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Abstract

The computational complexity of relevant core-
related questions for coalitional games is addressed
from the coalition structure viewpoint, i.e., with-
out assuming that the grand-coalition necessarily
forms. In the analysis, games are assumed to be in
“compact” form, i.e., their worth functions are im-
plicitly given as polynomial-time computable func-
tions over succinct game encodings provided as in-
put. Within this setting, a complete picture of the
complexity issues arising with the core, as well
as with the related stability concepts of least core
and cost of stability, is depicted. In particular, the
special cases of superadditive games and of games
whose sets of feasible coalitions are restricted over
tree-like interaction graphs are also studied.

1 Introduction

A coalitional game is a pair G = 〈N, v〉, where N is a set
of players, and v is a function associating with each coali-
tion S ⊆ N the worth v(S) ∈ R that players in S obtain
by collaborating with each other. A fundamental problem for
coalitional games is to characterize the most desirable out-
comes in terms of appropriate notions of worth distributions,
which are called solution concepts. Traditionally, this prob-
lem has been formulated over games that are superadditive,
i.e., v(S ∪ T ) ≥ v(S) + v(T ) is assumed to hold, for each
pair of disjoint coalitions S and T . Indeed, on superadditive
games, the grand-coalition consisting of all the players in N
forms and, accordingly, solution concepts just suggest how
the total worth v(N) can be divided among them in a way
that is fair and stable [Osborne and Rubinstein, 1994].

While being rather appealing from a conceptual viewpoint,
superadditivity might however not hold in several social envi-
ronments because of a plethora of different reasons, ranging
from normative considerations, to information (observability)
imperfections, and to technological constraints (cf. [Green-
berg, 1994]). Under these circumstances, players might want
to organize themselves in a coalition structure, i.e., in a par-
tition π of N consisting of disjoint and exhaustive coalitions.
By doing so, the total available worth

∑
C∈π v(C) might hap-

pen to be greater than the worth v(N) associated with the
grand-coalition. Whenever this is the case, classical solution

concepts are not appropriate, and stable outcomes have to be
characterized from the “coalition structure” perspective, as it
was first suggested by Aumann and Dreze [1974]. As an ex-
ample, the core of a coalitional game, which is probably the
best-known solution concept, finds a counterpart in the coali-
tion structure core—formal definitions are in Section 2.

1.1 Complexity of Solution Concepts

In the last few years, coalitional games gained popularity
within the artificial intelligence community, where solution
concepts have been often (re-)considered from the computa-
tional complexity viewpoint. Indeed, moving from the ob-
servation that explicitly listing all associations of coalitions
with their worths requires exponential space, compact game-
encoding mechanisms have been proposed, and the amount
of resources needed to compute solution concepts on the ba-
sis of such encodings have been characterized (see, for in-
stance, [Deng and Papadimitriou, 1994; Elkind et al., 2009;
Ieong and Shoham, 2005; Conitzer and Sandholm, 2006]).

As a matter of fact, even though such complexity studies
usually focus on classes of games that are not superadditive,
they do not consider solution concepts specifically designed
for games with coalition structures. Rather, they tacitly as-
sume that the goal is to distribute the total worth v(N) avail-
able to the grand-coalition, even when it is more efficient to
form some coalition structures. Thus, while several deep re-
sults have been attained, the following foundational questions
did not find even partial answers in the literature:

1) How complex are superadditive games? The main source
of our current knowledge on the complexity of superadditive
games is the work by Conitzer and Sandholm [2006], who
showed that deciding whether the core is not empty is an
NP-complete problem, even when restricted on superaddi-
tive games (based on synergies among coalitions). However,
as they explicitly pointed out, even computing the worth as-
sociated with some given coalition is NP-hard in the pro-
posed encoding. Hence, while the intractability of the core
comes with no surprise in that setting, we still do not know
whether core-related problems remain intractable over su-
peradditive games whose worth functions can moreover be
computed in polynomial-time.

2) How complex are coalition structures? The complexity of
solution concepts in the presence of coalition structures has
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been recently investigated by Elkind et al. [2008], where
weighted voting games have been considered. Basically,
they observed that checking the non-emptiness of the coali-
tion structure core and whether a given outcome belongs to
it are NP-hard and co-NP-complete problems, respectively.
Since these problems are feasible in polynomial time over
games without coalition structures, the results evidence that
coalition structures provide an additional source of com-
plexity to solution concepts. Note that an upper bound for
the non-emptiness problem was missing in [Elkind et al.,
2008]. Moreover, no analysis has been conducted on core-
related concepts in presence of coalition structures of games
with arbitrary polynomial-time computable worth functions.

