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Abstract

In this paper, we propose the new Ball Rank-
ing Machines (BRMs) to address the supervised
ranking problems. In previous work, supervised
ranking methods have been successfully applied in
various information retrieval tasks. Among these
methodologies, the Ranking Support Vector Ma-
chines (Rank SVMs) are well investigated. How-
ever, one major fact limiting their applications is
that Ranking SVMs need optimize a margin-based
objective function over all possible document pairs
within all queries on the training set. In conse-
quence, Ranking SVMs need select a large num-
ber of support vectors among a huge number of
support vector candidates. This paper introduces
a new model of of Ranking SVMs and develops an
efficient approximation algorithm, which decreases
the training time and generates much fewer support
vectors. Empirical studies on synthetic data and
content-based image/video retrieval data show that
our method is comparable to Ranking SVMs in ac-
curacy, but use much fewer ranking support vectors
and significantly less training time.

1 Introduction

In history of Support Vector Machines (SVMs) research,
many original models and variants have been well studied
and have attracted impacts from various areas, including clas-
sification [Vapnik, 1995], clustering [Xu and Schuurmans,
2005], and ranking [Herbrich et al., 1999]. In this paper, we
focus on ranking which is central issue of many applications,
such as content based image/video retrieval, collaborative fil-
tering, expert search, anti web spam, sentiment analysis, etc.
However, the volume of multimedia content and user data is
increasing in exponential pattern on the internet. For exam-
ple, there have been over 500 million users on Facebook.com,
spending over 700 billion minutes per month, generating over
900 million objects that people interact with (pages, groups,
events and community pages) and huge amount of other con-
tent in various formats 1. How to efficiently perform machine

1http://www.facebook.com/press/info.php?statistics

learning tasks on such heavily accumulated data is a chal-
lenging problem. In this paper, we try to take an ambitious
step on the problem of supervised ranking with large scale
content-based multimedia retrieval.

Supervised ranking, taking image (or key frames of videos)
retrieval for example, is a task as follows. Assume that there
is a collection of images. In retrieval (i.e., ranking), given a
query, the ranking function assigns a score to each image in
a database, and ranks the images in descending order of the
scores. The ranking order represents the relevance of images
with respect to the query. In learning, a number of queries
are provided; each query is associated with a ranking list of
images; a ranking function is then created using the training
data, such that the model can precisely predict the ranking
lists in the training data. Due to its importance, supervised
ranking has been drawing broad attention in the multimedia
community recently. Several methods based on what we call
the pairwise approach have been developed and successfully
applied to image/video retrieval. This approach takes data
pairs as instances in learning, and formalizes the problem of
supervised ranking as that of classification. Specifically, in
learning it collects data pairs from the ranking lists, and for
each data pair it assigns a label representing the relative rel-
evance of the two data points. It then trains a classification
model with the labeled data and makes use of the classifica-
tion model in ranking. The uses of Support Vector Machines
(SVMs), Boosting, and Neural Network as the classification
model lead to the methods of Ranking SVMs [Herbrich et
al., 1999], RankBoost [Freund et al., 2003], and RankNet
[Burges et al., 2005]. In this paper, we focus on Ranking
SVMs.

There are several advantages of the pairwise approach.
First, existing methodologies on classification can be directly
applied. Second, the training instances of data pairs can be
easily obtained in certain scenarios [Joachims, 2002], and
third, the models are much reliable and robust since the pair-
wise relationships bring rich redundant information (even
some of the pairs are ranked incorrectly, the final results often
remain corrected by the other pairs). However, the pairwise
approach also limits the application of Ranking SVMs in the
sense that it generates (1) a huge number of possible pairs
and (2) a large number of support vectors remain in the rank-
ing models. For example, if there are 1000 referent images
and 1000 irreverent images within a single query, there are
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1000,000 pairs which need to be considered in the training
process of the ranking machine. Such a huge number of pairs
also make the trained ranking model very complex which hin-
ders Ranking SVMs from responding an online query in a
reasonable time since the number of support vectors is a crit-
ical element in the prediction of SVMs.

