
Discrete-Time Temporal Reasoning with Horn DLRs

Peter Jonsson∗ & Tomas Lööw†

Department of Computer and Information Science
Linköping University

peter.jonsson@liu.se, tomas.andersson@liu.se

Abstract

Temporal reasoning problems arise in many areas
of AI, including planning, natural language under-
standing, and reasoning about physical systems.
The computational complexity of continuous-time
temporal constraint reasoning is fairly well under-
stood. There are, however, many different cases
where discrete time must be considered; various
scheduling problems and reasoning about sampled
physical systems are two examples. Here, the com-
plexity of temporal reasoning is not as well-studied
nor as well-understood. In order to get a better un-
derstanding, we consider the powerful Horn DLR
formalism adapted for discrete time and study its
computational complexity. We show that the full
formalism is NP-hard and identify several maximal
tractable subclasses. We also ‘lift’ the maximality
results to obtain hardness results for other families
of constraints. Finally, we discuss how the results
and techniques presented in this paper can be used
for studying even more expressive classes of tem-
poral constraints.

1 Introduction

Reasoning about time is ubiquitous in artificial intelligence
and many different branches of computer science. Note-
worthy examples include planning, diagnosis, and temporal
databases. For a general overview of temporal reasoning, see,
for instance, the handbook [Fisher et al., 2005]. The tempo-
ral constraint satisfaction problem is very well-studied and
there has lately been substantial progress in understanding
the complexity of this problem. Bodirsky and Kára [2010]
have presented a complete classification of the temporal con-
straint problem for relations that are first-order definable in
the structure (Q;<). This result subsumes much of the previ-
ous work on qualitative (that is, the case where we cannot re-
fer to individual time points in the underlying time structure)
temporal constraints such as Allen’s algebra. There are no

∗Partially supported by the Swedish Research Council (VR) un-
der grant 621-2009-4431

†Partially supported by the Swedish National Graduate School in
Computer Science (CUGS).

such unifying result for metric temporal constraints, but many
partial results are known, cf. [Jonsson and Bäckström, 1998;
Krokhin et al., 2004].

The situation is very different if we turn our attention to
discrete temporal constraints where the set of time points is
some subset of the set of integers Z. There are some scattered
complexity results (cf. [Bettini et al., 1998; Meiri, 1996]) but
a coherent picture is lacking. This is unsatisfactory since rea-
soning about discrete time is an important part of AI: let us
just mention temporal logics, plan generation, and discrete
time Markov chains as three concrete examples. Reasoning
about discrete time is also inevitable in many ‘industrial’ set-
tings: for systems that are repeatedly sampled (for monitoring
or other purposes), we are implicitly forced to assume that the
underlying model of time is discrete. Our goal with this paper
is to initiate a systematic study of temporal constraint satis-
faction under the assumption that time is discrete instead of
continuous. The focus will be on the computational complex-
ity of such problems; more precisely, we aim at identifying
restricted classes of constraints such that the corresponding
constraint satisfaction problem can be solved in polynomial
time. Obtaining a full classification of hard and easy cases is
of course highly desirable — it gives us a very powerful tool
for studying the complexity of problems that can be mod-
elled within the language. Since temporal constraint reason-
ing appears as a subproblem in many different types of auto-
mated reasoning, we expect such results to be useful in many
other contexts, too. For instance, note that discrete semilinear
relations (to be defined later on) have been used intensively
for a long time in, for example, formal verification [Boujjani
and Habermehl, 1996], distributed computing [Angluin et al.,
2007], and automata therory [Parikh, 1966],

In order to introduce temporal constraint reasoning for-
mally, we first define the general constraint satisfaction prob-
lem.

Definition 1 Let Γ be a set of finitary relations over some
set D of values. The constraint satisfaction problem over Γ
(CSP(Γ)) is defined as follows:

Instance: A set V of variables and a set C of constraint appli-
cations R(v1, . . . , vk) where k is the arity of R, v1, . . . , vk ∈
V and R ∈ Γ.
Question: Is there a total function f : V → D such that
(f(v1), . . . , f(vk)) ∈ R for each constraint R(v1, . . . , vk) in

931

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

C?

The set Γ is referred to as the constraint language. Given
a set D, we let Γ|D denote Γ restricted to D, i.e. Γ|D =
{R∩Dn | R ∈ Γ and R has arity n}. We sometimes slightly
abuse notation to avoid unnecessary clutter. For instance, we
may say ‘the relation x = y + z’ instead of ‘the relation
{(x, y, z) ∈ Z3 | x = y + z}.’ A constraint satisfaction
problem CSP(Γ) is globally tractable if CSP(Γ) is in P and
locally tractable if CSP(Γ′) is in P for every finite set Γ′ ⊆ Γ.
Similarly, CSP(Γ) is globally NP-hard if CSP(Γ) is NP-hard
and locally NP-hard if CSP(Γ′) is NP-hard for some finite set
Γ′ ⊆ Γ.

