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Abstract

It is generally accepted that knowledge based
systems would be smarter and more robust if
they can manage inconsistent, incomplete or
imprecise knowledge. This paper is about a
four-valued fuzzy propositional logic, which is
the result of the combination of a four-valued
logic and a fuzzy propositional logic. Besides
the nice computational properties, the logic en-
ables us also to deal both with inconsistency
and imprecise predicates in a simple way.

1 Introduction

The management of uncertainty in inference systems is
an important issue due to the imperfect nature of real
world information. There are several fields in which this
information has to do with vague concepts, i.e. concepts
without clear definition. The key fact about vague con-
cepts is that while they are not well defined, propositions
involving them may be quite well defined. For instance,
the boundaries of the Mount Everest are ill defined,
whereas the proposition stating that the Mount Ever-
est is the highest mountain of the world is definite, and
its definiteness is not compromised by the ill-definitess of
it's exact boundaries. Propositions of this kind are called
fuzzy propositions. Each fuzzy proposition may have a
degree of truth between [0,1]. On the other hand, there
exists propositions which are true or false, but due to
the lack of precision of the available information we can
in general only estimate to what extend it is possible or
necessary that they are true. This kind of propositions
are called uncertain propositions. For example, the con-
cept triangle is well defined, but we can only estimate to
what extend it is possible that e.g. a shape in a picture
is a triangle if the segments are not exactly bounded.
Certainly, any combination of the two is possible, e.g.
uncertain fuzzy propositions are fuzzy propositions for
which the available reference information is not precise.

In this paper we will concentrate our attention to (cer-
tain) fuzzy propositions. In particular, fuzzy proposition
we will handle are of the form [A > n] (where A is a
proposition and n € [0,1]) and have intended meaning
"it is certain that the degree of truth of A is at least
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n". But, rather mapping [A > n] as usual into frue or
false (as e.g. in [Chen and Kundu, 1996]), we will give
to it a four-valued semantics. This will be done by map-
ping [A > n] into an element of 2(tf) where {t}, {/}, 0
and {t, /} stand for the four truth values true, false, un-
known and contradiction, respectively, as in [Levesque.
1984]. A first consequence of this semantics is that in
certain "useful" circumstances the deduction process is
tractable from a computational point of view. A second
consequence is that the semantics enables us to deal with
inconsistencies as the four-valued logic we will adopt is
known to be paraconsistent (see, e.g. [Wagner, 1991]).

Our four-valued fuzzy semantics has been shown to be
useful in the area of content-based retrieval of multime-
dia data [Meghini et a/., 1997]. In this context the (se-
mantic) content of e.g. an image region r is described by
means of fuzzy propositions like "r represents the Mount
Everest with degree > 0.8". Since images (or any other
media) are the subjective work of their authors, contra-
dictions could arise among their content representations
(possibly together with domain knowledge), which typi-
cally may not be the subject of a belief revision process.

This paper is organised as follows. In the next section
we will briefly resume some aspects of the four-valued
logic we are based on and in Section 3 we will extend it
to the fuzzy case. In Section 4 we will extend our logic
by allowing a sort of conditional reasoning’. Calculi for
deciding entailment will be given for all logics presented
and Section 5 concludes.

2 Four-valued propositions

The four-valued logic we will base our work on is essen-
tially [Belnap, 1977; Levesque, 1984]. Let C be the lan-
guage of propositional logic, with connectives A.V and
7. We will use metavariable A, B, C,... and p, q, r
for propositions and propositional letters, respectively”.
Negation Normal Forms (NNF) and Conjunctive Normal
Forms (CNF) are defined as usual.

A four-valued interpretation X maps a proposition into
an element of 2(t,f) and has to satisfy the following equa-

' Notice that in our basic logic modus ponens is not a valid
rule of inference.
2All metavariables could have an optional subscript.



tions: t € (AAB) ifft € AZ and t € B%; f € (AAB)*
iffeAlorfe Bl te (AVB)IiEtE AT ort e BE;
fe(AvBY iffe ATand fe BYte (A ifife
AT and f € (~A)T iff t € A%. 1t is worth noting that
a two-valued interpretation is just a four-valued inter-
pretation T such that AT € {{t}, {f}}, for each 4. We
might characterise the distinction between two-valued
and four-valued semantics as the distinction between im-
plicit and expiicit falsehood: in a two-valued logic a for-
mula is (implicitly) false in an interpretation iff it is not
true, while in a four-valued logic this need not be the
case. Our truth conditions are always given in terms of
belongings € (and never in terms of non belongings &)
of truth values to interpretations.