To tackle this challenge, this paper presents a novel ob-
jective function of Ranking SVMs and develop an efficient
algorithm to optimize the presented objective function, ac-
cording to the idea of core set approximation of Support Vec-
tor Machines. The dual form or our Ranking Machines (Ball
Ranking Machines) can be formalized as Minimum Enclos-
ing Ball (MEB) problem. Our efficient raking machine algo-
rithm is much less expensive in computation complexity and
generates much fewer support vectors. Empirical studies on
both synthetic data, content-based image/video retrieval data
show that our method is comparable with Ranking SVMs in
accuracy, but uses much fewer ranking support vectors and
significantly less training time.

One should notice that in [Tsang et al., 2007], the authors
also released the options for ranking their source codes, but
the ranking is just a variant of regression, and not based on the
pairwise approach and our approach is totally different from
theirs.

2 Ranking SVMs

In this section, we first begin our discussion with a brief in-
troduction of the ranking SVMs and related work. And in
next section we will present our version of the ranking SVM
model and develop a novel algorithm to solve the related op-
timization problems.

In classification problems, the SVMs [Vapnik, 1995] are
considered as one of the state-of-the-art approaches which
offers relatively robust and accurate results among all well-
known algorithms. Ranking SVM is a variant of SVM which
addresses the supervised ranking problem [Joachims, 2002].
In Ranking SVMs, given a query q the document d are ranked
using linear ranking function as,

Fw(q, d) = wT f(q, d) (1)

where f(q, d) is a feature vector which describes the matching
between query q and document d such as in the description-
oriented retrieval approach of Fuhr et al. [Fuhr, 1989], and
w is the model parameters which needs to be determined by
learning. As a pairwise method, the ranking SVM aims to
satisfy:

Fw(qk, di) > Fw(qk, dj), ∀(qk, di, dj) ∈ Ω (2)

where Ω is defined as Ω = {(q, di, dj) : document di is more
relevant to query q than dj }. This suggests that in the ranking
model, we want to use Fw(q, d) to represent how much the
document matches the query.

As a maximum margin method, the model of ranking
SVMs is represented by the following optimization problem:

min
w

1

2
‖w‖2 + Cξω (3)

s.t. Fw(qk, di)− Fw(qk, dj) ≥ 1− ξω,

∀ω = (qk, di, dj) ∈ Ω
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Figure 1: Ranking function by Gaussian kernel Ranking
SVM.

In the rest of the paper, ω denotes the index of all the triples
(qk, di, dj) ∈ Ω.

Ranking SVMs enjoy the following properties: (1) The op-
timization problem is convex, thus we are guaranteed to ob-
tain a unique global solution. (2) Kernel trick is allowed such
that non-linear ranking can be obtained.

Fig. 1 shows a ranking function on a toy dataset using
Gaussian kernel ranking SVM. In this cases, we have three
levels of relevance for queries: high, middle, and low. From
the figure, we can see that the non-linear ranking function
ranks the objects in reasonable orders.

Notice that here the size of Ω is usually very large, since
that for each query q, we have to consider all the possible
pairs of di, dj in all relevance levels. Unfortunately, the worse

case of the training complexity of ranking SVMs is |Ω|3,
and in practical applications, the complexity is approximately
|Ω|2.3. This difficulty makes ranking SVMs almost impracti-
cal in real world applications.

3 Ball Ranking Machine

In this section, we present a new model of ranking SVMs
which is a variant of the model defined in Eq. (3). The rea-
son why we modify Eq. (3) is that after our modification, the
dual problem is equivalent to a well studied problem (called
Minimal Enclosing Ball problem), which can be solved very
efficiently. Instead of solving the prime problem of Eq. (3) or
its dual, we solve the corresponding Minimal Enclosing Ball
problem.