3) Which restrictions make coalition structures easy? Many
NP-hard problems arising in different application areas are
known to be efficiently solvable when restricted to instances
whose underlying structures can be modeled via acyclic
graphs or nearly-acyclic ones, such as those graphs having
bounded treewidth [Robertson and Seymour, 1984]. In par-
ticular, various classical solution concepts on game encod-
ings whose structures have bounded treewidth are tractable
(see, e.g., [Greco et al., 2009; Ieong and Shoham, 2005;
Brafman et al., 2010]). Good news are also known for solu-
tion concepts over coalition structures. With any coalitional
game G = 〈N, v〉, we can associate an interaction graph
IG(G) over the set N of players prescribing the set of coali-
tions that are allowed to form: A coalition S can form only
if the subgraph of IG(G) induced over S is connected. A
beautiful result by Demange [2004] states that the coalition
structure core is non-empty over games whose associated
interaction graph is a tree. Thus, there is hope that core-
related questions over bounded treewidth games with coali-
tion structures are tractable. Yet, assessing whether this is
actually the case was not explored in earlier literature.

1.2 Contribution

In this paper, we provide answers to the three questions il-
lustrated above over games with polynomial-time computable
worth functions. Complexity results are given for superaddi-
tive games, for games with coalition structures, and for games
whose sets of feasible coalitions are restricted over tree-like
interaction graphs. The analysis is focused on the well-known
notion of the core, and on two related weaker stability crite-
ria: the least core [Maschler et al., 1979], which is a classi-
cal approximation of the core where an additional penalty is
imposed for leaving the grand coalition, and the recently in-
troduced cost of stability [Bachrach et al., 2009], which is the
minimum worth that a benevolent external party must supply
in order for the game to have a non-empty core. In order to es-
tablish computational results, novel characterizations for the
core and for the cost of stability over coalitional games with
coalition structures have been derived, which are of indepen-
dent technical and conceptual interest on their own.

2 Formal Framework

Let G = 〈N, v〉 be a coalitional game. The following notation
is inspired by [Osborne and Rubinstein, 1994; Elkind et al.,
2008; Bachrach et al., 2009; Meir et al., 2009].

Core of Coalitional Games. Let x be a payoff vector in R
|N |

whose components are one-to-one associated with the players
in N , i.e., xi ∈ R is the value received in x by player i ∈ N .
For any coalition S ⊆ N , let x(S) denote the value

∑
i∈S xi.

We say that x ∈ R
|N | is an imputation if it is individually

rational, i.e., xi ≥ v({i}), for each i ∈ N , and efficient,
i.e., x(N) = v(N). The core of G is the set Core(G) of all
imputations x such that x(S) ≥ v(S) holds, for each S ⊆ N .

Let π be a coalition structure. We say that a payoff vector

x ∈ R
|N | is efficient w.r.t. π if x(C) = v(C), for each coali-

tion C ∈ π. A CS-imputation is a pair 〈π, x〉 where π is a

coalition structure, and x ∈ R
|N | is a payoff vector that is in-

dividually rational and efficient w.r.t. π. The coalition struc-
ture core of G is the set CS-Core(G) of all CS-imputations
〈π, x〉 such that x(S) ≥ v(S) for all S ⊆ N .

Note that if x ∈ Core(G), then 〈{N}, x〉 ∈ CS-Core(G).

Cost of Stability. Let GΔ = 〈N, vΔ〉 denote the coalitional
game such that vΔ(S) = v(S), for each coalition S ⊂ N ;
and vΔ(N) = v(N) + Δ. The cost of stability of G is the
value COS(G) = min{Δ | Core(GΔ) 	= ∅ ∧Δ ≥ 0}.

For any coalition structure π = {C1, . . . , Cm} and for any

vector �Δ ∈ R
m, let G�Δ

= 〈N, v�Δ
〉 be the coalitional game

with v�Δ
(S) = v(S), for each coalition S ⊆ N such that

S /∈ π; and v�Δ
(Cj) = v(Cj)+ �Δj , for each coalition Cj ∈ π.

The cost of stability of π in G is the value CS-COS(G, π) =
min{

∑m

j=1
�Δj | ∃x, 〈π, x〉 ∈ CS-Core(G�Δ

) and ∀j ∈

{1, . . . ,m}, �Δj ≥ 0}. The coalition structure cost of sta-
bility of G, denoted by CS-COS(G), is the minimum value of
CS-COS(G, π) over all possible coalition structures π of G.