The separation of local and global tractability/NP-hardness
is motivated by the following result: let 〈Γ〉 (the closure or co-
clone of Γ) denote all relations that are pp-definable in Γ. A
relation R is pp-definable in Γ if it can be defined by a first-
order formula over Γ without using disjunction and negation,
and with only existential quantification.

Theorem 2 [Jeavons, 1998] For every finite Θ ⊆ 〈Γ〉,
CSP(Θ) is polynomial-time reducible to CSP(Γ). Further-
more, if R ∈ 〈Γ〉, then CSP(Γ ∪ {R}) and CSP(Γ) are
polynomial-time equivalent problems.

This implies, for instance, that if CSP(Γ) is globally
tractable, then CSP(〈Γ〉) is locally tractable.

Let us now turn our attention to temporal constraint prob-
lems. We let D ⊆ R denote a set of time points. Let the set
SD contain all relations {(x1, . . . , xn) ∈ Dn | C1∧ . . .∧Ck}
where each clause Ci denotes a disjunction (p1r1c1 ∨ . . . ∨
pmrmcm). Here, cj is an integer, rj ∈ {<,≤,=, �=,≥, >}
and pj(x1, . . . , xn) is a linear polynomial (i.e. the degree of
p equals one) with integer coefficients. We adopt a simple
representation of relations in SD: every relation R in SD is
represented by its defining formula where each coefficient is
written in binary. Let DD ⊆ SD contain the relations that
are defined by a single clause. Let HD ⊆ DD contain the
relations that are defined by a single clause that contains at
most one relation that is not of the type p(x̄) �= c. The names
S, D, and H are chosen to reflect the names given to the cor-
responding relations in the literature: the relations in SD are
called semilinear relations, the relations in DD are called dis-
junctive linear relations (DLRs), and the relations in HD are
called Horn DLRs. DLRs and Horn DLRs were introduced in
[Jonsson and Bäckström, 1998] but only for continuous time
structures (in fact, only for the set R of real numbers).

Before we continue, we need some NP-hardness re-
sults. For distinct a, b ∈ Z, define Ta,b =
{(a, a, b), (a, b, a), (b, a, a)}. Clearly, CSP({Ta,b}) is NP-
hard problems since it corresponds to 1-IN-3-SAT restricted
to clauses without negated literals.

Theorem 3 CSP(HR) is globally tractable while CSP(HZ)
is locally NP-hard. Furthermore, CSP(DD) and CSP(SD)
are locally NP-hard when D ∈ {Z,R}.

Proof: Global tractability of CSP(HR) and local
NP-hardness of CSP(DR) and CSP(SR) follows from
[Jonsson and Bäckström, 1998]. For the remaining
cases, it is sufficient to prove local NP-hardness of
CSP(HZ). Simply note that we can pp-define T0,1 in HZ by

T0,1(x, y, z) ≡ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ x+ y + z = 1 and
apply Theorem 2. �

Since CSP(HZ) is locally NP-hard, it makes sense to start
looking for tractable fragments within HZ, and this is a nat-
ural first step in a bottom-up approach to classifying the
complexity of CSP(DZ) and CSP(SZ). Also note that the
modelling power (in continuous time) of HR is quite high;
many tractable fragments described in the literature are within
HR

[Jonsson and Bäckström, 1998]. This indicates that HZ

may be interesting from a modelling point of view, too.
Due to the NP-hardness of CSP(HZ), we will concentrate

on identifying tractable fragments and study their maximality
in the forthcoming three sections. Given constraint languages
Γ ⊆ Θ, we say that Γ is maximally tractable in Θ if CSP(Γ)
is globally tractable and CSP(Γ∪{R}) is locally NP-hard for
every R ∈ Θ\Γ. Maximality can obviously be defined in dif-
ferent ways with respect to local and global properties but this
definition is sufficent for our purposes. We consider problems
where solutions can be ‘scaled’ in Section 2, problems con-
nected to linear equations in Section 3, and so-called k-valid
constraints in Section 4. In the proofs, we demonstrate how
concepts and ideas like reduced formulas [Bodirsky et al.,
2010a] and the independence property [Cohen et al., 2000]
can be used for studying discrete-time temporal constraints.
We also show how some of the maximality results can be gen-
eralised to hardness results for larger classes of constraints.
We conclude the paper with a brief discussion concerning the
results and future research directions.

2 Scalable constraints

One way to start looking for tractable fragments of HZ is to
ask under which circumstances a solution to an instance I of
CSP(HR) implies a solution to the corresponding instance I|Z
of CSP(HZ). We begin with the following lemma.

Lemma 4 Let Γ be a constraint language over R such that
the following holds.

1. Every satisfiable instance of CSP(Γ) is satisfied by some
rational point.

2. For each R ∈ Γ, it holds that if x̄ = (x1, x2, . . . , xk) ∈
R, then (ax1, ax2, . . . , axk) ∈ R for all a ∈ {y ∈
R | y ≥ 1} \ X where X is a (possibly empty) finite
set. The set X may depend on both R and x̄.