3.1 Ranking Model

We propose a new version of Ranking SVMs, named Ball
Ranking Machine, which is guaranteed to generate sparse so-
lution in the dual form problem. Instead of solving Problem
(3), we solve

min
w

1

2
‖w‖2 − ρ+ Cξ2

ω (4)

s.t. Fw(qk, di)− Fw(qk, pj) ≥ ρ− ξω,

∀ω = (qk, di, dj) ∈ Ω
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The corresponding dual is,

max
α

−αTHα, (5)

s.t. αT1 = 1, α ≥ 0,

where

Hωω′

= (f(qk, di)− f(qk, dj))
T (

f(q′k, d
′
i)− f(q′k, d

′
j)
)
+

δ(ω, ω′)
C

,

(6)

ω = (qk, di, dj) ∈ Ω, ω′ = (q′k, d
′
i, d

′
j) ∈ Ω, and δ(ω, ω′) is

1 if ω = ω′, 0 for other case.
Assume that α is the optimal solution of Eq. (5), then given

a query q and a document d, the final ranking function is

Fw(q, d) = wT f(q, d)

=

|Ω|∑
ω=1

αω (f(qk, di)− f(qk, dj))
T
f(q, d)

Here we should notice that the size of the H is huge, even
for some medium size training data. The total number of
variables in H is (Qn2)2 = Q2n4, and the total number
of optimization variables is Qn2, which is almost impossi-
ble to handle. However, we also know that the solution of
Eq. (5) should be very sparse, i.e. most of the values of αi

should be zeros, i = 1, 2, · · · , Qn2. Notice that typical SVM
implementations have a training time complexity that scales
is around O(m2.3) where m is the number of dual variables
[Platt, 1999]. The main purpose of this paper is to develop an
efficient approach to optimize the problem in Eq. (5).

3.2 Optimization

The major reason one can avoid the large scale optimization
is that most of the optimization variables are not involved in
the final optimal solution, (simply because the correspond-
ing dual variable is zero, which does not contribute to the
objective function in Eq. (5)). However, for most optimiza-
tion techniques, we can determine whether one variable is in-
volved in the optimal solution only after we obtain the global
solution. In contrast, our solution determines it at the very be-
ginning stage and avoid the complex optimization procedure
over all the optimization variables.

Given m data points in Euclidean spaces X =
[x1,x2, · · · ,xm] and consider the following problem,

min
c,r

r2,

s.t. ‖c− xi‖ ≤ r, i = 1, 2, · · · ,m. (7)

One can easily check that the dual problem of Eq. (7) is

max
α

m∑
i=1

αix
T
i xi −

m∑
i,j=1

αiαjx
T
i xj ,

= αTdiagK − αTKα

s.t. αT1 = 1, α ≥ 0. (8)

where

c =
∑
i

αixi, r =
√
αTdiagK − αTKα, (9)

and K is a m × m matrix such that Kij = xT
i xj and

diagK = [K11, K22, · · · , Kmm]T . By comparing Eq. (8)
and Eq. (5), we see that they are almost identical.

In this paper, our main purpose is to convert problem
Eq. (5) to problem Eq. (8) then equivalently solve Eq. (7)
which can be solved very efficiently by approximation. To do
so, we let

xω =

(
f(qk, di)− f(qk, dj)

eω√
C

)
, (10)

where eω is an |Ω|-dimensional column vector in which all
elements are zeros except that the position at ω is 1. Then one
can easily show that K = H where K and H are defined as
in Eq. (8) and Eq. (5), respectively. If αTdiagK in Eq. (8) is
a constant, respective to α, Eq. (8) and Eq. (5) are equivalent.

Now consider a kernel version of Problem (5) where

Hωω′

=k
(
(f(qk, di)− f(qk, dj), f(q

′
k, d

′
i)− f(q′k, d

′
j)
)

+
δ(ω, ω′)

C
.

(11)

and k(u, v) is a kernel function such that k(u, v) is a con-
stant if u = v. Fortunately this constraint is satisfied in most
of the real world application [Tsang et al., 2005]. A simple
and widely used example is the Gaussian kernel: k(u, v) =
exp (−‖u− v‖2/σ2). We define xω as,

xω =

(
φ(qk, di)− φ(qk, dj)

eω√
C

)
(12)

where φ(·) is the kernel mapping function which defines the
kernel k(·, ·): k(u, v) = 〈φ(u), φ(v)〉. Then we have the
following theorem,

Theorem 3.1 With Eq. (12), problems of Eq. (8) and (5) are
equivalent.