Least Core Value. For any real number ε, let G-ε = 〈N, v-ε〉
be the coalitional game such that v-ε(S) = v(S) − ε, for
each S ⊂ N , and v-ε(N) = v(N). The least core (resp.,
least coalition structure core) of G is the set of all im-
putations in the set Core(G-ε) (resp., CS-Core(G-ε)) such
that Core(G-ε) 	= ∅ (resp., CS-Core(G-ε) 	= ∅), and
Core(G-ε̄) = ∅ (resp., CS-Core(G-ε̄) = ∅) for each ε̄ < ε.

The number ε determined by the least core (resp., least
coalition structure core) is called its value, and it is hereinafter
denoted by LCV(G) (resp., CS-LCV(G)).

Computational Setting. We assume that the input for any
reasoning problem consists (at least) of a game G = 〈N, v〉
whose worth function v is an oracle computable in polyno-
mial time in the size ||G|| of the game representation. 1 This
setting encompasses all those where games are (implicitly)
described over some “compact encodings”, and where simple
calculations on such encodings are to be performed to com-
pute the worth of any coalition. Therefore, our membership
results will immediately carry over to the classes of games
defined by such encodings, whereas hardness results are spe-
cific to the oracle setting, and do not hold in general for any
(sub)setting. Analysis will be focused on the problems:

- CORE-CHECK: Given a payoff vector x, is x in Core(G)?

- CORE-NONEMPTINESS: Is Core(G) 	= ∅?

1As usual, it is implicitly assumed that the game representation
includes the list of players, i.e., for every coalition S, ||S|| ≤ ||G||.
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- COS: Given a real number Δ, is COS(G) ≤ Δ?

- LCV: Given a real number ε, is LCV(G) ≤ ε?

Moreover, for each problem P, we analyze the problem
CS-P over the corresponding notion for coalition structures.

3 A Fresh Look at Coalition Structures

For any coalition structure π, let CS-v(π) denote the total
worth

∑
C∈π v(C). Let sw (G) be the social welfare of G,

i.e., the maximum worth CS-v(π) over all the possible coali-
tion structures π. The set of all coalition structures π such
that CS-v(π) = sw(G) is denoted by CS-opt(G).

Recall that G is cohesive if v(N) ≥ CS-v(π), for each
coalition structure π [Osborne and Rubinstein, 1994], and
that, though not necessarily superadditive, the grand-coalition

anyway always forms in cohesive games. Define G̃ = 〈N, ṽ〉
as the cohesive game, called the cohesive cover of G, where
ṽ(S) = v(S) for each coalition S ⊂ N , and ṽ(N) = sw(G).

3.1 Characterization of CS-Cores

In [Aumann and Dreze, 1974], it has been observed that the
CS-core can be characterized in terms of the superadditive

cover of G, which is the superadditive game Ĝ = 〈N, v̂〉 such
that, for each S ⊆ N , v̂(S) is the maximum worth CS-v(πS)
over all the possible coalition structures πS of S. Formally, it

holds that Core(Ĝ) = ∅ if, and only if, CS-Core(G) = ∅.
Our first result is to show that, in order to characterize CS-

cores, we can just “cover” the grand-coalition (by the cohe-

sive cover G̃) rather than all the possible coalitions (as in Ĝ).

Lemma 3.1. If 〈π, x〉 ∈ CS-Core(G), then x ∈ Core(G̃).

Proof. Consider a CS-imputation 〈π, x〉 ∈ CS-Core(G). By
definition, x(S) ≥ v(S), for each coalition S ⊆ N . And, it is

well-known that x(N) = sw(G). Hence, x ∈ Core(G̃).

Lemma 3.2. If x ∈ Core(G̃), then 〈π, x〉 ∈ CS-Core(G), for
each π ∈ CS-opt(G).

Proof. Consider any imputation x ∈ Core(G̃). Let π be
any coalition structure belonging to CS-opt(G), and ob-
serve that

∑
C∈π x(C) = x(N) = ṽ(N) = sw(G) =

CS-v(π) =
∑

C∈π v(C). Moreover, as π ∈ CS-opt(G), we

have
∑

C∈π v(C) =
∑

C∈π ṽ(C) and, hence,
∑

C∈π x(C) =∑
C∈π ṽ(C). Recall now that x ∈ Core(G̃) also implies that

x(S) ≥ ṽ(S) holds, for each coalition S ⊆ N (and, thus,
for each C ∈ π). Combined with the above equality, this
leads to conclude that x(C) = ṽ(C), for each C ∈ π. That
is, x is efficient w.r.t. π. Eventually, to conclude the proof,
note that x(S) ≥ ṽ(S) = v(S) for each S ⊂ N , and that
x(N) = sw (G) ≥ v(N). Hence, 〈π, x〉 ∈ CS-Core(G).