3. CSP(Γ) is globally (or locally) tractable.

Then, the problem CSP(Γ|Z) is also globally (or locally)
tractable.

Proof: Let I be an arbitrary satisfiable instance of CSP(Γ)
with a rational solution x̄ = (x1/y1, . . . , xk/yk) where
x1, . . . , xk ∈ Z and y1, . . . , yk ∈ Z+ \{0}. Let n =

∏k
i=1 yi

and note that n ≥ 1.
For an arbitrary constraint R in I , we know that it is sat-

isfied by ax̄ for every a ∈ {y ∈ R | y ≥ 1} \ X where X
is finite. For every constraint Ci in I , let Xi denote the set
of ‘exception’ points, and let t =

∑m
i=1 |Xi| (where m is the

number of constraints in I).

932

It follows that there is at least one a in the set
{y ∈ Z | 1 ≤ y ≤ t + 1} such that anx̄ satisfies I .
The vector anx̄ is integral due to choice of n which con-
cludes the proof. �

Given a real vector x̄ = (x1, . . . , xk), let ||x̄|| denote its
Euclidean norm, i.e.

√
x2
1 + . . .+ x2

k. Recall that ||x̄+ ȳ|| ≤
||x̄||+ ||ȳ|| and ||αx̄|| = |α| · ||x̄|| for all real vectors x̄, ȳ and
arbitrary α ∈ R.

Theorem 5 If I is a satisfiable instance of CSP(SR), then I
is satisfied by at least one rational point.

Proof: Let r̄ be a satisfying real point. Assume I contains
the constraints {C0, . . . , Cn} where each Ci is a disjunction
li1 ∨ li2 ∨ . . . ∨ lik. There is (at least) one lij from each
Ci that is satisfied by r̄. Since a ≤ b ≡ a < b ∨ a = b,
a ≥ b ≡ a > b ∨ a = b, and a �= b ≡ a < b ∨ a > b, we can
without loss of generality assume that either lij ≡ p(x̄) < c
or lij ≡ p(x̄) = c. It is clearly sufficient to find a rational
satisfying point, q̄, that satisfies the formula l0j0

∧ . . . ∧ lnjn
.

First consider the literals of the type p(x̄) < c. The sets of
satisfying points to these kinds of relations are clearly open.
Hence, there is some rational number δ > 0 so that all points
x̄ for which ||r̄ − x̄|| < δ satisfy these relations.

The remaining literals are of the form p(x̄) = c and we
can view them as a linear equation system Ax̄ = b̄. Ev-
ery satisfiable system of linear equations has a rational so-
lution and a vector x̄ is a solution if and only if it can be
expressed as x̄ = c̄ + x1v̄1 + . . . + xkv̄k where Av̄i = 0̄,
Ac̄ = b̄, c̄, v̄1, . . . , v̄k are rational vectors, and x1, . . . , xk are
real numbers.

Since r̄ satisfies Ar̄ = b̄, it can be expressed as
r̄ = c̄ + r1v̄1 + . . . rkv̄k, with ri ∈ R. The rational
numbers are dense in the real numbers so we can find
rational numbers qi satisfying |ri − qi| < δe for all i and
for any δe > 0. Let q̄ = c̄ + q1v̄1 + . . . + qkv̄k and we
find that ||r̄ − q̄|| = ||(r1 − q1)v̄1 + . . . + (rk − qk)v̄k|| ≤
|r1−q1|·||v̄1||+. . .+|rk−qk|·||v̄k|| < δe·(||v̄1||+. . .+||v̄k||).
By choosing q̄ so that δe gets sufficiently small, we
can achieve ||r̄ − q̄|| < δ. It follows that q̄ satisfies
l0j0 ∧ l1j1 ∧ . . . ∧ lnjn . �

Thus, HR satisfies requirement 1) and 3) of Lemma 4. We
let ΛZ ⊆ HZ contain the relations that satisfy requirement 2)
and have thus proved the following.

Theorem 6 The problem, CSP(ΛZ) is tractable.

We now verify that ΛZ is maximally tractable in HZ. We
need the concept of reduced relations.

Definition 7 [Bodirsky et al., 2010a] Let θ(x1, . . . , xn) be a
formula in conjunctive normal form. We call θ reduced if it is
not logically equivalent to any of its subformulas, i.e. there is
no formula ψ obtained from θ by deleting literals of clauses
such that θ(a) = ψ(a) for all a ∈ Zn.

An important property of reduced formulas is that if R is
defined by a reduced formula l1 ∨ . . . ∨ ln, then for each li,
we can find a vector x̄ that satisfies li but not lj for all j �= i.

Theorem 8 CSP(ΛZ) is maximally tractable in CSP(HZ).

Proof: Let R be an arbitrary relation (of arity n) in HZ that
does not satisfy requirement 2). Hence, there exists a real n-
vector ȳ and an infinite set S ⊆ R such that ȳ satisfies R but
for every s ∈ S, sȳ does not satisfy R. Assume without loss
of generality that R is defined by a reduced formula l1(x̄) ∨
... ∨ lk(x̄) where l1, . . . , lk are linear expressions.

