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Abstract

An elegant approach to learning temporal order-
ings from texts is to formulate this problem as
a constraint optimization problem, which can be
then given an exact solution using Integer Linear
Programming. This works well for cases where
the number of possible relations between temporal
entities is restricted to the mere precedence rela-
tion [Bramsen et al., 2006; Chambers and Jurafsky,
2008], but becomes impractical when considering
all possible interval relations. This paper proposes
two innovations, inspired from work on temporal
reasoning, that control this combinatorial blow-up,
therefore rendering an exact ILP inference viable
in the general case. First, we translate our network
of constraints from temporal intervals to their end-
points, to handle a drastically smaller set of con-
straints, while preserving the same temporal infor-
mation. Second, we show that additional efficiency
is gained by enforcing coherence on particular sub-
sets of the entire temporal graphs. We evaluate
these innovations through various experiments on
TimeBank 1.2, and compare our ILP formulations
with various baselines and oracle systems.

1 Introduction

Learning the temporal ordering over events, dates and other
temporal entities in a text consists in finding a set of temporal
relations (precedence, inclusion, etc.) between these entities.
This task is an important aspect of discourse understanding
and its automation has potential applications (e.g., discourse
parsing, text summarization, information extraction).
An important challenge of this task is that temporal relations
carry algebraic properties reflecting the linear structure of
time (e.g., the transitivity of precedence and inclusion) which
make the determination of the temporal relations between en-
tity pairs strongly interdependent. While prior work acknowl-
edges this, most recent approaches to temporal ordering as-
sume a fairly idealized setting, wherein [Mani et al., 2006]:

a. the pairs of entities to be related by the system have been
pre-selected by an oracle

b. each of these pairs are labeled independently by a
locally-trained classifier

Predicting temporal relations this way (even under assump-
tion (a)) runs the risk of producing structures that are inco-
herent at the level of the text, which are of little applicative
use (especially, if further reasoning is performed on them).
There are a few exceptions to this methodology [Bramsen et
al., 2006; Tatu and Srikanth, 2008; Chambers and Jurafsky,
2008]. These approaches directly exploit the inferential prop-
erties of the temporal relations to constrain the classifier de-
cisions in a way that ensures overall coherence. Specifically,
the following scenario is assumed: (i) learn a soft classifier
which outputs a score for each local pair and relation and (ii)
combine these local preferences with coherence constraints
on the temporal graph within a global optimization problem.
Both exact and approximated inference schemes have been
investigated for the second step. To perform exact inference,
[Bramsen et al., 2006; Chambers and Jurafsky, 2008] propose
to use Integer Linear Programming (ILP). This framework
has interesting properties: temporal constraints can be en-
coded in a declarative fashion and efficient solvers are avail-
able off-the-shelf. Moreover, ILP has been shown to outper-
form greedy inference algorithms on this task [Bramsen et al.,
2006].
An important restriction used in both papers is to consider
only the strict precedence relation (i.e., before, after). This re-
striction guarantees formulations that remain manageable by
current solvers, but at the expense of expressiveness. Many
situations described in texts (e.g., inclusion, overlap) cannot
be represented with precedence alone, and it is not clear how
this restriction can be mixed with later generalizations.
The standardized TimeML annotation [Pustejovsky et al.,
2005] has indeed 12 relations, the interval algebra of [Allen,
1983] has 13, with more complex interactions that can lead
to increased combinatorial complexity. Being an NP-hard
problem, inference in ILP is highly sensitive to the number
of variables and constraints used to represent our problem. In
the general case these numbers are both exponential in the
number of temporal relations that are used.
In this paper, we explore another strategy that circumvents the
complexity problem but in a way that preserves all the infor-
mation provided by annotations. First, we re-express the net-
work of temporal constraints on intervals into constraints on
their endpoints (i.e., from 13 to 3 simple relations), thus dra-
matically reducing the number of variables and constraints.
Crucially, this conversion leads to a much simpler optimiza-
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tion problem and the result of the optimization can be “un-
packed” without loss of information. Second, we decompose
the set of temporal entities in “meaningful” sub-graphs and
maintain coherence only within these substructures.
We report on two main sets of experiments on the TimeBank
dataset and confirm that the ILP strategy performs well on the
task of predicting consistent relations from a local classifier,
both when the relevant event pairs are known in advance and
when they aren’t. Our contribution is thus two-fold: we show
how to generalize ILP for temporal prediction with the full
set of relations used in available annotations, and we provide
the first attempt at solving the task without any of the relaxed
constraints assumed in prior work.
The rest of the paper is organized as follows. Section 2
presents the context of this study (data, representations, re-
lated work). Section 3 details our translation of the problem
into point representations using ILP, and Section 4 develops
our methods for decomposing the global temporal problem.
Finally we discuss our experiments and results in Section 5.