The above two lemmas immediately entail the characteri-
zation of CS-cores in terms of the cores of cohesive covers.

Theorem 3.3. CS-Core(G) = CS-opt(G)× Core(G̃).

We conclude by specializing Theorem 3.3 to cohesive (and,
hence, to superadditive) games. To this end, just observe that
if G is cohesive, then sw(G) = CS-v({N}) = v(N).

Corollary 3.4. Let G be a coalitional game that is cohe-
sive. Then, (1) CS-Core(G) = CS-opt(G) × Core(G); (2)
CS-Core(G) = ∅ if, and only if, Core(G) = ∅; and, (3)
x ∈ Core(G) if, and only if, 〈{N}, x〉 ∈ CS-Core(G).

3.2 Characterization of the CS-COS

Our second result in this section is to show that cohesive cov-
ers can also be exploited to characterize (in terms of the stan-
dard cost of stability) the coalition structure cost of stability.

Theorem 3.5. CS-COS(G) = COS(G̃).

Proof. We shall show that, for any Δ, CS-COS(G) ≤ Δ if,

and only if, COS(G̃) ≤ Δ, from which the claim follows.

First, we show that COS(G̃) ≤ Δ entails CS-COS(G) ≤ Δ.

Let x be a payoff vector in Core(G̃Δ), hence a witness that

COS(G̃) ≤ Δ. Then, x(N) = sw(G) + Δ and, for each
S ⊆ N , x(S) ≥ v(S) hold. Consider a coalition structure

π = {C1, . . . , Cm} with CS-v(π) = sw(G), and let �Δ ∈ R
m

be the vector such that �Δj = x(Cj) − v(Cj) ≥ 0, for each
j ∈ {1, . . . ,m}. We claim that 〈π, x〉 ∈ CS-Core(G�Δ

).
Indeed, x(S) ≥ v(S) = v�Δ

(S), for each S 	∈ π, and

x(Cj) = v(Cj) + �Δj = v�Δ
(Cj), for each Cj ∈ π. Thus,

CS-COS(G) ≤
∑m

j=1
�Δj . To conclude, notice that x(N) =∑m

j=1
x(Cj) = CS-v(π) +

∑m

j=1
�Δj = sw(G) +

∑m

j=1
�Δj .

In fact, we have already observed that x(N) = sw(G) + Δ
holds. It follows that

∑m

j=1
�Δj = Δ.

Now, we show that CS-COS(G) ≤ Δ implies in its turn

COS(G̃) ≤ Δ. To this end, note that if CS-COS(G) ≤ Δ,
then there is a coalition structure π = {C1, . . . , Cm}, a vector
�Δ ∈ R

m with
∑m

j=1
�Δj = Δ and �Δj ≥ 0, ∀j ∈ {1, . . . ,m},

and a payoff vector x such that 〈π, x〉 ∈ CS-Core(G�Δ
). Thus,

x(S) ≥ v(S), for each S ⊆ N , and x(Cj) = v(Cj) + �Δj ,
for each Cj ∈ π. Observe now that x(N) =

∑m

j=1
x(Cj) =

CS-v(π) +Δ ≤ sw(G) +Δ. Let x′ be the payoff vector such
that x′

i = xi + (sw (G) + Δ − x(N))/|N |. Then, x′(S) ≥
x(S) ≥ v(S), for each S ⊆ N , and x′(N) = sw(G) + Δ,

i.e., x′ ∈ Core(G̃Δ). Hence, COS(G̃) ≤ Δ.

As a cohesive game G coincides with its cohesive cover G̃,
the following is immediate.

Corollary 3.6. If G is cohesive (or superadditive), then
CS-COS(G) = COS(G).

4 Concepts without Coalition Structures

In this section, we provide the answer to question (1) posed
in the Introduction, by characterizing the complexity of core-
related problems on superadditive games.

Hardness results will be established via reductions that re-
fer to Boolean formulae. Assume that a formula Φ is given,
and let vars(Φ) be the set of all its variables. For any set S,
let σ(S) be the truth assignment where X ∈ vars(Φ) is true
if X occurs in S. The fact that σ(S) satisfies Φ is denoted by
σ(S) |= Φ. Let vars(Φ) be the set {¬X | X ∈ vars(Φ)}.
Literals in vars(Φ) ∪ vars(Φ) shall be viewed as players. In
particular, a coalition S ⊆ vars(Φ) ∪ vars(Φ) is consistent
(w.r.t. Φ) if, ∀X ∈ vars(Φ), |{X,¬X} ∩ S| = 1 holds.
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Problem
Games

Superadditive Arbitrary

CS-CORE-CHECK co-NP-c co-NP-c

CS-CORE-NONEMPTINESS co-NP-c Δ
P

2 -c

CS-COS co-NP-c Δ
P

2 -c

CS-LCV co-NP-c Δ
P

2 -c

Figure 1: Summary of results on coalitional structures.

