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Abstract

In Model-Based Diagnosis, a diagnostic algorithm
is typically used to compute diagnoses using a
model of a real-world system and some observa-
tions. Contrary to classical hypothesis, in real-
world applications it is sometimes the case that ei-
ther the model, the observations or the diagnos-
tic algorithm are abnormal with respect to some
required properties; with possibly huge economi-
cal consequences. Determining which abnormal-
ities exist constitutes a meta-diagnostic problem.
We contribute, first, with a general theory of meta-
diagnosis with clear semantics to handle this prob-
lem. Second, we propose a series of typically re-
quired properties and relate them between them-
selves. Finally, using our meta-diagnostic frame-
work and the studied properties and relations, we
model and solve some common meta-diagnostic
problems.

1

Diagnostic reasoning consists in determining the normal and
abnormal components of a real-world system under study. In
model-based diagnosis from first principles [Reiter, 1987][de
Kleer and Williams, 1987] a diagnostic algorithm computes
diagnoses using a model of the real-world system and some
observations gathered from it. Let us, in this paper, call this
model believed system . and the tuple (believed system, ob-
servations, diagnostic algorithm) diagnostic system.

Now, contrary to the classical assumptions, it is ubiquitous
in real-life applications for diagnostic systems to be abnor-
mal with respect to some required properties, such as, for in-
stance, the correctness of believed systems. At Airbus, for
example, warranties that believed systems are an ontologi-
cal true representation of the real-world system are needed;
since not having such property would possibly result in in-
correct component replacements and delays, with important
economical consequences. However, having an ontologically
true believed system is not always the case, and engineers
struggle to find the means to detect and repair falsehoods in
believed systems.

Introduction

"The word "model” is reserved for a model-theoretic context
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Let us name the problem of determining abnormalities in
diagnostic systems a meta-diagnostic problem. Our first con-
tribution, in Section 3, is providing Artificial Intelligence
with a theory of meta-diagnosis to solve such problems. This
theory has many advantages: first, it enjoys the clear seman-
tics provided by logic; second, it is a general unified theory to
reason about any model-based diagnostic system; and third
it can be mapped into a theory of diagnosis and, as so, the
arsenal of tools already developed through the years in the di-
agnostic world can be used in the meta-diagnostic one. More-
over, our theory of meta-diagnosis makes it possible to use a
series of test cases (sets of observations about diagnostic sys-
tems) to refine meta-diagnoses. This is especially useful at
Airbus where the data coming from many test flights can be
used, for instance, to automatically achieve a perfect isolation
of abnormalities in believed systems.

By making use of our theory of meta-diagnosis we con-
tribute, in Section 5, by modelling and solving two common
meta-diagnostic problems; thus providing an illustration of
the developed work’s potential. To do so, we also contribute,
in Section 4, with a series of typically required properties of
diagnostic systems and diagnoses.

2 Preliminaries

Throughout this paper, we assume that the reader is familiar
with the notions of model theory (structure, model and exten-
sions) [Hodges, 1993]. We also presume the reader familiar
with the model-based diagnosis framework described by [Re-
iter, 1987] and [de Kleer and Williams, 1987].

2.1 Real system vs Believed System

Model-based diagnosis (MBD) is a reasoning problem that
aims at retrieving system abnormalities given a system de-
scription (the so-called SD) and a set of observations OBS.
For such a couple (SD,OBS), the crucial assumption of MBD
is that (SD,0OBS) matches with the underlying reality (i.e.
the real system and the real observations). More formally
speaking, reality is only accessible through a structure, let
us say U, of raw information everyone would have access to
(in terms of behaviour and observations) if engineering and
computational resources were unlimited; and the principle of
model-based diagnosis is that there always exists a structure
s, model of SDUOBS (i.e. seMod(SDUOBS)), that can be
extended to a structure t, i.e. SCt, which is isomorphic to



U, denoted t = W. In Tarki’s terms [Tarski, 1936], MBD
relies on the fact that SDUOBS is an ontologically true the-
ory “which says that the state of affairs is so and so, and the
state of affairs is indeed so and so”. In this paper, we call real
system a set R of interacting Replaceable Units (RU), where
maintenance actions resulting from diagnosis take place. Its
representation, denoted SD, will be called the believed sys-
tem. Finally, as written above, MBD aims at retrieving ab-
normalities in the system, abnormalities that are always de-
pendent on the user viewpoint on the real system:

Definition 1 (Normality and abnormality of replaceable
units). A unit ¢ € Ris said to be abnormal if it has passed its
elastic limit and is deformed irreversibly from the standpoint
of the system’s user; i.e. if it cannot return to its original state
in the presence of the original stimuli; and normal otherwise.

