained by M). 

— P contains no irrelevant actions. 
— P is composed of actions f rom A. 
— Some execution of P is a sequence of 

actions w i th prefix A. 

• Mu l t i p l e Goals: The actor's goal may be the con­
j unc t i on of various goals, such as "Tak ing out the 
trash and f i x ing the car and w r i t i ng a paper" 

Figure 1: Input /output specification for a goal recognizer. 

makes it easy to t reat the beliefs M in the inpu t II as a 
subset of the actor's beliefs. 

W h a t does it mean for a p lan to contain no irrelevant 
actions? We require tha t every action in the plan support 
some act ion in the plan or the goal .2 We define support 
between actions as follows ( the def in i t ion of an act ion 
suppor t ing a goal is very s imi lar ) . 

D e f i n i t i o n 3 Let Ai and Aj be actions in plan P. Ax 

supports Aj iff Ai is before Aj, Ai has an effect that uni­
fies with a precondition p of Aj, and no action between 
Ai and Aj in P has an effect which negates p. 

Support is blocked only by an action that negates the 
suppor t ing effect. One upshot is tha t we allow redundant 
sensory actions in the actor's plans. In other words, 
we do not assume that the actor remembers everything 
she learns f r om executing sensory actions. We can now 
define consistency for goals. 

D e f i n i t i o n 4 Goal G is consistent with action sequence 
A, given model M and action schemas A, iff there ex­
ists plan P such that (1) P is consistent with A, (2) 
every action in P is an instance of a schema in A, (3) 
P potentially-achieves G given model M, and (4) every 
action in P supports an action in P or supports G. 

A goal schema is consistent if any instance of tha t goal 
schema is consistent. 

2This is a much weaker requirement than that the plan be 
minimal in order to contain no irrelevant actions. 

3 . 3 I / O o f a g o a l r e c o g n i z e r 
A goal recognition problem II is a four- tup le {A, M, A, G) 
where A is an action sequence (the observations), M is 
a model (a subset of the actor's beliefs), A is a set of 
act ion schemas (the actor's p lan is composed of actions 
in this set), and G is a set of goal schemas, A goal rec­
ognizer takes a goal recognit ion prob lem and returns G ' 
C G. Ideal ly, G' is the set of goal schemas in G tha t are 
consistent w i th A, given M and A. Figure 1 summarizes 
the i n p u t / o u t p u t specif ication for a goal recognizer. 

We view goal recognit ion as the process of discarding 
goal schemas f rom the inpu t set G and re tu rn ing the re­
main ing, unrejected goals. A sound recognizer never dis­
cards a consistent goal. A complete recognizer discards 
every inconsistent goal. 

When the recognizer returns G'', th is means " the ac­
tor 's goal is an instance of a schema in G*.n If the recog­
nizer is sound, this conclusion is jus t i f ied by the fo l lowing 
assumption. 

A s s u m p t i o n 1 The actor's goal is consistent, given 
model M. and action schemas A, with the (full) action 
sequence the actor executes, of which A is a prefix. Fur­
ther, the actor's goal is an instance of a schema in G. 

Determin ing consistency is exponent ial in the length of 
the longest plan ( tha t doesn't go th rough the same state 
twice). In an unbounded domain , consistency is semi-
decidable. In the next section, we describe a sound, 
po lynomia l - t ime, but incomplete goal recognizer. 

4 Our goal recognizer 
We now present our goal recognizer, i.e an a lgor i thm 
which takes a goal recognit ion prob lem II and returns 
a set of goal schemas. Th i s goal recognizer is provably 
sound and runs in po lynomia l t ime. In th is section, we 
present our theorems and provide in tu i t ions for why they 
are true. The fu l l proofs are in [Lesh and E tz ion i , 1995]. 
In section 5, we val idate our a lgor i thm using data gath­
ered in the Unix domain . 

Our goal recognizer constructs and manipulates a sin­
gle consistency graph T based on the i npu t I I . A con­
sistency graph is a directed graph in which the nodes 
are actions, act ion schemas, and goal schemas. Figure 2 
shows a simple consistency graph. 