Let T be an interpretation, let A, B be two proposi-
tions and let £ be a set of propoeitions, called Know!-
edge Base (KB): T satisfies (is a model of) A iff t € AT;
A and B are equivalent (written A =, B) iff they have
the same models; Z satisfies (15 ¢ model of) L if T is a
model of 4, for all 4 € T; T entails A (written T =4 A)
iff all models of ¥ are models of A. Without loss of gen-
erality, we can restrict our attention to propositions in
NNF only, as ~—A4 =4 A, ~{(AAB) =4 AV ~B and
-{AV B} =4 ~AA—B hold., For ease of notation, we will
often omit braces, thus writing e.g. A, B =4 € in place
of {A, B} k=4 C and |=4 A in place of § =4 A.

Relation 1 The following relations can easily be veri-
fied: 1. A =4 B does not imply -4 =4 ~B (and vice-
versa), 2. AANBEy A, 3. A=y B and B |=4 C implies
AEiC, A4 AVB, ANAVB) gy BandZ i A
implies £ =2 A, where =2 is the clossical two-valued
entailment relation. Note that there are no teutologies,
i.e. there is no A such that =4 A. Moreover, every KB
is satisfiable. Hence, A A —A 4 B, as there is o model
I (AT = {t,f}, BT = 0) of AA-A not satisfying B. W
Certainly, not allowing modus ponens is penalizing. But,
we will include this form of inference in the extended
language £+ described in Section 4.

2.1 Deciding entailment in £

Effectively deciding whether ¥ k=4 A requires a caleu-
lus. A well known algorithm for deciding entailment in
L is Levesque's algorithm [Levesque, 1984): in order to
check whether A k=4 B, we put A and B into an equiv-
alent CNF (say C and D) and verify whether for each
conjunct D; of D there is a conjunct C; of C such that
C; G D;, where C; and D; are clauses. Hence, entail-
ment between two propositions C and D in CNF can
be verified in time O()C|{D|), whereas checking whether
A =4 B is a coNP-complete problem in the general
case. We propose an alternative calculus which (§) does
not require any transformation into CNF, (ii) has the
same polynomial complexity for the CNF case and (ifi)
is easy extensible to the treatment of conditional rea-
soning which will be the topic of Section 4. The calculus
we have developed is one inspired on the calculus KE
[D'Agostino and Mondadori, 1994]. The calculus, a se-
mantic tableaux, is based on signed propositions of type

& {“conjunctive propositions”} and of type 3 (“disjunc-
tive propositions”) and on their componenis which are -
defined as usual [Smullyan, 1968)3:

] oy | ag g [y

TAAB 1 TA {18 TAVO | TA T THE
NMAVE | NA | T8 NAAB | NTA | NIB

TA and NTA are called conjugated signed propositions and
with 8 we indicate the conjugate of 8;. An interpreta-
tion Z satisfies TA iff T satisfies A, whereas T satisfies
NLA iff T does not satisfy A. A set of sighed propositions
is satisfiable iff each element of it is satisfiable. There-
fore, T =4 A iff TEU{NT A} is not satisfiable, where TE =
{TA: A € I}. The calculus is based on the rules:

T

{A) & (PB)
oy, g !H | mz
(81 _B, 5% 82 _B,
1

TAV B, NA
An instance of e.g. rule (B1) is . Notice

that the only branching rule is (PB) {called Principie
of Bivalence). As usual, a deduction is represented as a
tree, called deduction tree. A branch ¢ in a deduction
tree is closed iff for some proposition A4, both TA and
NTA are in ¢. With S% we indicate the set of signed
propositions occurring in ¢. A set of signed propositions
S has a refutation iff in each deduction tree all branches
¢ are closed. Furthermore, we will restricted the proof
procedure to the so-called canonical form [D'Agostino
and Mondadori, 1994, p. 299]: a proposition is AB-
analysed in a branch ¢ if either () it is of type a and
both & and a3 oceur in ¢; or (i) it is of type F and (iin)
if B¢ occurs in ¢ then Bz occurs in ¢, {i4d) if 35 occurs in
¢ then B8, occurs in ¢. A branch is AB-completed if all
the propositions in it are AB-analysed. A proposition of
type 3 is fulfilled in a branch ¢ if either 8; or 32 occurs
in ¢. We say that & branch ¢ is completed if it is AB-
completed and, every proposition of type 8 occurring
in ¢ is fulfilled. A deduction tree is completed if all its
branches are completed. The procedure Sat(S) below
determines whether S is satisfiable or not.