2.2 Model-based Diagnosis

Following the notions and notations described in the previous
section, we briefly recall the classical model-based diagnosis
framework that will be used throughout this paper [de Kleer
and Williams, 1987] [Reiter, 19871.

Definition 2 (Believed system). A believed system S is a pair
(SD,COMPS) where:
1. SD, the believed system description, is a set of first-
order sentences.
2. COMPS, the believed system components, is a finite set
of constants.

We assume that there is a bijection between R and
COMPS as R is defined by the user and the actions that can
be performed on R if one of the unit is abnormal. The pred-
icate Ab(c) (resp. —Ab(cC)) represents the abnormality (resp.
normality) of the component ¢ € COMPS.

Observations are one of the few connections between real
and believed systems. Intuitively, observations are captured
Sfrom the real system by a set O of sensors measuring the value
v(p) of a real parameter p; and used, along with the believed
system and the way p and Vv(p) are represented, in the diag-
nostic reasoning.

Definition 3 (Observations). The set of observations, OBS,
is a set of first-order sentences.

The following example illustrating a real system, its be-
lieved system counterpart and some observations will serve
as a basis for some discussions throughout the paper:
Example 1. Consider the classic circuit of Figure 1 intro-
duced by Davis in [Davis, 1984].

Suppose that this circuit is represented by a believed system
with COMPS = {M;,M2,M3,A1,A2} and the SD below *:

Mjidesc: — Ab(M;) = (v(x) = (v(a) +1) = v(c))
Msodesc: = Ab(Mz) = (v(y) = v(b) = v(d))
Msdesc: - Ab(M3) = (v(z) = v(c)  v(e))
A;desc: = Ab(A1) = (v(f) = v(x) + v(y))
Azdesc: = Ab(Az) = (V(g) = v(Y) + v(2))

extended with the appropriate axioms for arithmetic and so
on. Assume also that parameters a,b,c,d,e,f and g are ob-
served and their values are 1,2,3,4,5,11 and 22 respectively.

“Note that the first sentence in SD is false since it does not truly
represent the multiplier in the real system.
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Figure 1: A circuit with 3 multipliers (M, M2 and M3) and 2
adders (Ay and Ao).

Having a believed system (SD,COMPS) and observations
OBS one can introduce the notion of diagnostic problem.

Definition 4 (Diagnostic problem). A diagnostic problem
DP is a tuple (SD,COMPS,OBS).

And, finally, comes the model-theoretical definition of di-
agnosis relying on the concept of believed system health state,

o(A,COMPS\A)=[Ace AADb(C)IA[Acecomps\a) ~AD(C)].

Definition 5 (Diagnosis®). Let A C COMPS. A diagnosis,
D, for the diagnostic problem (SD,COMPS,0BS) is the set
of all diagnosis hypotheses o (A,COMPS\A) such that:

SDUOBSUs (A,COMPS\A)
is satisfiable.

Definition 5 provides clear semantics to the notion of di-
agnosis. However, since it is given in terms of all models,
it has little computational interest. Proof-theory comes to
our rescue with a syntactic approach to logic, and hence an
attractive computational environment. This is why we con-
sider that there is a theorem-prover underlying every diagnos-
tic algorithm A. For example, in an explicit manner, Reiter
in [Reiter, 1987] uses a theorem-prover in the algorithm he
proposes. Model-theoretic and proof-theoretic diagnoses, are
distinguished as follows:

Definition 6 (model-theoretic and proof-theoretic diag-
noses).
e A model-theoretic diagnosis, Dy.t, is the set of diagnos-
tic hypotheses respecting Definition 5.
e A proof-theoretic diagnosis, Dp.t, is the set of diagnostic
hypotheses computed by a diagnostic algorithm A (& 4).

3 Characterising meta-diagnoses
Section 2 was developed around diagnostic systems.

Definition 7 (Diagnostic system). A diagnostic system is a
tuple (SD,COMPS,0BS, A).