In formal ly , the consistency graph represents the plans 
the actor might be execut ing. The actions in T represent 
the observed part of the actor's p lan. The act ion schemas 
in T represent possible unobserved actions. The goal 
schemas in T represent the goals the actor m igh t have. 
The edges in T indicate when one act ion can support 
another act ion or goal. A consistency graph is correct if 
al l consistent plans are represented by the graph. 

D e f i n i t i o n 5 A consistency graph ( V , £ ) is correct, 
relative to the input goal recognition problem II = 
{A, M, A,G), iff the following three properties hold: 
( P I ) V contains every consistent goal schema in G, 
(P2) V contains action schema A E A if an instance of 
X is in any consistent plan for a goal in G, and 
(P3) S contains the edge (Vi—*Vj) for every Vi,Vj G V 
where Vi (or an instance of Vi) supports Vj (or an in­
stance ofVj) in some consistent plan for a goal in G. 
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strength of this assumpt ion, we can reject a goal if no 
plan exists which could achieve i t , given the actor's be­
liefs. A simple case where this arises is when a conjunct 
of some goal is false in the model M and not supportable 
by any effect of any schema in 

T h e o r e m 6 (Impossible Conjunct ) 
I F G i s insupportable and false i n M 
THEN - G is legal. 

The Obsolete Rule leverages our assumption that ev­
ery act ion supports, d i rect ly or indi rect ly , the goal. I f 
some act ion schema is not path-connected to any goal 
in then no instance of can support any goal in 
Since is correct, it contains every consistent goal. Thus 

cannot be in any consistent p lan for a consistent goal. 

The fo l lowing a lgo r i t hm is a sound goal recognizer tha t 
runs in po lynomia l t ime in the size of I I . 

F u n c t i o n 2 recognize(II) ::: Apply the rules to quies­
cence on in i t i a l i ze ( I I ) . Return a l l goal schemas in the 
result ing graph. 

T h e o r e m 8 Recognize is sound and polynomial - t ime in 
the size of XI. 

The in i t ia l ize func t ion produces a correct graph, and 
since we only apply legal rules, the f inal graph is correct 
as wel l . A correct graph contains every consistent goal 
schema. Thus our a lgo r i t hm returns every consistent 
goal schema and therefore is sound. 

The in i t i a l graph contains \G U Au A\'2 elements. In 
every i te ra t ion , we potent ia l ly apply every rule to every 
element. Each rule can be applied to an element in l inear 
t ime in the size of the graph. Our a lgor i thm halts as 
soon as app ly ing al l the rules fai ls to remove anyth ing. 
Thus, the m a x i m u m number of i terat ions is the number 
of elements in the in i t ia l graph. An upper bound for the 
worst case runn ing t ime is thus k x \Q U A U A| 6 where 
k is the number of rules. Th is is a loose upper bound, 
intended only to show tha t our a lgor i thm is po lynomia l . 

Our actual imp lementa t ion is opt imized for our cur­
rent rule set. We have analyzed the dependency re lat ion­
ships among our rules, and fire only a subset of the rules 
in each i te ra t ion . Add i t i ona l l y , we often apply many 
rules in a single procedure. We test, for example, the 
connectedness between an observed act ion and al l goals 
w i th one procedure rather than a call for each goal. Th i s 
is roughly t imes faster than checking every goal sepa­
rately. Fur thermore, a l though the above a lgo r i thm pro­
cesses al l observed actions at once, our actual system 
is incremental . We fo ld new actions in to the processed 
graph rather t han re- in i t ia l ize the graph every t ime a 
new act ion is observed. When we observe a new act ion 
An , we add to fu l ly connect An to and f rom every 
node and then apply our rules to th is new graph. 

4 .1 E x a m p l e t r a c e 
Now we present a sample trace. The inpu t to the recog­
nizer is I I = ( A , M , A, 0) where A = [cd / p a p e r s , g r e p 

m o t i v a t i n g p a p e r . t e x ] , contains representations o f 
C D , LS, G R E P , and L P Q , is empty (we know none of 
the actor's beliefs), G contains G\ = "F i nd a fi le named 
paper . tex" , G2 = " F i n d a fi le named paper. tex tha t con­
tains mo t i va t i ng " , and G3 = "F i nd a free pr in ter . " 

The in i t ia l ize funct ion produces a graph s imi lar to the 
one in Figure 2 except tha t it is fu l l y connected. 