3.3 Rank Function via MEB Solution

Eq. (7) is a minimum enclosing ball (MEB) problem, which
have been studied well in literacy [Badoiu and Clarkson,
2008; Welzl, 1991; Fischer and Gartner, 2003; Fischer et al.,
2003]. In the previous discussion, the complexity analysis
suggests that exact MEB solution is expensive and is not nec-
essary. Thus here we employ an approximate solver of MEB
problem which is similar with paper [Badoiu and Clarkson,
2008] or [Tsang et al., 2005].

By employing Theorem 2.2 in paper [Badoiu and Clarkson,
2008], a MEB problem can be solved approximately by the
following,

(0) Initiate a set of support set S0 and a center c0, S ←
S0, c ← c0 .

(1) Solve Eq. (8) on S, let (cS, r) be the optimal solution.
(2) c ← cS, let x∞ be the data point which is the furthest

to c,
(3) If all the data points are in the ball (c, (1 + ε)r) then

terminate the algorithm and output c, else S = {S, x∞}, and
go to (1).

In step (1), the cS is computed by cS =
∑

ω∈S
αωxω . In

general case of kernel representation, xi can not be explicitly
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computed. Yet, we can still compute the distance between cS

and any data points xω′ . Notice that x is defined in Eq. (12),
thus for any x,

‖x‖ =

√
‖φki − φkj‖2 + ‖ eω√

C
‖2 =

√
2− 2〈φki, φkj〉+ 1

C
,

where φki = φ(qk, di) and φki = φ(qk, dj). Then

‖cS − xω′‖2

= ‖cS‖2 − 2
∑
ω

〈xω ,xω′〉+ ‖xω′‖2

= ‖cS‖2 − 2(αH)ω′ + 2− 2〈φki, φkj〉+ 1

C
(13)

where ω = (i, j, k), ω′ = (i′, j′, k′) and H is defined in
Eq. (11). Now all the terms in Eq. (13) can be computed
directly given the kernel function k(·, ·).

The output of the above algorithm is c∗ and R∗, then cS is
only

c∗ =

|Ω|∑
ω=1

αω

(
φ(qk, di)− φ(qk, dj)

eω√
C

)
(14)

and

R∗ =
√
αTdiagH − αTHα.

We summarize the Ball Ranking Machine in Algorithm 1.

Algorithm 1 Ball Ranking Machine Algorithm.

Input
All query-document pair (q, d)i, i = 1, 2, ...N , feature map f ,
kernel function k.
for each query qk

for each document-pair (di, dj)
compute f(q,dj), f(qk, dj).

end for
end for
Construct problem in Eq. (8) using Eq. (12).
Find c and R by MEB solver.
Output

Ranking function F (q, d) = cTφ(q, d).

The solution of c is represented as a linear combination
of a subset of the training triples (qk, di, dj). This subset is
called as core set. This is similar with support vectors in
SVMs. In our experiments, by support vectors we mean the
triples in this core set. Suppose C = [ω1, · · · , ωs] is the core
set where s is the size of the core set, and the corresponding
combination coefficients are α1, · · · , αs, then the final rank-
ing function can be written as

F (q, d) =
∑
ω∈C

αω〈φ(q, d), φ(qk , di)− φ(qk, dj)〉,

where ω is the index of the triple (qk, di, dj).
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Figure 2: Query-document features of the synthetic data used
in our experiments. Three different symbols denotes three
level of irrelevance. Within the same level the features are
generated by standard unit Gaussian.

4 Empirical Evaluation

We validate the efficiency of BRMs in three different types of
applications: (1) synthetic data ranking, (2) image retrieval,
and (3) video retrieval. We compare BRMs with the tradition
ranking SVMs in three measurements: training time, number
of support vectors, and prediction accuracy.