As discussed in the introductory section, diagnostic sys-
tems can themselves be abnormal for a large number of rea-
sons. For example: modelling errors can result in false be-
lieved systems; observations can be different from the real
parameter values due to perception errors; and diagnostic al-
gorithms can produce diagnostic hypotheses not respecting

3The definition of diagnosis presented corresponds to the Defini-
tion 3 by de Kleer, Mackworth and Reiter in [de Kleer et al., 1992]



the model-theoretic definition. Since such abnormalities are
ubiquitous in real-world applications we need a theory of
meta-diagnosis for reasoning about diagnostic systems. To
obtain a general theory we rely on first-order logics *.

3.1 Meta-systems

At a meta-diagnostic level, meta-components can be seen as
the elements of the diagnostic system whose normal or abnor-
mal behaviour one wants to judge. This behaviour of meta-
components, as well as their interactions, is described in a
meta-system thanks to the unary predicate M-Ab(-) which
carries the semantic of meta-component’s abnormality. As
S0, intuitively, meta-systems are the static knowledge used at
meta-diagnostic level to reason about diagnostic systems.

Definition 8 (Meta-system). A meta-system is a pair (M-
SD,M-COMPS) where:
1. M-SD, the meta-system description, is a set of first-order
sentences.
2. M-COMPS, the meta-system components, is a finite set
of constants.

The choice of meta-components depends on our goals and
underlying hypotheses. As so:

1. Itis not mandatory for every element of a diagnostic sys-

tem to be considered as a meta-component.

2. Meta-components can be defined at different abstraction

levels.

For instance, if for a given problem one assumes that di-
agnostic algorithms and observations are never abnormal; to
determine if each sentence in the believed system description
describes a real system behaviour in a correct manner; one
can associate a meta-component to every sentence in the be-
lieved system description and associate no meta-components
to the rest of the diagnostic system. This is exactly what we
illustrate below based on the diagnostic system of Example 1:

Example 1 (continued). One possibility for M-SD with M-
COMPS={M;desc, M>desc,Msdesc,A;desc,A-desc Alg}
would then be > :

—-M-Ab(M;desc) = [-Ab(M;) = (v(x) = (v(a)+1)xv(c))]
=M-Ab(Mzdesc) = [~Ab(M>o) = (v(y) = v(b) x v(d))]
—=M-Ab(Msdesc) = [-Ab(M3) = (v(z) = v(c) = v(e))]
—M-Ab(A;desc) = [-Ab(A;) = (v(f) = v(x) + v(y))]
-M-Ab(Azdesc) = [-Ab(Az) = (v(g) = v(y) + v(2))]

The idea behind such M-SD is that if SD-sentence is not ab-
normal, then what the sentence describes happens in reality.

3.2 Meta-observations

Meta-observations are used along with meta-systems to de-
termine the normal and abnormal meta-components.

Definition 9 (Meta-observations). The set of meta-
observations, M-OBS, is a finite set of first-order sentences.

Examples of meta-observations obtained from available
test cases could be real system health state oeq, the diag-
noses computed by a diagnostic algorithm, observations and

“The results obtained are also valid for a series of other logics.
3Section 5 clarifies the rational for meta-system description.
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so on. In fact, meta-observations can be every possible obser-
vation at a diagnosis level along with every possible observa-
tion about the diagnostic system itself.

Example 1 (continued). Imagine the real system health state
is known for the OBS in this example. Then, M-OBS is:

O real: —Ab(My)N\-~Ab(Mz) \~Ab(M3)\
N-Ab(A1)NADB(A2)
OBS: v(a)= 1Av(b)= 2Av(c)= 3Av(d)= 4N

Av(e)= 5Av(f)= 11Av(g)= 22

3.3 Meta-diagnoses

Meta-systems and meta-observations can be grouped in a
meta-diagnostic problem.

Definition 10 (Meta-diagnostic problem). A meta-
diagnostic problem M-DP is a tuple (M-SD,M-COMPS, M-
OBS).

A meta-diagnostic problem is now ready to be solved. Do-
ing so consists in determining the normality or abnormality of
meta-components M-COMPS, based on meta-observations.

Definition 11 (Meta-health state). Let ® C M-COMPS be
a set of meta-components. The meta-health state w(®,M-
COMPS\®) is the conjunction:

[Amce @ M-Ab(mc)]A[ \mee m-comps\a) ~M-Ab(mc)]

From the notion of meta-health state one can move to solv-
ing the meta-diagnostic problem.