We start with CORE-NONEMPTINESS and CORE-CHECK.

Theorem 4.1. CORE-NONEMPTINESS and CORE-CHECK

are co-NP-complete. Hardness holds on superadditive games.

Proof. Membership in co-NP was shown in [Malizia et al.,
2007]. Hardness results are next established via reductions
from the co-NP-complete problem of deciding whether a
Boolean formula Φ is unsatisfiable.

Given a formula Φ, we build in polynomial time the game
G(Φ) = 〈N, v〉, where N = vars(Φ) ∪ vars(Φ) and where,
for each set of players S, v is such that:

v(S) =

{
2|S|/|N | if |S| > |N |/2,
1 + 1/|N | if S is consistent and σ(S) |= Φ,
0 otherwise.

Consider CORE-CHECK: Let x̄ be such that x̄i = 2/|N |,
for each i ∈ N , and note that x̄ is individually rational and ef-
ficient. We claim that Φ is unsatisfiable ⇔ x̄ ∈ Core(G(Φ)).

(⇒) Assume that Φ is unsatisfiable. Then, there is no coali-
tion S with σ(S) |= Φ. Thus, for any coalition S such
that |S| = |N |/2, we have v(S) = 0, and hence x̄(S) ≥
v(S). Moreover, for any coalition S such that |S| >
|N |/2 (resp., |S| < |N |/2), x̄(S) ≥ v(S) = 2|S|/|N |
(resp., x̄(S) ≥ v(S) = 0). Thus, x̄ ∈ Core(G(Φ)).

(⇐) Assume that Φ is satisfiable. Then, there is a coalition S̄
such that σ(S̄) |= Φ. It follows that v(S̄) = 1+1/|N | >
1 = x̄(S̄). Therefore, x̄ /∈ Core(G(Φ)).

Consider CORE-NONEMPTINESS: Consider any element
x ∈ Core(G(Φ)). Then, for each player i ∈ N , x(N \{i}) ≥
v(N \{i}) = 2(|N |−1)/|N | = 2−2/|N |. Moreover, as x is
efficient, we have x(N) = 2 and, thus, xi = 2/|N | = x̄i, for
each i ∈ N . It follows that Core(G(Φ)) 	= ∅ if, and only if,
x̄ ∈ Core(G(Φ)) and thus if, and only if, Φ is unsatisfiable.

To conclude the proof, we now show that G(Φ) is super-
additive. To this end, assume, w.l.o.g., that a variable evalu-
ates true in every satisfying assignment, i.e., that Φ is of the
form Φ̄ ∧ W , where W is a variable not in Φ̄. Moreover,
observe that |S| = |N |/2 holds, for any consistent coalition
S. Then, let S and T be two non-overlapping coalitions, i.e.,
S ∩ T = ∅, and let us check that v(S ∪ T ) ≥ v(S) + v(T ).

Ifmax{|S|, |T |} < |N |/2, then v(S∪T ) ≥ v(S)+v(T ) =
0. If max{|S|, |T |} > |N |/2 (w.l.o.g., |S| > |N |/2 and
|T | < |N |/2, as S ∩ T = ∅), then v(S ∪ T ) = 2(|S| +
|T |)/|N | ≥ v(S) + v(T ) = 2|S|/|N |. If max{|S|, |T |} =
|N |/2, then v(S∪T ) = 2(|S|+ |T |)/|N | ≥ 1+2/|N |, while
v(S) + v(T ) ≤ 1 + 1/|N | as only one coalition can contain
W and, thus, possibly encode a satisfying assignment.

Complexity results for COS and LCV follow easily.

Corollary 4.2. COS and LCV are co-NP-complete. Hard-
ness hold on superadditive games.

Proof. Hardness follows by observing that deciding whether
COS(G) ≤ 0 (resp., LCV(G) ≤ 0) coincides with the CORE-
NONEMPTINESS problem. For the membership, note that in
order to decide whether COS(G) ≤ Δ (resp., LCV(G) ≤ ε),
we can check whether Core(GΔ) 	= ∅ (resp., Core(G-ε) 	=
∅), which is feasible in co-NP [Malizia et al., 2007].