Algorithm 1 (Sai(5})

Sats.S') starts from the root labelled 5 and applies the rules
until the resulting tree is either closed or completed. If the
tree is closed, Sat(S) returns false, otherwise true. At each
step of the construction the following steps are performed:

1. select a branch ¢ which is not yet completed;

2. expand ¢ by means of the rules (A), (81) and (B2} until
it becomes AB-completed, generating branch ¢';

3. if ¢ is neither closed nor completed then
{a) select a proposition of type 8 which is not yet ful-

filled in the branch;
{c) apply rule (PB) with 8 and 5§ as PB-formulae
and go to step 1. . '
otherwise, go to step 1. [ ]

The following proposition can be shown.

3T and NT play the role of “True” and "Not True”, respec-
tively. In classical calculi Nl may be replaced with F {“False”).
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Proposition 1 Let S be a set of signed propositions in
L. Then Sat(S) iff S is satisfiable. =

Example 1 It can easily verified that a canonical proof
of pV{gAT) ¢ (pV ) A(pVr) starts with § = {TpV
(gAr),NI(pV qg) A{pVr)} and generates two branches
¢ and ¢, by using By = N'(pV ¢) and f = T(pV q) as
PB-formulae, such that $%: = SU {KIpV ¢, N[p, NI'q, Tg A
7 Tq,Tr} and §% = SU {TpV q,NTp V 7, \Ip, NI, Tg A
r,Tq, Tr}. Both ¢, and ¢ are closed. [ ]

If £ and A are in CNF4, then rule (PB) is not needed,
i.€. we can eliminate Step 3. from Sat. Hence, any de-
duction tree will have one branch. As a consequence, by
observing that £ =4 A1 A.. . Ap iff foreach1 <1< n
L k4 A, it can be shown that

Proposition 2 If © and A are in CNF then checking
L k=4 A can be done in time O({I[|Al} using Sat. =

Two-valued soundness and completeness is obtained by
extending signed propositions as usual: (i) T—A is of
type o and NTA is its & and s component; (i) N'-A is
of type o and TA is its o1 and az component. Just notice
that in this case Sat is exactly the canonieal procedure
for KE [D'Agostino and Mondadori, 1994].

3 Fuzzy propositions

Now, we extend our propositionsl lenguage £ to the
fuzzy case. A fuzzy veluation is a function mapping
propositions into [0,1]. Consistently with our approach
of distinguishing exglicit from implicit falsehood (i.e.
distinguishing f € A% from t ¢ AT) we will use two fuzzy
valuations, {-{* and |- |/: |A]* will naturally be inter-
preted as the degree of truth of A, wherees |A|/ will anal-
ogously be interpreted as the degree of falsity of A. Clas-
sical “two-valued” fuzzy propositions |- |* and |- |/ are
such that |4} = 1—|A|*, for each A. In our case, instead,
we might well have |A|* = 0.6 and |A}f = 0.8. This is a
natural consequence of our four-valued approach.

A (certain) fuzzy propesition is an expression of type
[A > n], where A is a proposition in £ and n € [0,1];
L7 is just the set of fuzzy propositions. For instance,
[ItsCold > 0.7] is a fuzzy proposition meaning that it is
certain that the degree of truth of ItaCold is at least 0.7,
while [ItsCold > 1] means that it is definitely cold. On
the other hand [~ItsCold > 0.7 means that it is certain
that it is likely to be not cold, while {-ItaCold > 1) may
be interpreted as saying that it is definitely not coid.
(A4 > n} is in CNF whenever A is.

A fuzzy interpretation I is a triple T = (()F, |- |1,
|-|¥), where |-}t and |-|/ are fuzzy valuations and
(-}I maps each fuzzy proposition into an element of

2{t.f} Additionally, (-)%,|- |t and |-}/ have to satisfy
the following equations: {AA B[t = min{|Al*, |B|'};
|AAB{ = max{|4), |B{’}; |AVBf = max{ A[
|BI*}; 1AV Bl = min{|A)/, |BI'}; [~Al = |A}/; |-A
= A} te{A2n if |[AF 2 n; and fe[A> )

4A set is in CNF iff each component of it is.
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iff JA[ > n. It is easy to see that, e.g. [AAB|' =
|~A Vv ~B|/. Similarly for 4V BJ".