In the f irst i te ra t ion , the Match ing Rule removes 61 
edges, result ing in the graph shown in Figure 2. The 
Order Rule removes edge pape rs ) . 
The Pref ix Rule removes e d g e s ' p a p e r s ) , 
(LS / p a p e r s ) , and ep). 

In the second i te ra t ion , Goa l Connect ion removes G1 , 
G 3 , and edges and because they 
po in t to removed goals. 

In the th i rd i te ra t ion , the Obsolete Rule removes L P Q . 
In the four th i te ra t ion , no rules fire. Set is re­

turned. 

5 Experimental val idation 
In this section, we describe how we collected our da ta , 
how we converted i t in to goal recogni t ion problems, and 
how our system performed on these problems. 

We gather the raw data as fo l lows. A f te r reading some 
instruct ions, the subjects (students in our depar tment) 
are given Engl ish goal descriptions. The subjects t ry to 
solve each goal by executing Unix commands. For each 
task, the subjects indicate success or fa i lure. We proh ib i t 
subjects f rom using certain constructs and commands 
such as pipes and the command awk. 

We converted this raw data in to goal recognit ion prob­
lems. To generate the observed actions A, we matched 
each observed Un ix command to an instance of our ac­
t i on schema for tha t command. We f i l tered ou t com­
mands we considered to be typos. We let A be our ac­
t ion schemas for 22 U n i x commands, inc lud ing al l those 
used by our subjects. We let ind ica t ing tha t we 
know no th ing about the actor's i n i t i a l beliefs. Th is is the 
most conservative set t ing. The goal space consisted of 
249 goal schemas: 129 file-search goal schemas (goals of 
locat ing a file tha t has some qual i t ies) , 15 assorted (non 
file-search) goals, and the 105 pairs of these 15 goals. We 
evaluated our goal recognizer on the fo l lowing goals: 

(G 1 ) F ind a fi le named "core" . 
(G 2 ) F ind a fi le tha t contains " m o t i v a t i n g " and 

whose name ends in " . tex " . 
( G 3 ) F ind a machine tha t has low load; and 

determine i f Oren Etz ion i is logged in to the ma­
chine named chum. 

(G 4 ) Compress al l large 10,000 bytes) f i les in the 
Testgrounds subdirectory tree. 

Goals G\ and G2 are two of the 129 fi le-search goals. 
Goal G3 is one of the 105 pairs of the assorted goals. 
Th is goal demonstrates our ab i l i t y to handle interleaved 
plans for mu l t ip le goals. Goa l G4 is one of the 15 assorted 
goals. Table 1 summarizes our results. An update is 
when one observed act ion is processed. The length of 
the plan is the number of actions the subjects executed 
to achieve the given goal . The remain ing goals are the 
goals s t i l l in the graph after the last update. 
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Our goal recognizer performed very well on these data. 
The average t ime to process an observed act ion was 
1.4 cpu seconds on a SPARC 10 by code wr i t ten in l isp. 
A l t hough the goal recognizer is incomplete in general, 
it detected every inconsistency between the goals and 
observations in our experiments. Thus, our a lgor i thm 
solved the goal recognit ion prob lem, as we have formu­
lated it, very thoroughly and very quickly. 

Bu t d id i t work? D i d our mechanism recognize peo­
ple's goals? In some sense, goal recognit ion occurs when 
the recognizer returns a single, consistent goal. Th is 
rarely occurred in our experiments. For example, for 
goal G1, over ha l f the goals remain. The subjects only 
executed cd and Is unt i l they found c o r e . These com­
mands bo th suppor t almost al l file related goals. Thus, 
almost all file related goals are consistent w i t h the entire 
plans executed to solve goal G\. 

A common assumption in many plan recognit ion 
paradigms is t ha t the actor's actions w i l l eventually serve 
to dist inguish a single p lan (or goal). Our investigations 
suggest th is is unl ike ly to be t rue in the Unix domain , 
even w i t h relat ively smal l sets of possible goals. We view 
our goal recognizer, which quickly prunes out the incon-
sistent goals, as a useful module. The next step might be 
to assign probabi l i t ies to the remain ing goals. In [Lesh 
and Etz ion i , 1995] we propose a very different solut ion 
based on version spaces [Mi tche l l , 1982]. We view goals 
as hypotheses. When a single, strongest consistent goal-
hypothesis exists, we know tha t achieving this goal w i l l 
benefit the actor. Due to space l im i ta t ions , we describe 
a special case of this approach, subset convergence, t ha t 
works well on these problems. 