4.1 Datasets

Synthetic data. We randomly generate 20 query and for each
query we generate 100 high relevant, 100 low relevant, and
100 irrelevant documents. For each query-document pair, we
draw a two-dimension feature space from unit Gaussian mix-
tures. For the same level of relevance, the feature are drawn
under the same center of the Gaussian (see Fig. 2).
WANG’s dataset is a set of photos which contain 10 cat-
egories (Africa, Bench, Buildings, Buses, Dinosaurs, Ele-
phants, Flowers, Houses, Mountains, and Food) and 100 im-
ages for each category [Wang et al., 2001].
TRECVID 2005 is for video retrieval [Smeaton et al., 2006].
We construct video sequences as following. We choose the
shots in which there are at least 5 sub-shot key frames and
select the first 5 key frames to form the sequence. In order
to make a convenient evaluation, we ignore the shots which
are not labeled in the ground-truth data. Finally we generate
347 video sequences for 10 topics. Here we use videos (key
frames) as a ranking objects.

4.2 Experimental Settings

For the synthetic dataset, the query-document features are
generated randomly. For WANG’s dataset, we use color and
shape features. For color features, we use color histograms
and for shape features, we first detect the edge on 16 direc-
tions and use the number of pixels on the edge as features.
For TRECVID 2005, we put all the 5 key frames together to
form a 40 × 40 × 5 three dimensional tensor for each video.
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Figure 3: Training time (left) and number of support vectors (right) used by Ranking SVMs and BRMs in synthetic data(top),
WANG’s image dataset (middle), and TRECVID 2005 (bottom).

Then employ D−1 Orthogonal Tensor Decomposition to ex-
tract features [Ding et al., 2008]. We compress a video to a
5 × 5 × 4 tensor and reshape compressed tensor to a single
column as features (which is a 100 × 1 vector). For all the
datasets, we use Gaussian kernels.

For Ranking SVMs, we use the package in SVM
light [Joachims, 1999], which can be downloaded at
http://svmlight.joachims.org/.

4.3 Experimental Results and Discussions

We first evaluate the training efficiency of BRMs compar-
ing to Ranking SVMs. We choose different sizes of subset
of the data as training data. For Ranking SVMs, we use
the default parameters. For BRMs, we try three different
ε : [0.0001, 0.001.0.01]. The parameter ε is explained in
[Tsang et al., 2007]. Results are shown in the left part of
Fig. 3. Notice that the time computing ranking function is
linear to the number of support vectors which are also com-
pared in the right part of Fig. 3. From the figures, we can
see that our new method is significantly faster than Ranking
SVMs and uses much fewer support vectors.

Since our algorithm is an approximation of Ranking SVM,
we are also interested in how much accuracy our approach
may lose. In this experiment, we use two fold cross-validation
and set ε = 0.001 for our method. We compare the Nor-

malized Discounted Cumulative Gain (NDCG) which is a
standard measurement in retrieval [Jarvelin, Kalervo and
Kekalainen, Jaana, 2000]. Results are shown in Fig. 4. In
our experiments, BRMs are comparable with, and sometimes
better than Rank SVMs. We believe that the reason of the bet-
ter performance might benefit from lower number of support
vectors, which suggests lower level of model complexity and
less overfitting to the training data.

5 Conclusions
Among all variations of SVMs, Ranking SVMs are the most
expensive one which heavily requires new efficient optimiza-
tion techniques. This paper proposed a Ball Ranking Ma-
chine to address the supervised ranking problem with much
lower computational cost. We reformulate the objective func-
tion of Ranking SVM to a Minimum Enclosing Ball problem,
which can be solved in an efficient way. Our new approach
is applied to both image and video retrieval tasks. Empirical
studies show that Ball Ranking Machine outperforms Rank-
ing SVM significantly in terms of training time complexity
and the number of support vectors without losing accuracy.
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Figure 4: NDCG comparison of Ranking SVM and Ball Ranking Machine on synthetic data (top), WANG (middle), and
TRECVID 2005 (bottom). For the WANG data set, Ball Ranking Machines are comparable with Ranking SVMs, for the
synthetic data and TRECVID 2005 data sets, our method outperforms Ranking SVMs.
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