
Cluster Indicator Decomposition
for Efficient Matrix Factorization

Dijun Luo, Chris Ding, Heng Huang

Computer Science and Engineering Department, University of Texas at Arlington, USA

dijun.luo@gmail.com; chqding@uta.edu; heng@uta.edu

Abstract

We propose a new clustering based low-rank matrix
approximation method, Cluster Indicator Decom-
position (CID), which yields more accurate low-
rank approximations than previous commonly used
singular value decomposition and other Nyström
style decompositions. Our model utilizes the in-
trinsic structures of data and theoretically be more
compact and accurate than the traditional low rank
approximation approaches. The reconstruction in
CID is extremely fast leading to a desirable advan-
tage of our method in large-scale kernel machines
(like Support Vector Machines) in which the re-
construction of the kernels needs to be frequently
computed. Experimental results indicate that our
approach compress images much more efficiently
than other factorization based methods. We show
that combining our method with Support Vector
Machines obtains more accurate approximation and
more accurate prediction while consuming much
less computation resources.

1 Introduction

Many machine learning applications require processing large
amounts of high dimensional data. In these applications, the
data are represented as a m×nmatrix X, e.g. images, videos,
kernel matrices, spectral graph. As data size and the amount
of redundancy increase fast with dimensionality m and n, it
is desirable to obtain compact and concise representations of
X to make data analysis and interpretation easier, e.g., a low-
rank approximation of original data.

Low-rank approximation of matrices have been widely
used in broad artificial intelligence applications such as image
denoising and compression [Zhang et al., 2009], face recog-
nition [Turk and Pentland, 1991], motion scene reconstruc-
tion [Han and Kanade, 2001], scene appearance approxima-
tion [Garg et al., 2009], and part of objects representation
[Lee and Seung, 1999] etc. Among them, kernel matrix ap-
proximation is one of the most important applications. Ker-
nel methods play a central role to successfully model com-
puter vision data with highly complex, nonlinear structures,
e.g. support vector machine, kernel Fisher discriminant anal-
ysis, and kernel principal component analysis. But the com-

putational complexities of large kernel matrices in terms of
both space (quadratic) and time (usually cubic) are quite chal-
lenge in practical applications. Low-rank approximations of
the kernel matrix can effectively tackle large-scale datasets
with no significant decrease in performance [Williams and
Seeger, 2000; Zhang et al., 2008; Fowlkes et al., 2004;
Talwalkar et al., 2008].

There are a very large number of different low rank approx-
imation methods [Bach and Jordan, 2005; Frieze et al., 2004],
among them Singular Value Decomposition (SVD) is the best
known and most widely used one, because it provides the best
low rank approximation so far and can be readily computed.

Another popular low-rank approximation algorithm is
Nyström decompositions, because it is easy to be computed
and also the vectors involved in factorization are “inter-
pretable”. Nyström style decompositions have been widely
used to speed up the computation of large kernel matrix
[Williams and Seeger, 2000; Zhang et al., 2008; Drineas and
Kannan, 2003; Fowlkes et al., 2004; Srebro and Jaakkola,
2003].

In this paper, we propose a new clustering based low-rank
matrix approximation. This decomposition uses cluster indi-
cators which have a nice property that they can be stored into
a single vector, while provide the approximation capability of
rank-K approximation. This Cluster Indicator Decomposi-
tion (CID) is thus compact (comparable and even more com-
pact than SVD). Meantime, it is also interpretable because the
basis vectors are cluster indicators.

The clustering model here also naturally suggests a Re-
laxed Cluster Indicator Decomposition where the nonzero el-
ements of cluster indicators are not forced to be “1”. Our
new low-rank matrix approximation methods have close con-
nection to Nyström style decompositions and several other
closely related variants. But our methods have much better
approximation accuracy than related approaches. Using four
standard image datasets, we evaluate the performance of our
methods by image compression and kernel matrix approxima-
tion applications in term of reconstruction errors and classifi-
cation accuracy. We provide a new insight to low-rank matrix
approximation and our methods can be widely applied into
many computer vision applications.

1384

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Origin SVD Relaxed CID CID

Figure 1: Image reconstruction using SVD, CID, and Relaxed
CID on color images (top) and gray level images (bottom).
Four images are from diverse data source (see §4.1). For
SVD, k = 4; parameters for CID and Relaxed CID are set
such that all methods use the same storage. The reconstruc-
tion errors of SVD, Relaxed CID, CID are 2.98%, 2.22%,
1.51% for color images, and 6.27%, 4.43%, 2.95% for gray
level images. CID has the best results and Relaxed CID is
also better than SVD.