Suppose that some li ≡ p(x̄) �= c where c �= 0. If p(ȳ) �=
c, then p(kȳ) �= c for all k ∈ R+ except at most one, and
the same holds for R(kȳ). If p(ȳ) = c, then p(kȳ) �= c
for all k ∈ R+ except at most one, and the same holds for
R(kȳ). This leads to a contradiction and we can assume that
if a literal li ≡ p(x̄) �= c, then c = 0.

If ȳ satisfies some literal li ≡ p(x̄) �= 0, then p(kȳ) �= 0 for
all k ∈ R except at most one, and the same holds for R(kȳ).
Thus, ȳ only satisfies a literal lj ≡ q(x̄)ra where r ∈ {<,≤
,=,≥, >}. By observing that p(x̄) < a ⇔ p(x̄) ≤ a − 1,
we may additionally assume that r ∈ {≤,=,≥}. Assume
without loss of generality that a ≥ 0; if a < 0, then consider
the equivalent inequality obtained by multiplying with −1. If
r = (≥), then kȳ satisfies R for all k ≥ 1. Thus, r ∈ {≤,=}.
If p(ȳ) = 0, then kȳ satisfies R for all k ∈ R so we can
safely assume that a > 0. We conclude that R is on one of the
following forms: (1) p(x̄) = a∨q1(x̄) �= 0∨ . . .∨qn(x̄) �= 0
or (2) p(x̄) ≤ a ∨ q1 �= 0 ∨ . . . ∨ qn(x̄) �= 0 where a > 0.

Assume first that R is of type (1). In ΛZ ∪ {R}, we can
pp-define the following relation:

S(z) =∃x̄.(p(x̄) = a ∨ q1(x̄) �= 0 ∨ . . . ∨ qn(x̄) �= 0)∧
q1(x̄) = 0 ∧ . . . ∧ qn(x̄) = 0 ∧ p(x̄) = z.

The definition of R is reduced so there exists a vector x̄
such that p(x̄) = a and qi(x̄) = 0, 1 ≤ i ≤ n. Thus, S(z)
holds if and only if z = a; in other words, we have defined
a non-zero constant. This implies that we can pp-define the
constant 1 since z = 1 ⇔ ∃x1, ..., xa, y.z = x1∧S(y)∧x1 ≥
1 ∧ . . . ∧ xa ≥ 1 ∧ y = x1 + . . .+ xa. It is now straightfor-
ward to pp-define the relation T0,1 and we have proved that
CSP(Γ ∪ {R}) is locally NP-hard.

Assume instead that R is of type (2). Analogously to
the construction of S, we can construct a non-empty unary
relation S′ that is upper bounded by a. Thus, S′ contains
a largest element b and the constant b can be pp-defined
since z = b ⇔ S(z)∧z ≥ b. The proof procedes as above. �

The maximality proof also gives a characterisation of the
relations R ∈ HZ that do not satisfy requirement 2): given
a relation R, reduce it and check whether it is of one of the
two ‘bad’ types identified in the proof. The maximality proof
can also be generalised to a hardness result for constraint lan-
guages that are not necessarily subsets of HZ.

Corollary 9 Let Γ be a constraint language over Z such that
the relations x = y + z and x ≥ 1 are in 〈Γ〉. Then, Γ ∪ {R}
is NP-hard whenever R ∈ HZ \ ΛZ.

Proof: (Sketch) By Theorem 2, we may without loss
of generality assume that x = y + z and x ≥ 1 are
members of Γ. By inspecting the proof of Theorem 8,
we see that CSP({R} ∪ X) is NP-hard where X is a
finite set of homogeneous equations and (possibly) a
relation p(x̄) ≥ a with a > 0. Every homogeneous

933

equation can be pp-defined with the aid of x = y + z.
Every relation x ≥ a with a > 0 can be pp-defined since
x ≥ a ⇔ ∃y1, . . . , ya.x = y1+. . .+ya∧y1 ≥ 1∧...∧ya ≥ 1
and the equation x = y1 + . . . + ya is homoge-
neous. Thus, p(x̄) ≥ a can be pp-defined since
p(x̄) ≥ a ⇔ ∃y.y = p(x̄) ∧ y ≥ a. �

3 Linear equations

In the previous section, we found a large maximally tractable
subset ΛZ of HZ. Clearly, ΛZ does not contain any linear
equations p(x̄) = a with a �= 0. We will now look at frag-
ments of HZ that contain such equations. Similar fragments
have been considered before: it is known that finding inte-
ger solutions to linear equation systems is a tractable prob-
lem [Kannan and Bachem, 1979]. A related problem has also
been discussed in [Bodirsky et al., 2010b, Section 6] but they
restrict themselves to homogeneous equations. We will now
work ‘backwards’ compared to the previous section; instead
of starting with HZ and remove relations, we will extend the
set of linear equations.