It is worth noting that there is a simple connection
between the four-valued semantics given in Section 2 and
the fuzzy counterpart. In fact, the above conditions can
be reformulated as e.g.t € [AA B > nfiffte (A>T
andte [B>n";and f€[AAB >nffiffe{d>n)
or fe[Banf. A =1—|Atend [A2n) ¢
{{t},{f}}, classical “two-valued” fuzzy logic is obtained.

Fuzzy satisfiability, fuzzy equivalence and fuzzy en-
tailment are defined as the natural extensions of the non
fuzzy case. We will use the relation v, in place of =,
whenever we refer to the fuzzy cese (e.g. Lf,[A > n).
Since f,|A > 0}, we will not consider those {A > n] for
n = 0. Given a KB ¥ and a proposition 4, we define the
mazimal degree of truth of A with respect to £ (written
Mazdeg(Z, A)) to be sup{n > 0: TR (A > n}} (supP =
0). Notice that T ke, (4 > n] iff Mazdeg(3, A) 2 n.

There is a strict relation between fuzzy propositions
and propositions. Given a KB L, let £ be the (crisp)
KB{A:[A>2nle X}

Proposition 3 Let L be a KB and let [A > n] be a fuzzy
proposition. If TR [A > n) then T =4 A -

Proposition 3 states that there cannot be fuzzy
entailment without entailment. Hence, {[4>0.7],
[-A4 2 0.5]} B, [B 2 n], for all n > 0. In fact, consider
an interpretation 7 such that [A]' = 0.7, |4/ = 0.5,
|B|f =0 and |B|* = 3.

Example 2 Let L betheset £ = {[p > 0.1], [pAg = 0.5]
[gvr > 0.6]}. Let A be pVr. One may check that X
k2, [A > 0.5] and Mazdeg(X, A) = 0.5. T |4 As easily
verified, thereby confirming Proposition 3. »

3.1 Deciding fuzzy entailment in £/

The calculus is a straightforward extension of the proce-
dure Sat. In fact, just consider the following fuzzy signed
propositions and the obvious extension of the definition
of satisfiability:

| [+ (231 2
TAABZn] | T[A2n | IB2n
M[AVEB>nl | M[A>n] | NI[B > n]

[i) 1 J2
AVBzn| | JA2n] | TB2n
MIAAB>n| | MAZ2n] [W[B>n

By considering Sat extended to the fuzzy case. where
T[4 > n] and NI[A > m] are conjugated whenever n > m.,
we obtain

Proposition 4 Let § be a set of signed fuzzy proposi-
tions in Lf. Then Sat(S) iff S is satisfiable. 5

Example 3 The application of Sat to ¥ and {4 > 0.5)].
as in Example 2, starts with § = TZ U {NT[A > 0.5]} and
generates a closed deduction tree with unique branch ¢
such that §¢ = § U {T[p > 0.5|, Tig > 0.6], MI[p > 0.5],
Nrir > 0.5]}. Hence, ¥ k¢, [A 2 0.5]. [



Using Proposition 4, fuzzy entailment and entailment
may be shown to be in the same complexity class.

Proposition § Checking LR [{A > n] is a coNP-com-
plete problem, as is T =4 A. éwen L, [A > n] in CNF,
checking T k=, [A > n] can be done in time O(|Z||4[). 4

One can notice that, any successful refutation of TE
U{NITA 2> n]} does not rely on those [B > m| € E such
that m < n. Hence, if we let £ be a KB ahd consider
the set Z® = {[A > m| € Z : m > n}, then

Proposition 6 Let & be o £/ KB. Then Ef,[A > n]
IR =y A

As a consequence, fuzzy entailment inherits all the prop-
erties of entailment seen in Section 2 (Relation 1):

Proposition 7 Let £ be a L KB. If T k=4 A then there
is a n > 0 such that Tk (A > n]. .

which completes Proposition 3. Just note that Propo-
sition 6 does not hold for f=,. In fact, con-
sider £; = {[p > 0.2),[-p 2 0.3]} and Z; = {[p>0.2],
[=p = 0.9]}. It can easily be verified that £{-! =5 g and
T1k,lg > 0.1], whereas Zafe,[g > 0.3] and I3 &, .
Proposition 6 gives us & way for computing
Mazdeg(Z, A) in the style of the method proposed in
(Hollunder, 1994]. This is important, as computing
Meazxdeg(X, A), is in fact the way to answer a query of
type “to which degree is A (at least) true, given the
facts in X 77 The method, which requires an algorithm
for computing (crisp) entailment (e.g. Sat), is based on
the observation that Mazdeg(E, A) € {0} U Ny, where
Ng = {n:{A 2 n| €L}, and that £™ 2 £" if n > m.