2 Cluster Indicator Decomposition (CID)

For any rectangular (or non-symmetric square) input matrix
X ∈ �m×n, we seek the CID decomposition of X as

X ∼= FSGT , F = {0, 1}m×k1, (1)

S ∈ �k1×k2 , G = {0, 1}n×k2. (2)

In addition, each row of F has exactly one nonzero element
“1”. Thus F = (f1, · · · , fk1

) is the cluster indicator ma-
trix for row clustering of X, i.e., the non-zeros of fp indi-
cate rows of X which form a row cluster Rp. Similarly,
G = (g1, · · · ,gk2

) is the cluster indicator matrix for column
clustering of X, where the non-zeros of gq indicate columns
of X forming a column cluster Cq . The factors F,S,G are
obtained by

min
F,G,S

J0 = ‖X− FSGT ‖2, (3)

which can be equivalently written as

min J0 =

n∑
i=1

m∑
j=1

min
1≤p≤k1

min
1≤q≤k2

(Xij − Spq)
2. (4)

This can be viewed as an extension of the standard “one-way”
K-means clustering:

min J columns
Kmeans (X) =

k∑
q=1

∑
i∈Cq

‖xi−μq‖
2 =

n∑
i=1

min
1≤q≤k

‖xi−μq‖
2

(5)
where μq is the centroid of cluster Cq . The simultaneous clus-
tering of rows and columns of X can be viewed as block clus-
tering and Spq is the “mean” of the block cluster.

Storage of CID
CID is very compact. The indicator matrix F can be stored

in an m-vector fCID of b1-bit integers, where b1 = �log2k1�
and fCID(j) indicate the index of row cluster that j-th row be-
longs to. Similarly, indicator matrix G can be stored in an
n-vector gCID of b2-bit integers where b2 = �log2k2�. (F,G)
requires mb1 + nb2 bits storage, which is much less than
64(m+ n) bits storage for a pair of singular vectors (ul,vl).
For this reason, we sometimes call it rank-0 storage. S is
stored as k1k2 real numbers. Thus the total storage Γ for CID
in unit of 64-bit reals is

ΓCID = m
�log2k1�

64
+ n

�log2k2�

64
+ k1k2 (6)

We note that for SVD truncated into KSVD terms, the storage
is ΓSVD = KSVD(m+n). A very simple implementation uses
a whole 64-bit integer for F and other 64-bit integer for G.
This simple CID use storage less than SVD if

k1k2 < (KSVD − 1)(m+ n). (7)

2.1 Relaxed CID

In CID, each row of F has exactly one nonzero element which
is “1”. We now relax this nonzero element to a real number.
This improves the matrix approximations, but increase stor-
age slightly. We can also relax G similarly. We call this
decomposition as Relaxed CID.
Storage of Relaxed CID

Because each row of F has only one nonzero, the k1

columns of F = (f1, · · · , fk1
) can be stored in a single m-

vector as fRCID Cluster labels of each row is stored in fCID (see
storage of CID). Furthermore, because each element of fCID

has only b1 = logk1 bits (for k1=32 clusters, b1 = 5), fCID

can be packed in to the least significant b1-bits in fRCID’s man-
tissa. G is stored similarly. Over-all, the storage of F,G is
equivalent to storage of a pair singular vectors of SVD (we
may call Relaxed CID as “CID with rank-1 storage”).

2.2 Computational algorithm of RCID and CID

Optimization of Eq. (3) with discrete constraints of Eqs. (1,2)
is an NP-hard combinatorial optimization. Here we use a con-
tinuous approach to first find a relaxed solution.

We do a transformation. Let F̃ = FD
−1/2
f where Df =

diag(m1, · · · ,mk1
) and mp = |Rp| is the size of row-cluster

Rp. Clearly, F̃TF̃ = I where I is an identity matrix of ap-

propriate size. Similarly, let G̃ = GD
−1/2
g where Dg =

diag(n1, · · · , nk2
) and nq = |Cq| is the size of column-

cluster Cq . Clearly, G̃TG̃ = I . Let S̃ = D
1/2
f SD

1/2
g be

the new central factor.
It is obvious that F̃S̃G̃T = FSGT. But in terms of these

new factors, the constraints become easier to deal with. Now,
for notational simplicity, we use F for F̃, G for G̃, S for S̃.
These factors are obtained from the optimization

min
F≥0,G≥0,S≥0

‖X− FSGT‖2, s.t. FTF = I, GTG = I.