The algorithmic part will use results from [Cohen et al.,
2000] and a property known as 1-independence. We note that
the original definitions by Cohen et al. are slightly more gen-
eral than those presented here; they do not restrict themselves
to constraint languages. By the notation CSPΔ≤k(Γ∪Δ), we
mean the CSP problem with constraints over Γ∪Δ but where
the number of constraints over Δ is less than or equal to k.

Definition 10 For two constraint languages Γ and Δ, we say
that Δ is k-independent with respect to Γ if the following con-
dition holds: any instance I of CSP(Γ∪Δ) has a solution pro-
vided every subinstance of I belonging to CSPΔ≤k(Γ ∪ Δ)
has a solution.

1-independence gives us a way to handle disjunctions effi-
ciently. For constraint languages Γ and Δ, let the constraint
language Γ×∨Δ∗ contain all relations R(x̄) ≡ c(x̄) ∨ d1(x̄) ∨
. . . ∨ dn(x̄), n ≥ 0, where c(x̄) is a constraint over Γ and
d1(x̄), . . . , dn(x̄) are constraints over Δ.

Theorem 11 [Cohen et al., 2000] Let Γ and Δ be constraint
languages. If CSPΔ≤1(Γ ∪Δ) is globally tractable, and Δ is
1-independent with respect to Γ, then CSP(Γ×∨Δ∗) is globally
tractable.

Let Γ ⊆ HZ denote all relations p(x̄) = b and Δ ⊆ HZ

denote all relations p(x̄) �= b. We will now prove that
CSP(Γ×∨Δ∗) is globally tractable (Theorem 12) and that it is
a maximal tractable fragment of HZ (Theorem 13). We will
also extend the maximality result in a way similar to Corol-
lary 9; the omitted proof is analogous.

Theorem 12 CSP(Γ×∨Δ∗) is globally tractable.

Proof: We first prove that Δ is 1-independent with respect
to Γ. Let IΓ be an instance of CSP(Γ) and IΔ an instance of
Δ. Assume that IΓ∪{di} is satisfiable for each di ∈ IΔ with
di ≡ pi(x̄) �= ci.

We will perform an induction on the size of IΔ. If |IΔ| =
1, then satisfiability follows from the assumptions. Assume

that |IΔ| = d, d > 1, and that the statement holds for all
I ′Δ ⊂ IΔ. We show that IΓ ∪ IΔ is satisfiable, too.

Let IiΔ = IΔ \ {pi(x̄) �= ci} and consider the instance
IΓ ∪ IiΔ for each i. Let Di, 1 ≤ i ≤ d, be the set of satisfying
points to these subproblems. The sets D1, . . . , Dd are non-
empty due to the induction hypothesis. Arbitrarily choose an
element x̄i ∈ Di for each i. If x̄i ∈ Dj for any j �= i, then
it is a solution to the entire instance and we are done. So we
can assume that pi(x̄i) = ci for all i.

Take two points x̄1 and x̄2 and define x̄k = kx̄1 + (1 −
k)x̄2 for k ∈ Z. Observe that x̄k satisfies IΓ for all k. We
will now show that there is a k such that x̄k ∈ Di for all
i; by the previous comment, it is sufficient to consider the
disequations.

For i = 1 we note that p1(x̄k) �= c1 ⇔ kp1(x̄1) + (1 −
k)p1(x̄2) �= c1 ⇔ (1 − k)(p1(x̄2) − c1) �= 0 and since
p(x̄2) �= c1 this is true for all k �= 1. In the same way, we see
that x̄k ∈ D2 when k �= 0.

For i �= 1, 2, we note that if pi(x̄1) = d1 �= ci and
pi(x̄2) = d2 �= ci, then pi(x̄

k) = k(d1−d2)+d2. If d1 = d2,
then the disequation is always true; otherwise, there is at most
one value for k such that pi(x̄k) = ci. Hence, each disequa-
tion is not satisfied by x̄k for at most one value of k, and we
conclude that there is some k′ such that x̄k′ ∈ Di for all i. It
follows that IΓ ∪ IΔ is satisfiable for any size of IΔ.

By Theorem 11, it is now sufficient to prove that CSPΔ≤1(Γ∪
Δ) is tractable. Let I be an instance of CSPΔ≤1(Γ ∪ Δ).
We view I as an equation system Ax̄ = b̄ together with a
disequation p(x̄) �= c. We start by finding a satisfying integer
point x̄ to Ax̄ = b̄; this is tractable by [Kannan and Bachem,
1979]. If no such point exists, then I is not satisfiable. If the
found solution x̄ also satisfies p(x̄) �= c, then we have found a
solution to I , too. Otherwise, note that if ȳ �= x̄ and Aȳ = b̄,
then A(ȳ − x̄) = b̄ − b̄ = 0̄. By letting x̄h = ȳ − x̄, we see
that any satisfying point z̄ can be written as z̄ = x̄ + x̄h for
some x̄h such that Ax̄h = 0̄. Since p(x̄) = c, we note that
p(z̄) �= c ⇔ p(x̄) + p(x̄h) �= c ⇔ p(x̄h) �= 0. From this we
conclude that we can find a solution to I if and only if we can
find a point x̄h such that Ax̄h = 0̄ and p(x̄h) �= 0.