Algorithm 2
Let T be @ KB and A a proposition. Set Min = 0, Maz = 2.

1. Pick n € Ny such that Min < n < Maz. If there is no
stich n, then set Mazdeg(E, A) := Min and ez,

2. Check if 5= =4 A. If 30, then set Min = n and go to
Step 1. If not so, then set Mazx = n and go to Step 1.

By a binary search on Ng the value of Mazdeg(L, A) can
be determined in O(log |Nx|) entailment tests. Hence,
if £ and A are in CNF, the complexity of determining
Mazdeg(Z, A) is O(|A||Z|log |Z{).

Example 4 Consider Example 2: Ny = {0.1,0.5,0.6}.
By binary search, let n := 0.5. £05 = {pAgq, qu}ﬁ, A
holds. Thus, Min := 0.5; pick n := 0.6. Now, 0.6 =
{qVvr} 4 A holds. Thus, Maxz := 0.6. Since there is
no Min < n < Maz such that n € Ng, the procedure
stops. Hence, Maxdeg({Z, A) = 0.5 as expected. |

A drawback, which Algorithm 2 inherits is that checking
entailment several times is generally not feasible from a
practical point of view, as it could be exponential in time
and Nx can be O(Z). In Section 4.1 we will present a
method where computing Mazdeg(E, A) “corresponds”
to performing the entailment test only once.

3.2 Relations to Possibilistic Logic

There is a strict connection between our logic and
(necessity-valued) possibilistic logic [Dubois and Prade,
1986], which allows the expression of uncertain proposi-
tions. In possibilistic logics, the expressions are of type
{4,Pn) snd (A,Nn). A weight Pn (resp. Nn) attached to
A models to what extent A is possible (resp. necessar-
ily) true. The semantics is given in terms of fuzzy sets
of interpretations, i.e. to each propositional interpreta-
tion T a weight n(Z) € {0, 1] is assigned. The possibility
and necessity of a proposition is then given by II(4) =
max{x(T} : I satisfies A} and N(4) = 1 — II{-A).
An interpretation satisfies an expression of type (4,Pn)
(resp. (A,Nn)) if II(A) > n (resp. N(A) > n).

A cioser look to Proposmon 6 reveals that it is similar
to Hollunder's Theorem 3.4 in [Hollunder, 1994]:

Theorem 1 (Hollunder) Let T be a set of possibilistic
propositions and n > 0. Then L E5% (A, Nn) iff &, =2
A, where |=5"° is the possibilistic entailment relation and
O, ={A: (A Nm) € L and m 2 n}. -

As a consequence, let L be a £/ KB and let 3 be
{{A,¥n} : [A>n}] € £}. Since E=4Ck2, from Propo-
sition 6 and Theorem 1 it follows that

Proposition B Let T be o £/ KB. If LR, |A 2 n} then
L 5% (4, HNn). =

The converse of Proposition 8 is not true, i.e. LE5"
(A,Nn) does not imply ¥k, [A > n]. For instance,
[p206],[-p207 B, g2 0, 6], whereas (p,N0.6),
{~p, NO. ?)}=”°‘ {q,N0.6) and, thus, k, C|=5°" holds. Nei-
ther Proposition 8 nor the converse of it holds for k.
We can confirm this by considering ¥ and %; of the pre-
vious section. Therefore, Tz ke, [¢ > 0.3] and E; 5™