Definition 12 (Meta-diagnosis). Let ® € M-COMPS. A
meta-diagnosis, M-D, for the meta-diagnostic problem (M-
SD,M-COMPS,M-OBS) is the set of all meta-diagnostic hy-
potheses 7(D,M-COMPS\®) such that:

M-SDUM-OBSUr (®,M-COMPS\®)
is satisfiable.

All in all, the reader may notice that Definitions 5 and 12
are perfectly equivalent. Hence, a meta-diagnostic problem
can be seen as a diagnostic problem where the artefact being
diagnosed is a diagnostic system. There are numerous advan-
tages to this analogy. We highlight the following:

1. Every diagnostic algorithm can become a meta-
diagnostic algorithm if it is sound and complete with
respect to the underlying semantics [Hodges, 1993].

2. Every approach to handle the complexity problems of
diagnosis can be used in meta-diagnosis.

4 Defining properties of diagnostic systems
and diagnostic results

In the last section we proposed a characterisation of meta-
diagnoses general enough to handle many different meta-
diagnostic problems. Now, we introduce some usually re-
quired properties of diagnostic systems and diagnostic re-
sults; whose absence is considered abnormal. In Section 5
we rely on such properties to model some typical meta-
diagnostic problems. We encourage the reader to refer, for
example, to [Belard et al., 2010] for some more properties.



4.1 Diagnostic result properties

Model-theoretic and proof-theoretic diagnoses’ quality can
be evaluated thanks to two properties: validity and certainty.

Definition 13 (Validity of a diagnosis). Let o,eq be the be-
lieved system health state such that, for every ce COMPS, if
Cis the image of re R: 1) if ris abnormal, = AbB(C)\0 reai=_L;
and 2) if ris normal, AD(C)\o reai=_L. A diagnostic result, D,
is said to be valid if 0 rea) € D; and invalid otherwise.

Definition 14 (Certainty of a diagnosis). A diagnostic re-
sult, D, is said to be certain if there is a single diagnosis hy-
pothesis, i.e. #D = 1; and uncertain otherwise.

Having valid and certain diagnoses is extremely interesting
for most real life diagnostic applications. In the aeronautic
industry, for example, invalid diagnoses may lead the aircraft
maintenance team to replace the wrong components; and un-
certain diagnoses naturally increase the time of repair.

4.2 Observations properties

Let us focus on a single property of observations: truth. In-
formally, true observations assure a correct perception of the
real parameter values; and if the value of a given parameter p
is observed to be X then we know that in reality the parameter
p has the value X. More formally:

Definition 15 (Truth of the observations). Let Q) be the set
of all structures and ¥V € ) the raw information about the
reality ®. The observations OBS are an ontological truth iff
Jsemod(oBs) Jien (SCHA(t=T) [Tarski, 1936]. If OBS is an
ontological truth then so are every sentences in OBS.

Note that there is a difference between ontological and log-
ical truths; for the latter are the axioms in a theory, while the
former establishes a correspondence between the sentences
of the theory and reality [Tarski, 1936]. Without the ontolog-
ical truth of observations the model-theoretic diagnoses are
not guaranteed to be valid as we will prove later on.

4.3 Believed system properties

Hereafter we define two properties one usually wants be-
lieved systems to have: truth and diagnosability.

Let us start with the property of truth of believed systems.
Intuitively, if a believed system is ontologically true, then if a
sentence states X, X happens in reality. More formally:

Definition 16 (Truth of the believed system). Ler () be the
set of all structures and ¥ € 2 the raw information about
the reality. A believed system is an ontological truth iff, for
all true OBS, ElSGMOd(SDUOBS) Jica (SCHYA(t=V). If a be-
lieved system is an ontological truth then so are every SD-
sentences.

In the same way it is important to have ontological true
observations, i.e. a correct perception of the real parameter
values, the same goes with the ontological truth of believed
systems; since without this property the model-theoretic di-
agnoses are not guaranteed to be valid as we will prove later.

As for the diagnosability property of believed systems,
let us borrow its definition from [Console et al., 2000] and
rephrase it to better suit our framework as follows:

For a more detailed discussion cf. Subsection 2.1.
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Definition 17 (Diagnosability of the believed system). A
believed system with a set of sensors O is said to be diagnos-
able iff for any ontologically true observations there is always
one and only one model-theoretic diagnosis hypothesis.