Now we solve the system Ax̄ = 0̄ ∧ p(x̄) = 1 over the
rational numbers. If this system has no solution, then there is
no point x̄h since some rational multiple of x̄h would have
been a solution. If we find a solution x̄q to this system, then
there exists an integer k �= 0 such that kx̄q is an integer
point satisfying Akx̄q = 0̄ and p(kx̄q) = k �= 0. We see
that we can let x̄h = kx̄q and conclude that I is satisfi-
able. As this only requires solving two linear systems, one
over the integers and one over the rational numbers, this is
a polynomial-time algorithm for solving CSPΔ≤1(Γ∪Δ). �

Theorem 13 Γ×∨Δ∗ is maximally tractable in HZ.

Proof: The relations in HZ \ (Γ×∨Δ∗) are of the form R ≡
p(x̄) ≤ c ∨ ∨n

i=1(qi(x̄) �= ai). Note that we do not have to
consider relations with < separately since those are always
equivalent to a relation using ≤. We assume without loss of
generality that the definition of R is reduced.

934

We will now show how to pp-define Tz0,z1 for some z0 �=
z1 in Z. By reasoning as in the proof of Theorem 8, we see
that we can pp-define a unary relation S(z) that is a subset
of {z ∈ Z | z ≤ c} by S(z) ≡ ∃x̄.(z = p(x̄)) ∧ (p(x̄) ≤
c ∨∨n

i=1(qi(x̄) �= ai)) ∧ (
∧n

i=1(qi(x̄) = ai)).
We first prove that |S| > 1. If |S| = 0, then (

∧n
i=1(qi(x̄) =

ai)) ⇒ p(x̄) > c but since the definition of R is reduced, we
know that there exists an integral vector x̄ satisfying p(x̄) ≤
c. If |S| = 1, then

∧n
i=1(qi(x̄) = ai)) ⇒ p(x̄) = d for

some d ≤ c but then R = Zn and we have a contradiction
since R ∈ Γ×∨Δ∗. To see this, let x̄ be an arbitrary vector in
Zn. If it satisfies one of the disequations, then we are done.
Otherwise, p(x̄) = d and it clearly satisfies the inequality
p(x̄) ≤ c. Consequently, |S| > 1.

Define z0 = max{z | S(z)} and z1 = max{z | S(z), z �=
z0} and note that these constants are pp-definable in Γ∪{R}.
Now, Tz0,z1

(x, y, z) ≡ S(x) ∧ S(y) ∧ S(z) ∧ x + y + z =
(2z0 + z1) and NP-hardness follows from Theorem 2. �

Corollary 14 Let Γ be a constraint language over Z such that
the relations x = y + z and x = 1 are in 〈Γ〉. Then, Γ ∪ {R}
is NP-hard whenever R ∈ HZ \ (Γ×∨Δ∗).

4 Constraints that are k-valid

We will now demonstrate that there are an infinite number of
distinct maximally tractable fragments within HZ. This fact
makes complexity classifications harder since a description of
the tractable cases must be more elaborate than just listing the
maximally tractable fragments.

A relation R is said to be k-valid, k ∈ Z, if (k, . . . , k) ∈ R.
A constraint language Γ is k-valid if every relation in Γ is k-
valid. Let Γk, k ∈ Z, denote the set of k-valid relations in HZ

together with the empty relation. Clearly, Γi �= Γj whenever
i �= j; Γi contains the relation (x = i) but does not con-
tain (x = j) and vice versa. Solving instances of CSP(Γk)
is obviously trivial (simply check whether some constraint is
based on the empty relation) but such classes have to be con-
sidered, too, in order to obtain full complexity classifications.
The maximality proof for k-valid constraints differs slightly
from the proofs in the preceeding sections. There, we man-
aged to construct explicit NP-hard constraint languages. This
proof is slightly non-constructive since we obtain a sequence
of constraint languages and prove that (at least) one of them
is NP-hard. However, we do not know which one.

For distinct a, b, c ∈ Z, define T ′
a,b,c(x, y) ≡ {a, b, c}2 \

{(a, a), (b, b), (c, c)}. CSP({T ′
a,b,c}) is an NP-hard problem

since it corresponds to the 3-COLOURABILITY problem.

Theorem 15 For each k ∈ Z, Γk is a maximally tractable
language in HZ.

Proof: The problem CSP(Γk) is obviously globally
tractable. To prove maximality, arbitrarily choose a relation
R ∈ HZ that is not k-valid. Let m denote the arity of R and
consider the following relations:

U1(z) ≡ ∃y, x2, . . . , xm.R(z, x2, x3, . . . , xm) ∧ y = k

U2(z) ≡ ∃y, x3, . . . , xm.R(y, z, x3, x4, . . . , xm)∧ y = k

...