5 Concepts with Coalition Structures

We next discuss the complexity of core-related questions for
solution concepts designed to deal with coalition structures.
A summary of our results is depicted in Figure 1, which pro-
vides the answer to question (2) of the Introduction.

Note first that, after Corollary 3.4 and Corollary 3.6, results
for superadditive games in Figure 1 immediately derive from
the results we discussed in Section 4. We omit the straightfor-
ward details, but we still want to stress a subtle technical issue
arising here, which is sometimes ignored in the literature: Re-
stricting the analysis of a problem P over some specific class
C means that the analysis is carried under the promise that all
instances being provided as input belong to C. Of course, it
is desirable that confirming/disproving the promise of mem-
bership in C is not more complex than solving P over C. In
fact, we next show that checking whether a game is superad-
ditive does not represent a computational overhead w.r.t. the
complexity results emerging from Figure 1.

Theorem 5.1. Deciding whether a coalitional game is super-
additive is co-NP-complete.

Proof Sketch. The problem is in co-NP, as in order to prove
that a given game G = 〈N, v〉 is not superadditive, it suffices
to guess two disjoint coalitions S and T and then check in
deterministic polynomial-time that v(S ∪T ) < v(S)+ v(T ).
In particular, recall that computing v(S ∪ T ), v(S), and v(T )
are feasible in polynomial time in our setting.

As for the hardness, given a Boolean formula Φ, consider
the game G(Φ) = 〈N, v〉 where N = vars{Φ} ∪ vars{Φ},
and where v(S) = 1 if S is consistent and σ(S) |= Φ, and
v(S) = 0 otherwise. It is immediate to check that Φ is unsat-
isfiable if, and only if, G(Φ) is superadditive.

We turn now to analyze the complexity of arbitrary games.
The case of CS-CORE-CHECK is rather simple.

Theorem 5.2. CS-CORE-CHECK is co-NP-complete.

Proof. A pair 〈π, x〉 belongs to CS-Core(G) if (i) 〈π, x〉 is
a CS-imputation; and (ii) there is no coalition S such that
v(S) > x(S). Membership in co-NP holds since condition
(i) can be checked in polynomial time, while the complement
of (ii) can be checked in NP, by guessing such a coalition S.
Hardness follows from Theorem 4.1 and Corollary 3.4.

The analysis of the other problems requires some elabo-
rations. The first ingredient is a hardness result, where the
characterization of the coalition structure core in terms of co-
hesive covers is very useful (cf. Section 3). Recall that Δ

P

2

(resp., FΔ
P

2
) is the class of all decision (computation) prob-

lems solvable in polynomial time, by using an NP oracle.
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Theorem 5.3. CS-CORE-NONEMPTINESS is Δ
P

2
-hard.

Proof. Let Φ be a satisfiable Boolean formula over the vari-
ables X1, . . . , Xn. Assume a variable ordering over the vari-
ables such that Xi is less significant than Xj if and only if
i < j, which induces a lexicographical ordering over truth as-
signments for Φ. Recall that the problem of deciding whether
X1 is true in the lexicographical maximum satisfying assign-
ment σ∗ of Φ is Δ

P

2
-complete.

Based on Φ, we build in polynomial time the game G(Φ) =
〈N, v〉, where N = vars(Φ)∪{a, b, c, l} and where, for each
set of players T , v is such that:

v(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(S), if T = {l} ∪ S and σ(S) |= Φ
w(S) + 1, if T = {a, b, c, l} ∪ S and

σ(S) |= Φ and X1 ∈ S
2/3, if T ⊆ {a, b, c} and |T | ≥ 2
0, otherwise,

where S ⊆ {X1, . . . , Xn} and w(S) =
∑

Xi∈S 2i. More-

over, let S∗ ⊆ {X1, . . . , Xn} be such that σ(S∗) = σ∗.

Let G̃ be the cohesive cover of G(Φ). From Theorem 3.3,

CS-Core(G(Φ)) 	= ∅ ⇔ Core(G̃) 	= ∅. Thus, the result can

be established by showing that Core(G̃) 	= ∅ ⇔X1 is in S∗:

(⇐) If X1 ∈ S∗, then ṽ(N) = w(S∗)+1 and the imputation
x̄ such that x̄l = w(S∗), x̄a = x̄b = x̄c = 1/3, and

x̄i = 0, for any other player, belongs to the core of G̃.

(⇒) If X1 	∈ S∗, then ṽ(N) = w(S∗) + 2/3. In this case,

for an imputation x to be in G̃, we must have x(N) =
w(S∗) + 2/3, x(S∗ ∪ {l}) ≥ w(S∗), and x(T ) ≥ 2/3
for each T ⊆ {a, b, c} and |T | ≥ 2. However, no such

an imputation exists, and thus Core(G̃) = ∅.