The interest of the diagnosability is naturally justified by
the need for certain diagnoses.

4.4 Diagnostic algorithm properties

Being a theorem prover, a diagnostic algorithm can enjoy
from soundness and completeness properties:

Definition 18 (Soundness and completeness of the diagnos-
tic algorithm). Ler T and ¢ be, respectively, a logical theory
and a sentence in a language L with a given semantics. A
diagnostic algorithm A is sound iff:

If (Tha ), then (T = )
and complete iff:

If(T=r @), then (TH4 @)

One can see that semantic entailment and syntactic proof
are equivalent for sound and complete diagnostic algorithms.
This is why such properties are extremely interesting and, for
instance, Reiter in [Reiter, 1987] explicitly requires a sound
and complete theorem prover in his diagnostic algorithm.
Moreover, one could question the interest of meta-diagnosing
instead of directly studying the soundness and/or complete-
ness of an algorithm. The answer comes from the black-box
vision of algorithms in many real-world applications; for they
are either too hard to model in logic or it is just impossible to
access the details of the algorithm. An example is the central-
ized maintenance system diagnostic algorithm at Airbus.

5 Modelling and solving meta-diagnostic
problems

With the characterisation of meta-diagnosis of Section 3 and
the properties of Section 4 we can model and solve some typ-
ical meta-diagnostic problems; thus providing the reader with
a flavour of what can be done with such framework.

We propose the following steps for the modelling process:

1. Define meta-components based on the problem hypothe-
ses and the detail level wanted for the solution.

Define properties whose absence is abnormal.

3. Define meta-components’ normal/abnormal behaviour.

4. Define meta-observations.

As for solving the meta-diagnostic problems, we have
used the General Diagnostic Engine (GDE) [de Kleer and
Williams, 1987][Forbus and de Kleer, 1993]. This was pos-
sible because, as discussed in Section 3, every sound and
complete diagnostic algorithm can become a meta-diagnostic
algorithm; which is the case of GDE. As expected, it was
enough to add the definitions of the meta-system and meta-
observations to GDE without changing its core modules.

2.

5.1 The problem of false believed systems

Imagine we are given the following problem, typically when
testing if a newly modelled believed system is a good rep-
resentation of the real system: “In a given diagnostic system
(SD,COMPS,0BS, .A) the observations are assumed to be an



ontological truth and the diagnostic algorithm is assumed to
be sound and complete. The believed system, however, can
be false. Find the ontologically false sentences in SD.”.

The following theorem is needed to handle this problem:

Theorem 1. If (SD,COMPS) is an ontologically true
believed system, then for every diagnostic problem
(SD,COMPS,0OBS) with ontologically true observations,
every model-theoretic diagnosis Dyt is valid.

Proof. Suppose oreq is not a believed system health state
determined using the model-theoretic Definition 5. If so,
SDUOBSUoyeq is unsatisfiable, thus having no model. Now,
Oreal, coming from the real system, must have a model S such
that icq (SCHYA(t=V ). Combining all the arguments we get
that ~(3scMod(spuoBs) Jtea (SCHON(t=W)). As so, either the
believed system or the observations are not true. Q.E.D. [

Imagine an instance of this problem where the SD,
COMPS and OBS are the ones from Example 1.

Now, this is a typical meta-diagnostic problem. Let us fol-
low the proposed modelling process:

1. The meta-components are the sentences in SD.

2. The property whose absence is considered abnormal is
the ontological truth of each sentence.

Suppose an SD-sentence stating “A” represented by a
meta-component Mcy. Now, either A is ontologically
true or mcy is abnormal, i.e. M-Ab(mcy) Vv A. So, the
normal behaviour of this sentence would be described,
at a meta-system level, as: -M-Ab(mcq) = A.

From Theorem 1 and the problem hypotheses we get
that if every meta-component is normal then the model-
theoretic diagnosis is valid. To determine the validity of
the model-theoretic diagnosis we need to meta-observe
the real health state and the observations ’.

Following such modelling process in our problem instance
resulted in the M-SD and M-COMPS also given in Exam-
ple 1. If M-OBS are also those of that example we get the
following meta-diagnosis (from GDE output):

3.