We define subset convergence to occur when all the 
goals in the space share a common (non-empty) subset. 
Subset convergence is useful because an agent m igh t be 
able to make use of the fact t ha t some goal G' is part of 
the actor's goal . The last column in Table 1 indicates 
when subset convergence occurred for each goal (except 
goal G , for wh ich subset convergence d id not occur). 

Consider goal G2. A l l bu t 37 goals are rejected when 
a g r e p is observed. The remain ing 37 goals al l involve 
searching for a fi le tha t contains some word and, possi­
bly, has some other characteristics (e.g. name ends in 
" . t e x " ) . The goal of look ing for a f i le tha t contains some 
word is a subset of al l 37 of these goals. For G 2 , subset 
convergence occurred, on average, after four actions were 
observed, which was an average of 12 actions before the 
subjects completed the task. 

For goal G3, the subject 's first command always i nd i ­
cated tha t part of their goal either was to find a machine 
w i t h a low load, or to determine if Oren was logged in to 
chum. Thus, subset convergence occurred immediate ly . 
By the second or th i rd command, the goal space con­
verged to goal G 3 . 

For goal G4, the 15 unrejected goals are G4 i tself and 
the 14 pairs of the assorted goals tha t include G4. No th ­
ing the subjects d id to achieve G4 was contrary to (or 
inconsistent w i th ) the goal of compressing al l large f i les 
and, for example, finding a free pr inter . Aga in , subset 
convergence detects, early on , tha t al l 15 goals include 
the goal of compressing the large fi les. 

6 Related work 
Most plan recognizers (e.g. Kautz 's) require, as inpu t , a 
p lan or event hierarchy which consists of top-level goals, 
p r im i t i ve actions, and composite or complex actions. 
Our input , however, differs signif icantly. Essentially, we 
take only the goals ( input G) and p r im i t i ve actions ( in ­
put A ) . Our def in i t ion of what consti tutes a val id plan 
for a goal replaces the complex actions. Under our for­
mu la t ion , the goal recognizer must consider how the low 
level actions can be composed in to plans. E l im ina t i ng 
the complex actions is signif icant in tha t there may be 
up to 2'AI complex actions in the hierarchy. A l t hough our 
input is more compact, it is less expressive; we do not 
allow arb i t rary constraints to be placed between steps 
in plans. We do, however, al low arb i t ra r i l y long plans 
which an acyclic plan hierarchy does not. 

A rarely dupl icated feature of Kautz 's theory and sys­
tem is the abi l i ty to recognize concurrent, interleaved 
plans. Kautz assumes tha t actors execute the m i n i m u m 
number of consistent plans. We can proceed s imi lar ly i f 
we assume tha t the concurrent execution of plans P1...Pn 

for goals G\...Gn is always the execution of some single 
plan P for G\f\ ... A Gn- The technique to recognize 
interleaved goal-solving is to first run our a lgo r i t hm, as 
norma l , on the given goal space G. If al l goals are re­
jected then run recognit ion on a l l pairs of goals, G2 . I f 
this space collapses, run recognit ion on G3. A n d so on. 
Th is approach is not po lynomia l or sound because we ap-
prox imate consistency, if we allow arbitrary numbers of 
plans (or goals) to be interleaved. We believe, however, 
tha t people rarely interleave large numbers of plans. I f 
we assume that actors only pursue at most, say, 3 or 4 
goals simultaneously then our technique, which can ter­
minate at G6 or G4, becomes po lynomia l and sound. 

There has been some work (e.g. [Pollack, 1990]) on 
recognizing inval id plans. We allow some inval id plans, 
because we allow all plans which could achieve the goal 
based on the actor's incomplete model of the wor ld . 
Some of these plans w i l l not achieve the goal when exe­
cuted f rom the actual wor ld state. We cannot recognize 
plans bu i l t out of incorrect models of the act ion schemas, 
as Pollack's system can. Her system does not consider 
all al lowable plans, as ours does, but instead searches for 
a good explanatory p lan . 