(¢,N0.3), whereas £, ¥, [¢ > 0.1] and £, £=5°* (¢,50.1).
4 Conditionals

In Section 2 we have seen that modus pones is not a
valid inference rule in £ and, thus, in £f. In order to
deal with conditional reasoning we introduce a new con-
nective =». Let £, be L plus the set of propositions
involving connective =. From a semantic point of view,
an interpretation I has also to satisfy the following con-
ditions: ¢ € (A = B)* ifft € AT implies t € B, whereas
fe{A=>BY iff t € AT and f € BZ. Notice, that
now A, A = B =4 B holds. Moreover, {4 = B) =,
An-B, A= B #, ~B = -A (no contraposition) and
=4 A = (B = A) hold. Hence, there are tautologies in
Li. As for £, every £, KB is satisfiable. A complete
calculus with respect to £, is obtained by extending the
definition of signed propositions of type a and type j3
to the cases NTA = B and TA = B, respectively, in
a gimilar way as in [D’Agostino and Mondadori, 1994].
Furthermore, we extend Set with Step 3b: if 8, is of type
TA = B then let §' = (§% L {{A}) \ {TA = B} and
if not Sat(S') then expand ¢' by means of one children
node labelled TE and go to step 1.
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Proposition 9 Let S be a set of signed propositions in
L. Then Sat(S) (with Step 5} iff S is satisfiable. -
Checking whether I |=4 A is a coNP-complete problem
in L. But, if we restrict £, to £, we obtain a tractable
logic. Z.. is defined inductively as follows: £ is the min-
imal set such that (i} every proposition in £ in CNF is in
L,; (43) if A, Ay,..., A, and B, By,..., By, are literals
in £, then both 4;A...AAd, = Band A= B V.. VB,
are in £,. By considering that Step 3. can be eliminated
(rule (PB) is not necessary), we have

Proposition 10 Let L be a L, KB and let A bein L.
Checking if £ =4 A can be done in time O(|L||A]}.

Now, let £/ be the extension of L. to the fuzzy case.
An interpretation I has now also to satisfy the se-
mantic clauses |A = B|' = min{l,{%l-r} (Gédel impli-
cation) and |4 = By = minf|A[*,[B|'}. It is worth
noting that |A => B|/ = |4 A -~B|*, whereas |A = B[* #
{=B = =Al* (no contraposition). The clause for
{A = Bl* models a sort of conditional Cond(B|A} =

ﬂﬁ‘%ﬂ. It is easily verified that the above conditions

are equivalent to: t € [A = B> n)¥ iff vm € [0,1), if
te [Azm thente [B2n-m]"; fe[A=>B2>nl®
iff t € [A>n]" and f € [B > n]*, which are similar to
the non fuzzy case. The semantics for Eﬁ_ enables thus
a simple form of modus ponens: [A > mj, [A=B2n]
ke, [B 2 n-m]. Just notice that if |- |*,|-|f € {0,1}
then classical two-valued = is obtained.

Example 5 Let £ = {[/J=>28AA4A>09, [B=>T >
04, [G=>A209,[A=>T>08], [K=C 2 R
[C=T>02,[S=T> 05}, where J, S, 4, B,
T, G, K end C stand for Jon, Student, Adult, Boy,
Tall, Gil, Karl and Child, respectively. Then Eu{[G >
0.8)) ke, [T > 0.576], TU{|J 2 0.7]} &, [T 2 0.50d]
and EU}[G v K > 0.8]} k=, [T > 0.112] (the values are
meximal). -

Note that f=4 [4 = (B = A) > 1] holds, whereas if C is

(p=q V(=49 = g) then 4 C and B,[C > n],
for all n > 0. In fact, let. Z be an interpretation such

that |p|* = 3 and jg}' = -3- ICI* = 232 < n holds. Asa
consequence, Proposition 7 is not valid in .C{, whereas
Proposition 3 and Proposition 8 remain valid®.

4.1 Deciding entailment in [.{

Unfortunately, finding a calculus for entailment in [.i is
not as easy as for £, since Algorithm 2 does not work
in the context of Ci: Proposition 6 does not hold and
Mazdeg(E, A) may be not in {0} U Ng.

First, we generalise fuzzy propositions to the form
[A > A}, where ) is a fuzzy value defined as follows. Let
A be a new alphabet of fuzzy variables (with metavari-
able z). A multiset, (with metavariable L} is a finite

*Note that {p,Nm), (p = ¢,Nn) EF** (g,Nmin{m,n
holds and n - m < min{m,n}. ) G tm.nh
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set of fuzzy variables in which a variable r can occur
more than once. A fuzzy value (with metavariable A} is

a pair (n,L) where n € [0, 1] and L is a multiset. An
mterpretatlon T is such that z% € [0,1], {z1, .. Lz} =
2% 2,2, 08 =1land (n,L)f =n. LI We ex-
tend the multiplication function - to fuzzy values by
defining (n,L;) - (m, L2) as (n-m, Ly U L), For ease
of notation we will write 0, n and z in plece of (0, L),
{n,0) and (1,{x}), respectively. Moreover, we will al-
low fuzzy values g\-:- and A% (n,m are positive integers)
with obvious semantics. The greater equal relation >
is extended to fuzzy values as follows: Ay > Ay iff for
all interpretations 7, 27T > A%, Similarly for the re-
lation >». Checking whether A; > A2 can be done by
observing that (n,L) = (m, L'} ifn 2mand if m #£ 0
then L G L'. The reader can venfy that it is deter-

minable whether IL > I-‘l and Al"‘ > Ag* . For instance,

0.7-z;, > 0.6-; -T2, whereas (0.9- xl)é > (0.5-2; -12) %,
since (0.9-x2;)2 > (0.5 -z, - 22)%.