There are 3 minimal [kernel] diagnoses:

{Mdesc} ; {Mzdesc} ; {Aidesc}

Although not certain, the meta-diagnosis correctly includes
the ontological falsehood of the sentence M{desc.

5.2 The problem of diagnosable believed systems
and sound and complete diagnostic algorithms

Suppose we corrected the M{desc sentence using the meta-
diagnosis computed in the last subsection; and we can now
hypothesise that the believed system is true. Imagine some
further requirements, typically when testing a new diagnostic
algorithm and considering it as a black box, as well as explor-
ing further properties of the believed system: ~’Admit the on-
tological truth of the believed system and the possible lack of
soundness and/or completeness by the diagnostic algorithm.

"In many real-world applications it is possible to observe the real
health state or at least a part of it. In the aeronautic domain, for
instance, we have access to the real health state since each replaced
component is tested after its removal.
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Find if the believed system with sensors O is diagnosable and
if the diagnostic algorithm is sound and complete”.

Once again, let us first introduce three theorems which are
needed when handling this problem:

Lemma 2. If A is a sound and complete diagnostic algo-
rithm, then proof-theoretic diagnoses and model-theoretic di-
agnoses are equivalent.

Proof. The model-theoretic definition of diagnosis (cf. Defi-
nition 5) states that 0(A,COMPS\A) is a diagnostic hypoth-
esis iff SDUOBSUo (A,COMPS\ A) is satisfiable.

One can make the bridge between model-theory
and proof-theory shine by stating that an anti-
diagnostic  hypothesis is o(A,COMPS\A) such that
SDUOBS = —o(A,COMPS\A); and stating that every
o(A,COMPS\A) that is not an anti-diagnostic hypothesis
is a diagnostic hypothesis.

Since A is sound and complete, model-theoretic and proof-
theoretic anti-diagnostic hypotheses are the same; and since
anti-diagnosis and diagnosis are complementary, model-
theoretic and proof-theoretic diagnoses are equivalent for a
sound and complete diagnostic algorithm. Q.E.D. O

Theorem 3. If A is a sound and complete diag-
nostic algorithm and (SD,COMPS) is an ontologically
true believed system, then for every diagnostic problem
(SD,COMPS,0BS) with ontologically true observations,
every proof-theoretic diagnosis, Dp.1, is valid.
Proof. Trivial from Lemma 2 and Theorem 1. Q.E.D. O
Theorem 4. If A is a sound and complete diagnostic algo-
rithm and (SD,COMPS) is an ontological true and diagnos-
able believed system with sensors O, then for every diagnostic
problem (SD,COMPS,0BS) with ontologically true OBS,
every proof-theoretic diagnosis Dp_1 is valid and certain.
Proof. Trivial from Definition 17 and Theorem 3. O

As an instance of this problem suppose, once again, the
SD, COMPS and OBS from Example 1 but with the SD-
sentence Mydesc corrected.

Let us, once more, use the proposed modelling process:

1. The meta-components in this problem are the diagnostic
algorithm Alg and the system description SD¢omp.
The properties whose absence is considered abnormal
are the diagnosability of the believed system with sen-
sors O and the soundness and/or completeness of the di-
agnostic algorithm.
. From Theorem 3 and the problem hypotheses we get the
normal behaviour of the diagnostic algorithm. If Alg
is the meta-component associated to A we get: —M-
Ab(AlQ) = ( oreal = Dis(Dp.-t) ); where Dis(-) is a func-
tion that returns the disjunction of every element in a set.
Moreover, using Theorem 4 and the problem hypothe-
ses we get the normal behaviour for the meta-component
SDcomp: “M-Ab(AIQ)A=M-Ab(SD¢omp) = (#Dp-1 =1)
The meta-observations are the proof-theoretic diagnoses
Dp_t and the real health state oyeg.

2.



By following such modelling process we could obtain, for
the instance of the problem from Example 1 but with the SD-
sentence Mydesc corrected, M-COMPS = {Alg,SDcomp }
and the following M-SD (extended with the appropriate ax-
ioms for arithmetic and so on):

—M-Ab(Alg) = ( oreal = Dis(Dp.1) )
—M-Ab(Alg)A-~M-Ab(SDomp) = ( #Dp.r = 1)

Now, suppose the meta-observations are =
=Ab(M{)A-Ab(M2)A-Ab(M3)A—=Ab(A1)AAb(AL) and
the proof-theoretic diagnoses Dp.r are all the diagnosis
hypotheses covered by the following four kernel diagnoses:
{Ag}, {A1/\M2}, {Ms} and {M1 /\MQ}.