There is some work on t r y i ng to select the best or most 
probable plan or combinat ion of plans (e.g. [Charniak 
and Go ldman, 1991]). Our work complements this re-
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search; our recognizer can produce the consistent goals 
which can then be subjected to more expensive prob­
abi l ist ic analysis. [Weida and L i t m a n , 1992] extend 
te rm subsumpt ion to include plan recogni t ion, mot iva ted 
by the need to organize large numbers of plans, much 
l ike our desire to handle large domains. [V i la in , 1990] 
describes a po lynomia l - t ime plan recognizer based on 
g rammat ica l parsing. His system is sound and complete 
on restr icted classes of p lan hierarchies unl ike ours which 
approximates consistency relat ionships based on an ex­
ponent ia l ly large p lan space. [Bauer et al, 1993]'s def­
i n i t i on of when a p lan can be refined to include actions 
resembles our def in i t ion of a p lan being consistent w i t h 
act ions, but their computa t iona l approach is quite dif­
ferent f r o m ours. 

7 Cr i t ique and future work 
Our a lgo r i thm requires po lynomia l t ime in size of the in­
put . A more sophist icated a lgo r i thm, described in [Lesh 
and E tz ion i , 1995], runs in t ime l inear in the number of 
i npu t goals ( though st i l l po lynomia l in |A|) . Bu t reason­
able goal spaces may be exponent ia l ly large in relevant 
features of the domain , such as the number of predi­
cates. Our solut ion is based on version spaces [Mi tchel l , 
1982]. We view goals as hypotheses and expl ic i t ly com­
pute only the strongest consistent hypotheses and the 
weakest consistent hypotheses. These two boundaries 
compact ly represent the set of al l consistent goals. In 
[Lesh and E tz ion i , 1995], we ident i fy a class of goals such 
that we can determine the consistency of 2n goals by ex­
p l i c i t l y comput ing consistency on only n goals. 

Current ly , we strongly leverage our assumption that 
every act ion in the actor's p lan supports another action 
or the goal . On this basis we reject the goal of f ind­
ing a free pr in ter if we observe cd / p a p e r s . However, if 
we completely model our domain , then most actions can 
contr ibute to most goals. I f the actor is searching for 
a file tha t contains pr in ter names then cd / p a p e r s can 
( ind i rect ly) support f ind ing a free pr inter . The problem 
is not tha t we fa i l to recognize this obscure plan but tha t 
we fa i l because we don ' t model the wor ld wel l . Eventu­
ally, we w i l l need a stronger constraint than our current 
one tha t every act ion support another act ion or the goal. 

On the other hand, our approach is sensitive to noisy 
or spurious actions. We assume every observed action is 
par t of a goal-directed p lan. Th i s may not adequately 
capture the role of certain actions such as re turn ing to 
one's home directory or mopp ing one's brow. We are 
current ly explor ing the possibi l i ty of learning which ac­
t ions are regular ly spurious by observing the actor over a 
long per iod of t ime. These actions could then be f i l tered 
out f r om the observations. 

We have not yet addressed several add i t iona l issues. 
Recall tha t the i npu t observations are actions in our for­
ma l act ion language. Bu t how do we automat ical ly pro-
duce, for example, an instance of the CD act ion schema 
f r o m the observable s t r ing cd / p a p e r s ? W h a t i f the 
actor executes a command which fails? Furthermore, 
how do we know when the actor finishes one task and 
begins another? We believe that our goal consistency 
f ramework and exper imental apparatus puts us in good 

posi t ion to address these issues. 
A l t hough our a lgo r i thm and fo rma l results are 

domain- independent, th is does not guarantee tha t our 
goal recognizer w i l l be effective in every domain . Our 
case study in Un ix indicates t ha t our goal recognizer per­
forms well there. We believe these results suggest tha t 
our approach w i l l also work well in various software do­
mains. More generally, our approach is par t icu lar ly well 
suited to two classes of goals. F i rs t , conjunctive search 
goals, such as the goal of look ing for a fi le tha t is large, 
tha t has not been touched for a m o n t h , etc. Second, 
conjunctive set goats, such as compressing a l l files tha t 
are large, tha t have not been touched for a m o n t h , etc. 
Plans for both classes of goals can be very long, and thus 
task complet ion w i l l be especially useful. 
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