(8)
Since F is nonnegative, the orthogonality of F implies each
row of F has only one nonzero. But this nonzero element is

1385

not restricted to “1”, as required by a strict “cluster indicator”.
For this reason, we call F “relaxed” cluster indicator. Simi-
larly, the relaxed indicator G is computed in this optimiza-
tion. Therefore, this optimization gives solution for Relaxed
CID.

Once the relaxed indicators are obtained in Relaxed CID,
we set the non-zeros in F,G to “1” , fixing them, and update
S to obtain the solution for CID.

Here we outline the algorithm [Ding et al., 2006] to solve
the orthogonal tri-factorization Eq.(8). Here the data X is
nonnegative. The algorithm is given as below:
(S0) Initialize G. Do K-means clustering on columns of
X into k2 clusters. This gives cluster indicator G and let
G0 = G + 0.2. Normalize each column of G0 to 1 using
L2-norm (thus GT

0 G0
∼= I). Initialize F in same way by

clustering rows of X into k1 clusters.
(S1) Repeat until convergence:

Skl ← Skl
(FTXG)kl

(FTFSGTG)kl
(9)

Gjk ← Gjk

[
(XTFS)jk

(GGTXTFS)jk

]
, (10)

Fik ← Fik

[
(XGST)ik

(FFTXGST)ik

]
(11)

Notice that the RHS factors (square brackets) of Eqs. (10) and
(11) are not square rooted as in [Ding et al., 2006]. Thus al-
gorithm here converges faster than that in [Ding et al., 2006].
The convergence of Eqs. (10) and (11) can be vigorously
proved (details are skipped due to space limitation).
Real Life Image Compression

Fig. 1 shows the real images compression results using CID
and Relaxed CID. The original image and SVD results are
also shown. From the figures, we can see that CID com-
pressed images are much more clear than SVD results. The
image details are described in the first paragraph of §4.

2.3 Error bounds for CID

Let J∗
CID be the optimal reconstruction error of CID and and

J∗
RCID be the optimal reconstruction error of relaxed CID. We

show there exists an easily computable upper bound:

Theorem 2.1 In CID and RCID compositions of the input X,
we have the upper bound

J∗
RCID ≤ J∗

CID ≤ J columns
Kmeans (X) + J rows

Kmeans(Y). (12)

where J columns
Kmeans (X), J

rows
Kmeans(Y) are obtained as following:

CID bound calculation. (1) Do K-means clustering on the
columns of X. Let J columns

Kmeans (X) be the corresponding objec-

tive function value. Let Y be the centroid data, i.e., each xi

is replaced by its corresponding cluster centroid:

Y = (

n1︷ ︸︸ ︷
μ1, · · · , μ1 ,

n2︷ ︸︸ ︷
μ2, · · · , μ2 , · · · ,

nk︷ ︸︸ ︷
μk, · · · , μk) (13)

(here we assume, without loss of generality, that columns of
X are ordered such that data points within same cluster are
adjacent, and setting k1 = k2 = k to simplify the notation).

(2) Do K-means clustering on rows of the m-by-n matrix Y.

This is identical to the clustering of the rows of the condensed
centroid data Y:

Y = (n1μ1, n2μ2, · · · , nkμk). (14)

Clustering on Y is faster since Y is size of m-by-k and
k
 n. J rows

Kmeans(Y) is the objective function value of this
clustering.
Proof of Theorem 1. The inequality J∗

RCID ≤ J∗
CID is true be-

cause the relaxed indicator F,G from “1” improves the ap-
proximation. To obtain an upper bound of JCID, it is sufficient
to find a feasible solution of the optimization of Eq. (3) or the
equivalent block clustering formulation of Eq. (4). Clearly,
the solution (F0,G0) obtained by the CID bound comput-
ing algorithm above is a feasible solution of the block clus-
tering. Furthermore, the block clustering objective function
value of the solution (F0,G0) is exactly JCID(F0,G0) =
J columns

Kmeans (X) + J rows
Kmeans(Y). By definition, the optimal solu-

tion should have a lower objective comparing to a feasible
solution, i.e., J∗

CID ≤ JCID(F0,G0). �

2.4 CID for symmetric/kernel matrices

For kernel (and generic symmetric) matrices W, due to sym-
metry, F = G. Therefore, the decomposition becomes

W ∼= GSGT , (15)

where G is restricted to be an indicator matrix. As discussed
in §2.1,the relaxed indicatorS and factorG are obtained from
the optimization

min
G≥0,S≥0

‖W−GSGT‖2, s.t. FTF = I. (16)

The algorithm to computeG,S is very similar to that of §2.2.
We outline the algorithm as following:

(B0) Initialize G by clustering rows of W.