The second ingredient is an oracle-based algorithm to com-
pute the social welfare in FΔ

P

2
.

Lemma 5.4. Computing the social welfare is in FΔ
P

2
.

Proof Sketch. Computing sw(G) can be accomplished by
means of a binary search on the range [v(N),M ], where M
is the maximum value representable in polynomial space in
the size of the game representation. In the binary search, we
ask to an oracle whether there is a coalition structure π such
that CS-v(π) ≥ k. The oracle just guesses (in NP) such a
coalition structure π and then checks in polynomial time that
CS-v(π) ≥ k. Note that the search space is exponential in the
size of the representation of the game, and hence the num-
ber of calls made to the oracle is polynomial in the size of the
game representation. Thus, computing sw(G) is in FΔ

P

2
.

Putting it all together, we get the following result that in
particular, for the case of weighted voting games, provides
the complexity bound on CS-CORE-NONEMPTINESS which
is missing in [Elkind et al., 2008].

Theorem 5.5. CS-CORE-NONEMPTINESS, CS-COS, and
CS-LCV are Δ

P

2
-complete.

Proof. Checking CS-COS(G) ≤ 0 and CS-LCV(G) ≤ 0 are
both equivalent to check that CS-Core(G) 	= ∅. Thus, Δ

P

2
-

hardness for CS-COS and CS-LCV follows by Theorem 5.3.

We now show that CS-COS is feasible in Δ
P

2
, which en-

tails that CS-CORE-NONEMPTINESS is feasible in Δ
P

2
. In-

deed, recall from Theorem 3.5 that CS-COS(G) = COS(G̃).
Thus, given a value Δ, in order to check that CS-COS(G) ≤

Δ, we can find (the worth of the grand-coalition of) G̃ in

PNP (as in Lemma 5.4). Subsequently, we can check that

COS(G̃) ≤ Δ in co-NP (by Corollary 4.2).
Finally, as for CS-LCV, recall that CS-LCV(G) ≤ ε if, and

only if, CS-Core(G-ε) 	= ∅. By the above line of reasoning,
such a non-emptiness condition can be checked in Δ

P

2
.

6 Structural Restrictions

Let G = 〈N, v〉 be a coalitional game, and IG(G) be its in-
teraction graph. The interaction-constrained coalition struc-
ture core is the set CSIG-Core(G) of all CS-imputations 〈π, x〉
such that x(S) ≥ v(S), for each S such that the subgraph of
IG(G) induced over S is connected (e.g., [Demange, 2004]).

Whenever IG(G) is a tree, it is known that CSIG-Core(G)
is non-empty [Demange, 2004]. Graphs that are closest to
trees are those having treewidth 2. In this section, we ex-
plore the complexity of interaction-constrained core-related
questions on such graphs, and address question (3) of the In-
troduction. Problems are hereinafter assumed to be defined
over CSIG-Core(G) rather than on CS-Core(G).

Recall that a tree decomposition of a graph G = (V,E) is
a pair 〈T, χ〉, where T = (N,F ) is a tree, and χ is a labeling
function assigning to each vertex p ∈ N a set of vertices
χ(p) ⊆ V , such that the following conditions are satisfied:
(1) for each node b of G, there exists p ∈ N such that b ∈
χ(p); (2) for each edge (b, d) ∈ E, there exists p ∈ N such
that {b, d} ⊆ χ(p); and, (3) for each node b of G, the set
{p ∈ N | b ∈ χ(p)} induces a connected subtree. The width
of 〈T, χ〉 is the number maxp∈N (|χ(p)| − 1). The treewidth
of G, denoted by tw(G), is the minimum width over all its
tree decompositions. G is acyclic if, and only if, tw(G) = 1.

The first step is to show that, unlike trees, on games G such
that tw(IG(G)) = 2, the set CSIG-Core(G) can be empty. In
fact, all Δ

P

2
-hardness results in Figure 1 hold over them.

Theorem 6.1. CS-CORE-NONEMPTINESS, CS-COS, and
CS-LCV are Δ

P

2
-hard even on games G with tw(IG(G))=2.

Proof. Consider again the game G(Φ) = 〈N, v〉 built in the
proof of Theorem 5.3, and let its interaction graph IG(G(Φ))
be the one shown in Figure 2. Note that tw(IG(G(Φ))) = 2,
and that, for each coalition S ⊆ N such that the subgraph
induced over S is not connected, we have v(S) = 0.