Um(z) ≡ ∃y.R(y, y, y, . . . , y, z) ∧ y = k

Um+1(z) ≡ ∃y.R(y, y, y, . . . , y, y) ∧ y = k

The relations U1, . . . , Um+1 are pp-definable in Γk ∪ {R}
since the relation y = k is k-valid. We claim that there exists
an index 1 ≤ j ≤ m such that Uj �= ∅ and k �∈ Uj . Since
R is not k-valid, it follows that Um+1 = ∅ so there exists
a smallest index 2 ≤ j′ ≤ m + 1 such that Uj′ = ∅. Let
j = j′ − 1. Clearly, Uj is non-empty and if k ∈ Uj , then
Uj+1 = Uj′ is non-empty which leads to a contradiction.

We now let ca(z) ≡ (z = a) and pp-define the relation
ck′(z) for some k′ �= k. Assume without loss of generality
that there is some element in Uj that is larger than k; if not,
then there is some element in Uj that is smaller than k and
the reasoning is symmetric. Let k′ = min{x ∈ Uj | x > k}
and note that z = k′ ⇔ Uj(z) ∧ (z ≥ k) ∧ (z ≤ k′).
The relations (z ≥ k) and (z ≤ k′) are both k-valid so
(z = k) is pp-definable in Γk ∪ {R}. Using the relation
z = k′, we conclude the proof by the following pp-definition:
T ′
k−1,k,k+1(x, y) ≡ ∃z, w.(z = w∨x �= y)∧ck(z)∧ck′(w)∧

∧(k − 1 ≤ x) ∧ (x ≤ k + 1) ∧ (k − 1 ≤ y) ∧ (y ≤ k + 1).
NP-hardness of CSP({T ′

k−1,k,k+1}) implies NP-hardness of
CSP(Γk ∪ {R}) via Theorem 2. �

5 Discussion

The results reported in this paper constitute a step towards a
better understanding of the complexity of temporal reasoning
in discrete time structures. Below, we discuss how this work
can be continued.

5.1 Horn DLRs

Completely classifying the complexity of CSP(HZ) appears
to be a quite hard problem. Consider the NP-complete integer
feasibility problem: given a system of inequalities Ax ≥ b,
decide whether there exists a satisfying integer vector x or
not. Note that each row of the system can be viewed as a
relation in HZ. Thus, a complete classification of CSP(HZ)
would give us a classification of the integer feasibility prob-
lem (parameterised by allowed row vectors). Such a classifi-
cation is not currently known and, in fact, there are no clas-
sifications even if we restrict ourselves to finite domains or if
we consider the closely related integer optimisation problem.

One obvious difficulty when classifying CSP(HZ) is that
we do not know what algorithmic techniques will be needed.
The results in this paper are based on either solving linear
equations or solving linear programming problems over the
real numbers. Completely different methods may be needed
in other cases, though. As a concrete example, consider the
constraint language Γ containing all relations of the type ax+
by = c, x ≤ c, and x ≥ c (where a, b, c ∈ Z) and note that
Γ ⊆ HZ. Bodirsky et al. [2009] have shown that CSP(Γ) is
tractable by using a graph-theoretic approach; it is not clear
how (or if) this algorithm can be recast in more familiar terms.

Another difficulty is that there are tractable cases where we
have not been able to prove maximality. One example is the

935

previously mentioned class by Bodirsky et al. Another exam-
ple is constraints of the types ax − by ≤ c and ax − by = c
where a, b ∈ {0, 1} and c ∈ Z. Let ΣZ denote the correspond-
ing constraint language. The tractability of CSP(ΣZ) problem
follows from combining Theorem 19.1 and Theorem 19.3(iv)
in [Schrijver, 1986] with the fact that linear programs can be
solved in polynomial time. This result is interesting since it
implies tractability of the discrete-time analogue of Dechter
et. al’s [1991] well-known simple temporal networks.

Deciding maximality for ΣZ and similar classes appear to
be non-trivial. Apparently, ΣZ may be difficult to extend with
disequality relations p(x̄) �= a. It is, for instance, straightfor-
ward to prove that CSP(ΣZ∪{x �= y}) is NP-hard. It may be
the case that ΣZ can be extended in other ways, though.