We get the following meta-diagnosis (from GDE output):

O'real

There are 2 minimal [kernel] diagnoses: {Alg} ; {SDcomp }

Now, with our meta-diagnosis we detected that there is an
abnormality somewhere in the meta-components, but we had
very poor isolation performance. To our rescue comes the fact
that meta-diagnostic reasoning is monotonic if we assume M-
OBS is true, since M-SD is built upon theorems. As so,
we can use another test case, i.e. another meta-observations,
to refine our meta-diagnoses. Let us suppose another test
case was received where the meta-observations are oreq =
=Ab(M{)A—=Ab(M2)A—-Ab(M3)A—-Ab(A1)AAb(A2) and the
proof-theoretic diagnoses are all the diagnosis hypothesis
covered by the following three kernel diagnoses: {A1AMz},
{Mg} and {M1 /\Mg}.

We get the following meta-diagnosis (from GDE output):

There is 1 minimal [kernel] diagnosis: {Alg}

The meta-diagnosis is, thus, refined.

6 Related work

In the model-based diagnosis community, one can find some
works that recognise the existence of abnormalities in di-
agnostic systems, even if very locally in the whole spec-
trum of possible abnormalities. Examples of such recogni-
tion are Davis and Hamscher’s, statement in [Davis and Ham-
scher, 1988]: “a model is never completely correct”; Console,
Dupré and Torasso’s statement in [Console ez al., 1989]: “[in
some cases] a complete model is either not available or in-
tractable”; or Struss’s work on abstractions and simplifica-
tions of models in [Struss, 1992].

As for managing abnormalities, few attempts have been
made. Exceptions are, for instance, the management of in-
complete believed systems in [Console et al., 1989] and [Ye-
ung and Kwong, 2005] or the management of uncertain ob-
servations in [Lamperti and Zanella, 2002].

Finally, to our best knowledge, in the model-based diag-
nostic community there has been little work done on detect-
ing and isolating abnormalities in diagnostic systems; despite
the interest and ubiquity of the problem. In fact, the closer
we can get to such results is the work of Yeung and Kwong
in [Yeung and Kwong, 2005] where the authors not only fo-
cus on fault detection and isolation but also attempt to learn
what to change to repair the believed system incompletenes.

All in all, our theory of meta-diagnosis provides model-
based diagnosis with a uniform framework for dealing with
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possibly abnormal diagnostic system. Moreover, meta-
diagnosis can be used to isolate abnormalities in diagnostic
systems and select the best approach to manage them. For
example, if a meta-diagnosis is the incompleteness of a be-
lieved system, then one can deal with such incompleteness
by using Console, Dupré and Torasso’s approach.

7 Conclusions and perspectives

In this paper we have proposed a general theory of meta-
diagnosis and have modeled and solved two common meta-
diagnostic problems; by making use of some properties of
diagnostic systems and diagnostic results we proposed. By
showing that the meta-diagnostic task can be transformed into
a diagnostic task we have proved that diagnostic-world tools
such as algorithms or techniques to manage computational
complexity can be used at a meta-diagnostic level. GDE us-
age in Section 5 illustrates this point. The meta-diagnostic
framework proposed can be used either to validate the classi-
cal hypothesis of no abnormalities in diagnostic systems; or,
if some abnormalities are present, to choose the best approach
in the model-based diagnosis community to cope with them.

Our work in meta-diagnosis opens the doors to numer-
ous applications, both in the industrial and academic worlds;
some of which have already been successfully implemented.
The automatic detection and isolation of errors in the Central-
ized Maintenance System’s knowledge base in aircraft or the
automatic validation of diagnostic algorithms seen as black-
boxes are just some of the potential usages of our results.

In the future we plan to: 1) focus on studying the ap-
plication of meta-diagnosis to systems other that diagnostic
ones, such as planning or prognostic models; 2) instantiat-
ing a meta-diagnoser at Airbus to improve the quality of the
centralized maintenance system; and 3) focus on automatic
repair of abnormal meta-components (eg. restoring the on-
tological truth of believed system sentences by learning their
connection with some hidden variables).
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