Since for any coalition S ⊆ N , v(S) ≥ 0 holds, then
the restriction over IG(G(Φ)) is immaterial, and we have
CSIG-Core(G(Φ)) = CS-Core(G(Φ)). Thus, there are for-
mulae Φ such that CSIG-Core(G(Φ)) = ∅, and all hardness
results follow from Theorem 5.5.

The second step is based on a technical lemma, whose role
is to show that bounded treewidth interaction graphs are as
“powerful” as arbitrary ones, even on superadditive games.

Lemma 6.2. Given any superadditive game G = 〈N, v〉,
we can build in polynomial time a superadditive game G′ =
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Figure 2: Interaction graphs in the proof of Theorem 6.1 (left)
and of Lemma 6.2 (right).

〈N ′, v′〉, an interaction graph IG(G′) with tw(IG(G′)) = 2,

and a function h : R
|N | �→ R

|N ′| such that: 〈{N ′}, x′〉 ∈
CSIG-Core(G′)⇔ 〈{N}, x〉 ∈ CS-Core(G) and x′ = h(x).

Proof. Let G′ = 〈N ′, v′〉 be the game over the players N ′ =
N ∪ {p, q}, where {p, q} ∩N = ∅. Let v′(p) = v′(q) = 0,
and v′(S′) = v(S′ \{p, q}), for each S′ ⊆ N ′ with S′∩N 	=
∅. The interaction graph IG(G′) = (N ′, {p}×N∪N×{q})
is the one depicted in Figure 2. Note that tw(IG(G′)) = 2.

First, we claim that G′ is superadditive. Consider any two
disjoint coalitions S′ and T ′. In the case where S′ ∩N 	= ∅

and T ′∩N 	= ∅, we have v′(S′∪T ′) = v(S′∪T ′\{p, q}) ≥
v(S′\{p, q})+v(T ′\{p, q}) = v′(S′)+v′(T ′). To complete
the analysis, consider, then, the case where T ′ ⊆ {p, q}. In
this case, we have v′(S′∪T ′) = v(S′∪T ′ \{p, q}) = v(S′ \
{p, q}) = v′(S′), while v′(T ′) = 0.

Let 〈{N}, x〉 ∈ CS-Core(G), and consider the vector x′ =
h(x) such that x′

i = xi, for each i ∈ N , and x′
p = x′

q = 0.

We claim that 〈{N ′}, x′〉 ∈ CSIG-Core(G′). Indeed, note
first that x′(N ′) = x(N) = v(N) = v′(N ′). Moreover, for
each S′ ⊆ N ′ with S′ ∩N 	= ∅, x′(S′) = x(S′ \ {p, q}) ≥
v(S′ \ {p, q}) = v′(S′). In order to complete the proof, con-
sider any CS-imputation 〈{N ′}, x′〉 ∈ CSIG-Core(G′). We
have x′(N ′) = v′(N ′) = v(N), x′(N ∪ {p}) ≥ v′(N ∪
{p}) = v(N) and x′(N ∪ {q}) ≥ v′(N ∪ {q}) = v(N).
Therefore, x′

p = x′
q = 0. Consider then the vector x such that

x′ = h(x), and note that 〈{N}, x〉 ∈ CS-Core(G). Indeed,
x(N) = x′(N ′) = v′(N ′) = v(N). Moreover, for each
S ⊆ N , x(S) = x′(S ∪ {p, q}) ≥ v′(S ∪ {p, q}) = v(S). In
particular, note that, in the above relationships, S ∪ {p, q} is
guaranteed to induce a connected subgraph over IG(G′).

We are now in the position of completing the picture of
the complexity analysis carried out in the paper: While var-
ious solution concepts are tractable on specific game encod-
ings when their structures have bounded treewidth, on general
polynomial-time computable worth functions (even on super-
additive ones), bounded treewidth is not a key for tractability.

Theorem 6.3. All hardness results in Figure 1 hold even on
classes of games G with tw(IG(G)) = 2.

Proof Sketch. After Theorem 6.1, we have just to focus on the
complexity of games that are superadditive—in fact, co-NP-
hardness of CS-CORE-CHECK on superadditive games imme-
diately applies to arbitrary games. Consider the proofs of
Theorem 4.1 and Corollary 4.2, and notice that they are based
on the superadditive game G(Φ). Thus, from from Corol-
lary 3.4 and Corollary 3.6, hardness for CS-CORE-CHECK,
CS-CORE-NONEMPTINESS, CS-COS, and CS-LCV hold on
the corresponding superadditive game as in Lemma 6.2.
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