In what follows, we will use the obvious extension of
the definition of satisfiability with the following clauses
on signed propositions involving =: (7) N[{A = B > )]
is of type « and T[4 > z| and NI[B > X 1| are its
and ay components (for a “new” fuzzy variable z), and
(#) T[A=> B 2 A} is of type 8 and N[[A > A;] and
T(B > A1 - Ag] are its 8 and B components (for a all
Az). Moreover, T[A > A} and NT{4 > A;) are called con-
jugated signed propogsitions if Ay > Aj.

Algorithm MaxVal(S, A) below computes the set
of maximal fuzzy values Aj,..., A, for which § U
{M'IA > X)) i8 not satisfiable. If MaxVal(TE,A)={n}.
where n € [0,1], then Mazdeg(X,A) = n, otherwise
Mazdeg(Z, A) = 0.

Let ¢; be a not closed and completed branch of a de-
duction tree and z a fuzzy variable. Let N; be the set
of all fuzzy values A such that (i) both T(4 > z"1 - A]
and NI[A > 2™ . A,] are in §% where n} + ng > 1 and

ny # ng; (i) if ny < ng then A = (%)"2" vy (dtd) if

n, > ng then A = (ﬁ)nx-"z. N; is just the set of fuzzy
values A such that ¢, is closed whenever x is substituted
by A, e T[A 2 2™ - &) and NI[A4 > ™ . Ap] will be a
conjugated pair. It can be verified that 0 < A < 1.
Algorithm 3 (MaxVal($, 4))

Let the root node be labelled wtth SU{NiA > |}, where T is
o new fuzzy variable. At each step of the construction of a

deduction tree the following steps are performed®
L select a branch ¢ which iz not yet completed,
2. expand ¢ by means of the rules (A), (B1) and {B2) until
it becomes AB-completed. Let ¢’ be the resulting branch;
8. if ¢’ is neither closed nor completed then

{a) select a proposition of type B whick 1s not yet ful-
Filled in the branch;

$The branches ¢ will be maintained maximal, i.e. not both
T{A 2 A1 and T[A 2 Ao] are in $% with Az > A1, Moreover,
T]A 2 0] ¢ 5. Similarly for case NT.



(b} if B ss of type T[A= B> A then let {),
oo N} be MazVal(S*\{T[A = B > A},A), ez-
pand ¢ by means of one children node labelled
T(B2 A A...T[B 2 ) A and go to step §;

(¢) otherwise apply rule (PB) with 5, and 55 as PB-
formulae and go to step 1;

otherwise, go to step 1.

4. for all not closed and completed branches ¢; {1 < i <
h} let ny = max N, fmax® = 0}; for all closed and
completed branches ¢; (h+1 < 1 < kj, let n; == 1.
MazVal(8, A) := min{n1,...nx}. ]

Just notice that Step 3b iz not needed in £/. Moreover,
the procedure can be improved by performing Step 4.
during Step 2. - 3. It can be shown that

Proposition 11 LetT bea £ KBand A € £,. Maz-
deg(E, A) = n > 0 iff Moz Val(TE, A) = {n}, and check-
ing Mazdeg{X, A) > n is a coNP-complete problem. -

Example 6 Consider Example 2. MaxVal(TZ, A) gen-
erates two branches ¢; and ¢, where %' = S U
{Tig = 0.6]}, S% := S U {NT[g > 0.6],T[r > 0.6]} and
S ={T[p > 0.5], T{g = 0.5}, WIp > x] N[[r > z]}. Now,
N, = {0.5}, n1=0.5, N;={0.5, 0.6} and ny = 0.6. Hence,
Mazdeg(Z, A)=min{n,, ny} = 0.5. [ |