(B1) Update S: Skl = Skl
(G

T
WG)kl

(GT GSGT G)kl
.

(B2) Update G:

Gik ← Gik

((WGS)ik
(GΛ)ik

) 1

4

, Λ =
SGTWG+GTWGS

2

where Λ is the Lagrangian multiplier to enforce GTG = I .
Repeat (B1, B2) until convergence. We obtain Relaxed

CID result. After that, we fix the nonzero elements of F,G
to be 1, and update S to get CID result. Eq. (16) uses least
square objective. A more sophisticated objective is using
Laplacian formulism as presented in [Luo et al., 2009].

The above algorithm assumes the input data W is nonneg-
ative. When W has mixed signs, S has mixed signs. We
have algorithm for updating F,G, bS for this case. Details
are skipped due to space limit.

The upper error bound of Theorem 1 can also be extended
to this case. Because W is symmetric, only clustering of
columns of W are done, which gives cluster indicator G0.
Let YW be constructed same as Y in Theorem 1, and evalu-
ate J rows

Kmeans(YW) using the cluster indicator G0. We have

Theorem 2.2 In CID composition for input symmetric ma-
trix W, we have the upper bound for CID decomposition
W ∼= (G∗)S∗(G∗)T

‖W−G∗S∗(G∗)T ||2 ≤ J columns
Kmeans (W)+J rows

Kmeans(YW). (17)

1386

1 2 3 4 5 6 7
0.02

0.04

0.06

0.08

0.1

0.12

K

R
ec

on
st

ru
ct

io
n

E
rr

or
SVD
RCID
CID

(a) WANG’s dataset

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
RCID
CID

(b) FERRET face database

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
RCID
CID

(c) Caltech 101

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

K

A
pp

ro
xi

m
at

io
n

E
rr

or

SVD
RCID
CID

(d) VOC2009

Figure 2: Average reconstruction errors of CID, Relaxed CID (RCID), SVD on image compressions of four public computer
vision datasets. When the rank of SVD increase from 1 to 7, we select the corresponding parameters for CID and Relaxed CID
to make them use the same storage for compressed images.

3 Reconstruction Complexity of CID

One important application of matrix decomposition is that it
helps to solve large scale problems due to storage reduction.
Here, the speed of reconstruction of Kernel becomes a criti-
cal factor because we have to reconstruct the kernel very fre-
quently. For example, in SVMs for classification.

We note that reconstruction in CID is extremely fast, as
compared to other decomposition methods such as Nyström,
SVD, CUR, etc. Specifically, we note that in CID, F is row
cluster indicator and its role is to pick (index) the correct
block means Skl. There is no computation involved. The
reconstruction of CID approximation is (supposing X is a
kernel matrix K),

Kij ≈ (FSGT)ij =
∑
pq

SpqFipGjq = SRiCj
, (18)

where Ri is the row cluster that row index i belongs to, and
Cj is the column cluster that column index j belongs to. We
can obtain the kernel value by two indexing operations.

For other decomposition approaches, the reconstruction
complexity is much higher. For example, in SVD approxima-
tion, Kij ≈

∑
p UipSppUjp requires 3KSVD floating point

operations. For Nyström, it is even higher.
In an efficient implementation of Support Vector Machines,

chunking techniques are widely employed. In chunking, we
compute (reconstruct) kernel values for a chunk of the ker-
nel matrix, use them for some computation, and throw them
away. For the same chunk of the kernel matrix, if we later
need, we recompute them anew. This is repeated many times.
This is extremely expensive for the traditional approaches.
But for CID, we access the kernel matrix values as if all the
entries have been already computed and been stored.