5.2 Semilinear relations and DLRs

If we turn our attention to semilinear relations and DLRs,
then we immediately note that they give rise to a much richer
class of CSPs than Horn DLRs. The following is an inter-
esting consequence: for every finite constraint language Γ
over a finite domain D, there exists a finite set Γ′ ⊆ SZ

such that CSP(Γ) and CSP(Γ′) are polynomial-time equiv-
alent. This can be demonstrated as follows: given a rela-
tion R ⊆ Dk where D = {d1, . . . , dm} is finite, define
R′(x1, . . . , xk) ≡ ∧k

i=1(xi = d1 ∨ . . . ∨ xi = dm) ∧∧
(t1,...,tk)∈Dk,(t1,...,tk)�∈R(x1 �= t1 ∨ . . . ∨ xk �= tk). It is

now straightforward to see that R′ is a semilinear relation and
that CSP({R}) is polynomial-time equivalent to CSP({R′}).
This idea is straightforward to extend to constraint languages,
so a complete classification of CSP(SZ) would also consti-
tute a complete classification of finite-domain CSPs. Such
a classification has for many years been a major open ques-
tion within the CSP community. We can also observe that
the resulting constraint language Γ′ is typically not a subset
of DZ. The simpler structure of DZ may very well simplify
the classification task. We note that the finite-domain CSP
problem for so-called clausal relations is completely classi-
fied [Creignou et al., 2008], and this kind of relations are de-
fined by single clauses satisfying certain properties.

When studying the complexity of CSP(SZ) and CSP(DZ),
it appears that the known sources of tractable fragments in-
crease drastically. An obvious example are the relations that
are first-order definable over (Q;<). Every tractable subclass
has been identified by Bodirsky and Kara [2010] so we let Γ
denote one of their tractable classes. The structure (Q;<)
admits quantifier elimination and Γ ⊆ SZ. By combining
this fact with Lemma 4, it can be shown that an instance I of
CSP(Γ) has a solution if and only if I|Z has a solution. Thus,
CSP(Γ|Z) is tractable, too. Note that there is no a priori rea-
son to believe that Γ|Z is maximally tractable within DZ or
SZ (even though Γ is maximal within the relations that are
first-order definable within (Q, <)). It may be the case that
there are many different tractable classes that contains Γ|Z.

References

[Angluin et al., 2007] D. Angluin, J. Aspnes, D. Eisenstat,
and E. Ruppert. The computational power of population
protocols. Distrib. Comput., 20:279–304, 2007.

[Bettini et al., 1998] C. Bettini, X. Wang, and S. Jajodia. A
general framework for time granularity and its application
to temporal reasoning. Ann. Math. Artif. Intell., 22(1–
2):29–58, 1998.

[Bodirsky and Kára, 2010] M. Bodirsky and J. Kára. The
complexity of temporal constraint satisfaction problems.
J. ACM, 57(2), 2010.

[Bodirsky et al., 2009] M. Bodirsky, G. Nordh, and T. von
Oertzen. Integer programming with 2-variable equa-
tions and 1-variable inequalities. Inform. Process. Lett.,
109(11):572–575, 2009.

[Bodirsky et al., 2010a] M. Bodirsky, H. Chen, and M.
Pinsker. The reducts of equality up to primitive positive
definability. J. Symb. Log., 75(4):1249–1292, 2010.

[Bodirsky et al., 2010b] M. Bodirsky, P. Jonsson, and T.
von Oertzen. Horn versus full first-order: com-
plexity dichotomies in algebraic constraint satisfaction.
arXiv:1005.1141v2.

[Boujjani and Habermehl, 1996] A. Boujjani and P. Haber-
mehl. Constrained properties, semilinear systems, and
Petri nets. In Proc. of CONCUR ’96, Concurrency The-
ory, 7th International Conference, pages 481–497, 1996.

[Cohen et al., 2000] D. Cohen, P. Jeavons, P. Jonsson, and
M. Koubarakis. Building tractable disjunctive constraints.
J. ACM, 47:826–853, September 2000.

[Creignou et al., 2008] N. Creignou, M. Hermann,
A. Krokhin, and G. Salzer. Complexity of clausal
constraints over chains. Theor. Comput. Syst., 42(2):239–
255, 2008.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks. Artif. Intell., 49:61–95, 1991.

[Fisher et al., 2005] M. Fisher, D. Gabbay, and L. Vila, edi-
tors. Handbook on Temporal Reasoning in Artificial Intel-
ligence. Elsevier, 2005.

[Jeavons, 1998] P. Jeavons. On the algebraic structure of
combinatorial problems. Theoret. Comput. Sci., 200(1–
2):185–204, 1998.

[Jonsson and Bäckström, 1998] P. Jonsson and C.
Bäckström. A unifying approach to temporal con-
straint reasoning. Artif. Intell., 102(1):143–155, 1998.

[Kannan and Bachem, 1979] R. Kannan and A. Bachem.
Polynomial algorithms for computing the Smith and Her-
mite normal forms of an integer matrix. SIAM J. Comput.,
8(4):499–507, 1979.

[Krokhin et al., 2004] A. Krokhin, P. Jeavons, and P. Jon-
sson. Constraint satisfaction problems on intervals and
lengths. SIAM J. Discrete Math., 17(3):453–477, 2004.

[Meiri, 1996] I. Meiri. Combining qualitative and quantita-
tive constraints in temporal reasoning. Artif. Intell., 87(1-
2):343–385, 1996.

[Parikh, 1966] R. Parikh. On context-free lanugages. J.
ACM, 13(4):570–581, 1966.

[Schrijver, 1986] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1986.

936