Example 7 Let A be (p = q) V{{p = ¢q) = q}. We
have seen that =4 A, whereas p,[4 > 7], for all n > 0.
Compute MaxVal(@, A). The computation generates an
unique branch ¢ such that $° contains Tlp > z;], ¥q
>z 33), Tlp = ¢ 2 2] and NT[g 2 = - x2). By Step 3b,
a recursive call MaxVal(S? \ {T[p = ¢ > 2]}, p) will be
performed answering with {z,}, i.e. the set of mexi-
mal degrees of p with respect to S*\ {T|p =¢ > z3|}.
Hence, the computation proceeds with branch ¢, where
§* iz 8% U {T[g > 72 - z1]}. Finally we will have Max-
Val(@, A)={z1,22}. Therefore, Mazdeg(),A) =0. =&

Finally, let Ci be the extension of £, to the fuzzy case.
In this case, it can be shown that MaxVal($, A), with-
out Step 3. and such that N; is computed during Step
2., can be modified in such a way that it runs in poly-
nomial time. Roughly, given e.g. {T[AAB = C > 0.6],
T{A > 0.7], T[B > 0.8], NT{C 2> x|}, rule (B1) can be ap-
plied and we add T[C > min{0.7,0.8} - 0.6] to the branch
and finally we get @ = 0.42.

Proposition 12 LetZ bea f‘i KBand Ac L. Com-
puting Mazdeg(Z, A) can be done in time O(|Z{j4(). -

Note that the KB in Example 5 is a £ KB,

5 Conclusions

There are two main contributions in this paper. The first
one is an alternative procedure to Levesque's algorithm
for deciding entailment in £ (with same complexity on
propositions in CNF), but which works too for £, i.e.
L with modus ponens. The second one is the defini-
tion of the logic Cﬂ_ for reasoning in presence of vague
concepts and inconsistencies with an expressively power-
ful and computationally tractable case. These two parts

can be furthermore combined, without affecting the com-
putational complexity, by combining fuzzy propositions -
[A > n] with the operators A,V, - and = and, thus, al-
lowing fuzzy propositions of type, e.g. [A > n]V([B > m)]
and [A > n] => [B > m]. A decision procedure can sim-
ply be obtained by combining the algorithms for deciding
entailment in £ and the one for £7.

Uncertain fuzzy propositions can be obtained by al-
lowing expressions of type (v,Pn) and (-y,Nn), where +
is a fuzzy proposition. The development of both a pre-
cise semantics within our four-valued framework and a
calculus for automated reasoning in it, can be seen as
interesting topics of further research.

Acknowledgements

This work is funded by the European Community ES-
PRIT project FERMI 8134. Thanks go to C. Meghini
and F. Sebastiani for their suggestions and comments.

References

[Belnap, 1977] N. D. Belnap. A useful four-valued logic.
In G. Epstein and J. M. Dunn, ed., Modern uses of
multiple-valued logic, pages 5-37. Reidel, Dordrecht.
NL, 1977.

[Chen and Kundu, 1996] J. Chen and S. Kundu. A
sound and complete fuzzy logic system using Zadeh's
implication operator. In Proc. of the 9th Int. Syrup,
on Methodologies for Intelligent Systems, LNAI 1079.
pages 233-242. Springer, 1996.

[D'Agostino and Mondadori, 1994] M. D'Agostino and
M. Mondadori. The taming of the cut. Classical refu-
tations with analytical cut. Journal of Logic and Com-
putation, 4(3):285-319, 1994.

[Dubois and Prade, 1986] D. Dubois and H. Prade. Pos-
sibilistic logic. In D. M. Gabbay and C. J. Hogger, ed..
Handbook of Logic in Artificial Intelligence, 3:439-513.
Clarendon Press, Oxford, Dordrecht* NL, 1986.

[Hollunder, 1994] B. Hollunder. An alternative proof
method for possibilistic logic and its application to ter-
minological logics. In 10th Annual Conference on Un-
certainty in Artificial Intelligence, Seattle, WA, 1994.

[Levesque, 1984] H. J. Levesque. A logic of implicit and
explicit belief. In Proc. of AAAI-84, pages 198-202.
Austin, TX, 1984.

[Meghini et al, 1997] C. Meghini, F. Sebastiani, and U.
Straccia. Reasoning about the form and content for
multimedia objects (extended abstract). In Proc. of
AAAl 1997 Spring Symp. on Intelligent Integration
and Use of Text, Image, Video and Audio, pages 89-
94, Stanford University, CA, 1997.

[Smullyan, 1968] R. M. Smullyan.
Springer, 1968.

[Wagner, 1991] Gerd Wagner. Ex contradictione nihil
sequitur. In Proc. of IJCAI-91, pages 538-543, Syd-
ney, Australia, 1991.

First Order Logic.

STRACCIA 133