4 Experimental Results

4.1 Reconstruction errors of CID

Image Compression

In order to examine CID low-rank approximation schemes
on rectangular data matrices, we use image compression ap-
plication and compare results to SVD that is considered as
the best low-rank approximation method so far. First, we il-
lustrate four image compression results using SVD and CID
in Fig. 1. These four images are randomly selected from three

public image databases: two from WANG’s dataset [Wang et
al., 2001], one from Google map, and one from Ferret face
database [Philips et al., 1998]. In order to compare them to-
gether, all images are resized to 384×256. The parameters are
selected to make them use the same storage for compressed
images. For color images (top row of Fig. 1), all methods
are done independently on red, green, and blue channels. The
reconstruction (low-rank approximation) errors are defined as

‖X−X̃‖2/‖X‖2, where X is the original image and X̃ is the
reconstruction image). Compared to SVD, in Fig. 1, CID and
Relaxed CID provide not only more interpretable decompo-
sition, but also much better low-rank approximation.

Besides the above illustrative demonstrations, we also sys-
tematically perform the image compression on four public
computer vision datasets: WANG’s dataset [Wang et al.,
2001], FERRET face database [Philips et al., 1998], Caltech
101 [Perona et al., 2004], and PASCAL Visual Object Classes
2009 Challenge (VOC2009)1. The experimental setup is the
same as the above descriptions. When the rank of SVD in-
crease from 1 to 7, we select the corresponding parameters for
CID and Relaxed CID to make them use the same storage for
compressed images. The average image reconstruction errors
of SVD, CID, and Relaxed CID are plotted in Fig. 2. Using
the same storage, CID always has the best low-rank approx-
imation, and Relaxed CID is also consistently more accurate
than SVD. We note that CID outperforms other methods the
more structure the better and the at the smaller storage (small
KSVD) the better. On the other hand, for data without struc-
ture, CID does not outperform SVD.

Kernel Matrix Approximation To measure CID low-rank
approximation schemes on symmetric/kernel matrices, we
perform CID and Relaxed CID on 3 commonly used hu-
man face datasets: AT&T face dataset2 (Dim=644, N=400),
MNIST digit images [Cun et al., 1998] (Dim=784, N=150),
and The Japanese Female Facial Expression (JAFFE)
Database3(Dim=4096, N=213), and one hand written digit-
letter image database: BinAlpha4 (Dim=320, N=1404). We
perform methods on Gaussian kernel K(x,y) = exp(−‖x−
y‖2/γ2) (it is the standard one to evaluate the low-rank ap-

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/
2 http://www.cl.cam .ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.kasrl.org/jaffe.html
4http://www.cs.toronto.edu/ roweis/data.html

1387

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
CID
RCID
CUR
Nystrom
Medoid
FKV

(a) AT&T

2 3 4 5 6 7 8 9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
CID
RCID
CUR
Nystrom
Medoid
FKV

(b) BinAlpha

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
CID
RCID
CUR
Nystrom
Medoid
FKV

(c) MNIST

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K

R
ec

on
st

ru
ct

io
n

E
rr

or

SVD
CID
RCID
CUR
Nystrom
Medoid
FKV

(d) JAFFE

Figure 3: Approximation error comparisons of CID, Relaxed CID (RCID), Nyström decomposition, CUR, FKV, and SVD on
kernel matrices computed from 4 public datasets.

proximation) where γ is the average of pairwise distances.
We compare CID and Relaxed CID to SVD and major
Nyström style decompositions on kernel matrices approxima-
tions. The results are shown in Fig. 3.

For the Nyström style decompositions, we run 20 ran-
dom trials and obtain the average reconstruction errors. Four
methods are compared in our experiments: (1) standard
Nyström (Nystrom), (2) Medoid method (Medoid) [Zhang
et al., 2008], (3) Frieze et al.’s method [Frieze et al., 2004]

(FKV), (4) CUR. When the rank K of SVD changes from 2
to 9, parameters in all other methods are selected to guaran-
tee the same storage is used. Obviously, our CID and Relaxed
CID methods have much better low-rank approximation than
all other related methods.

4.2 Kernel matrix approximation in classification

We embed the decomposition into kernel classification ma-
chines to investigate the efficiency. We compare CID to
SVD and Nyström in terms of classification accuracy and
kernel reconstruction time. We use RBF kernel Support
Vector Machines (a modification of LIBSVM5) with 10-fold
cross validation. We determine the parameters as follow-
ing. By running 10-fold cross validation with gaussian pa-
rameter γ = [2−10r̄, 2−9r̄, ..., 210r̄], and C parameter C =
[2−10, 2−9, ..., 210] where r̄ is the average Euclidean distance
of all pairs of data points. Let (γopt, Copt) denote the param-
eters which generate the best 10-fold cross validation results,
then we perform decompositions on the kernel using gaussian
parameter γopt: K

opt(i, j) = exp(−‖xi − xj‖
2/γ2

opt).
We chose k = 1, 4, 8 in our experiments. For Nyström and

CID, we approximate the best kernel Kopt with the same size
of storage as SVD. Notice that for CID, the kernel is recon-
structed by using Eq. (18), which is extremely computation-
ally simple.

We report results in Table 4.1. In LIBSVM, we use 1-
vs-1 scheme, and reported results are derived by summing
up all the base binary classifiers over all the cross validation
folds (except the accuracy is the average accuracy). In Table
4.1, results show that CID outperforms SVD and Nyström in
terms of both classification accuracy and kernel reconstruc-
tion CPU time. We also notice that in JAFFE dataset, even
though we only use the same storage as k = 1 in SVD, the
classification accuracy is still very high (96.64%), i.e. CID
works well with very limited memory.

5www.csie.ntu.edu.tw/ cjlin/libsvm/

5 Conclusion

We proposed a family of algorithms to derive effective low-
rank matrix decompositions which are both accurate and
highly interpretable. In CID, column/row matrix factors are
cluster indicators which can be compacted into very small
space and the middle factor is the block cluster mean. Fur-
thermore, the reconstruction is extremely fast. We derived
several error bounds for the new matrices decomposition
methods. Experiments on 4 computer vision data sets indi-
cate CID provides better low-rank approximation than SVD
at small subspace dimension. There could be many other
ways to use clustering to generate low-rank matrix decompo-
sitions. Our approaches open a new application area for data
clustering and efficiently solve the data low-rank approxima-
tion problem existing in many large-scale applications.
Acknowledgment This research is partially supported
by NSF-CCF-0830780, NSF-DMS-0915228, NSF-CCF-
0917274.

References
[Bach and Jordan, 2005] Francis R. Bach and Michael I. Jor-

dan. Predictive low-rank decomposition for kernel meth-
ods. In ICML, volume 119, pages 33–40, 2005.

[Cun et al., 1998] Y. L. Le Cun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of IEEE, 86(11):2278–2324,
1998.

[Ding et al., 2006] Chris H. Q. Ding, Tao Li, Wei Peng,
and Haesun Park. Orthogonal nonnegative matrix t-
factorizations for clustering. In KDD, pages 126–135.
ACM, 2006.

[Drineas and Kannan, 2003] P. Drineas and R. Kannan. Pass
efficient algorithm for large matrices. In SODA, pages
223–232, 2003.

[Fowlkes et al., 2004] Charless Fowlkes, Serge Belongie,
Fan R. K. Chung, and Jitendra Malik. Spectral group-
ing using the nyström method. IEEE Trans. Pattern Anal.
Mach. Intell., 26(2):214–225, 2004.

[Frieze et al., 2004] Alan Frieze, Ravi Kannan, and Santosh
Vempala. Fast monte-carlo algorithms for finding low-
rank approximations. J. ACM, 51(6):1025–1041, 2004.

[Garg et al., 2009] Rahul Garg, Hao Du, Steven M. Seitz,
and Noah Snavely. The dimensionality of scene appear-
ance. ICCV, 2009.

1388

JAFFE Accuracy #SV #Train Train CPU #Test Test CPU

k=1 SVD 50.94 1804 241460 0.3204 76770 0.0446

Nyström 69.44 1419 218641 0.4244 60396 0.1200

CID 96.64 1114 233700 0.0458 47502 0.0122

k=4 SVD 88.44 814 132814 0.4764 34602 0.1345

Nyström 82.42 1023 153943 1.7154 43496 0.0990

CID 99.64 1125 226650 0.0553 47976 0.0225

k=8 SVD 98.67 662 118680 0.1734 28184 0.0354

Nyström 86.26 877 142290 0.4749 37332 0.0916

CID 99.64 1218 245435 0.0466 51810 0.0091

MNIST Accuracy #SV #Train Train CPU #Test Test CPU

k=1 SVD 47.00 1222 166168 0.5445 36160 0.0398

Nyström 47.00 1198 199207 0.3957 35440 0.0719

CID 76.50 839 155716 0.0505 24980 0.0169

k=4 SVD 77.00 861 116311 0.1504 25640 0.0309

Nyström 61.00 1072 180348 0.3847 31800 0.0713

CID 87.00 593 124770 0.0845 17700 0.0122

k=8 SVD 86.50 675 100396 0.1503 20220 0.0275

Nyström 81.00 1162 186022 0.4742 34380 0.0849

CID 93.00 644 124082 0.0841 19120 0.0149

BinAlpha Accuracy #SV #Train Train CPU #Test Test CPU

k=1 SVD 18.50 12406 16433484 13.589 3481488 2.1592

Nyström 14.91 12607 18775496 45.030 3537792 6.8047

CID 52.55 11574 17083114 1.150 3248496 0.220

k=4 SVD 37.18 11877 9665811 14.771 3333816 5.9979

Nyström 24.28 12198 14881034 35.554 3423024 7.2677

CID 62.11 8365 9601854 2.510 2347848 1.5901

k=8 SVD 59.84 11137 8467153 14.547 3126096 4.157

Nyström 42.73 11556 10466382 28.136 3243528 7.668

CID 64.38 9334 12096700 2.201 2619792 0.770

AT&T Accuracy #SV #Train Train CPU #Test Test CPU

k=1 SVD 39.00 3546 1120752 0.7608 283680 0.0666

Nyström 32.75 3427 956909 1.9241 274160 0.5639

CID 67.50 3481 1732176 0.1170 278480 0.0188

k=4 SVD 75.75 3021 783686 1.2742 241680 0.1931

Nyström 58.50 3194 941741 2.3007 255520 0.7319

CID 80.25 3600 2667600 0.680 288000 0.0195

k=8 SVD 95.50 3141 906251 1.2203 251280 0.2401

Nyström 86.75 3116 900857 2.5544 249280 0.6228

CID 97.25 1673 767862 0.5200 133840 0.0907

Table 1: Results of kernel reconstruction and classification using Support Vector Machines at different choices of k on JAFFE,
MNIST, BinAlpha and AT&T. #SV: the total number of support vectors. #Train and #Test : total times of accessing the kernel
in training or testing. TrainCPU and TestCPU: total CPU time (in seconds) of accessing the kernel in training or testing.

[Han and Kanade, 2001] Mei Han and Takeo Kanade. Mul-
tiple motion scene reconstruction from uncalibrated views.
ICCV, 16:163–170, 2001.

[Lee and Seung, 1999] D.D. Lee and H.S. Seung. Learning
the parts of objects with nonnegative matrix factorization.
Nature, 401:788–791, 1999.

[Luo et al., 2009] D. Luo, C. Ding, H. Huang, and T. Li.
Non-negative Laplacian Embedding. In 2009 ICDM,
pages 337–346, 2009.

[Perona et al., 2004] P. Perona, R. Fergus, and F. F. Li.
Learning generative visual models from few training ex-
amples: An incremental bayesian approach tested on 101
object categories. In Workshop on Generative Model
Based Vision, page 178, 2004.

[Philips et al., 1998] I. Philips, H. Wechsler, J. Huang, and
P. Rauss. The feret database and evaluation procedure for
face recognition algorithms. Image and Vision Computing,
16:295–306, 1998.

[Srebro and Jaakkola, 2003] Nathan Srebro and Tommi
Jaakkola. Weighted low-rank approximations. In ICML,
pages 720–727, 2003.

[Talwalkar et al., 2008] A. Talwalkar, S. Kumar, and
H. Rowley. Large-scale manifold learning. CVPR, 2008.

[Turk and Pentland, 1991] Matthew A. Turk and Alex P.
Pentland. Face recognition using eigenfaces. CVPR, 1991.

[Wang et al., 2001] James Ze Wang, Jia Li, and Gio Wieder-
hold. SIMPLIcity: Semantics-sensitive integrated match-
ing for picture LIbraries. IEEE Trans. Pattern Anal. Mach.
Intell, 23(9):947–963, 2001.

[Williams and Seeger, 2000] Christopher K. I. Williams and
Matthias Seeger. Using the nyström method to speed up
kernel machines. pages 682–688. MIT Press, 2000.

[Zhang et al., 2008] Kai Zhang, Ivor W. Tsang, and James T.
Kwok. Improved nyström low-rank approximation and er-
ror analysis. ICML, pages 1232–1239, 2008.

[Zhang et al., 2009] Li Zhang, Sundeep Vaddadi, Hailin Jin,
and Shree K. Nayar. Multiple view image denoising.
CVPR, 2009.

1389