2 Background

The problem of constructing temporal structures from texts
is illustrated on a small, slightly simplified example from the
Aquaint TimeML corpus:

President Joseph Estrada on Tuesdayt4

condemnede1 the bombingse5 of the U.S. em-

bassies in Kenya and Tanzania and offerede12

condolences to the victims. [...] In all, the
bombingse10 last weekt5 claimede4 at least 217

lives.

The fully specified temporal graph for this document is given
in Figure 1 with the 5 original human annotated links (in light
shade) and a relation between dates based on a simple calcu-
lation from the annotation (in dark shade); it is augmented
with the 6 relations (or 17 if we include inverses) that can be
inferred from it.

t5 t4

e12

e5e4

e1
b

d

b

b

b

d

b

b

d

b

b

b

Figure 1: The full temporal graph for the Aquaint excerpt.
Labels b and d stand for before and during.

The graph exhibits 3 different types of relations: event-event
(E-E, solid lines) relations, event-time (E-T, dashed) rela-
tions, and time-time (T-T, dotted) relations. In line with pre-
vious work, our focus will be on predicting E-E relations, but
we will however make use of E-T and T-T information to en-
sure global coherence (more on this in Section 5).

2.1 Data and representation

Most recent research efforts on temporal processing have
been based on TimeBank.1 This corpus (version 1.2) contains
186 news report documents collected from the DUC and ACE
evaluation campaigns, annotated using the TimeML standard
for tagging events (and states) and time expressions (timex for
short), including dates and durations, and their temporal re-
lations (called tlinks). There are 11 types of relation, whose
semantics is similar to the well known Allen relations on in-
tervals [Allen, 1983], excluding the overlap relation and its
inverse. Allen relations defines all possible ways of relat-
ing two intervals according to all possible orderings of their
endpoints. The distribution of these relations on E-E pairs is
summarized in Table 1, with Allen and TimeML names. This
table includes the additional E-E relation instances proposed
by [Bethard et al., 2007].
The “Base” column lists the relations annotated in the corpus,
while the “Sat.” column lists the relations that can be deduced
from the annotations with the proper inference procedure (or
“saturation”) explained below. We also added relations be-
tween dates that are implicit because of the values put by the
annotator (in the example, t4 had the value 1998-08-11
and t5 1998-08-04). Combined with other E-T and E-E
relations, these generate also new E-E relations. Each rela-
tion has an inverse relation (not shown in the table) except
equals. The majority class in each case (28 and 37%) is thus
based on twice as many relations.

Allen TimeML Base (28%) Sat. (37%)

b(efore) before 785 12053
e(quals) simul., ident. 1666 2462
d(uring) during,incl’ed 370 1303
f(inish) ends 43 82
s(tart) begins 41 72
m(eet) ibefore 39 78
o(verlap) n/a 0 1

Table 1: Event-Event relation distribution in TimeBank 1.2,
before and after saturation, with % for the majority class.

In order to make explicit the relations that are implicit in hu-
man annotated corpora, a procedure is needed to combine the
already existing information in the most precise way. Ini-
tially, authors have relied on composition rules for simple re-
lations only but turned to more general models dedicated to
temporal reasoning [Verhagen, 2005]. The most appropriate
in the context of annotation of event relation is the interval
algebra of [Allen, 1983], as TimeML relations have the same
semantics as a subset of Allen relations. A relation algebra
defines a calculus on a set of base relations and any disjunc-
tions of these relations, with union and intersection operators
on disjunctions, and a composition of relations. Knowing re-
lations between (x,y) and (y,z), one can compose them to add
constraints on the relation bearing on (x,z), only using a ta-
ble of composition of the 13 base relations, union and inter-
section. Applying this to all possible triplets of relation of a
graph of temporal constraints is known as path-consistency

1http://timeml.org/site/timebank/
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checking, and can enrich a representation as seen Table 1,
but can also detect an inconsistent set of constraints, which
is crucial in the context of relation prediction. In the general
case, path-consistency checking is correct but not complete:
some inconsistent configurations cannot be detected that way.
Fortunately, in the case of human temporal annotations, only
simple relations are initially present, and their compositions
generate a sub-algebra of so-called ”convex” relations over
which path-consistency is complete [Van Beek, 1990].

2.2 Evaluation

The evaluation methodology of studies that consider relations
independently is simply to estimate the accuracy of the clas-
sifier on the annotated event pairs. To take coherence into ac-
count and address the problem at the text level, the evaluation
must also consider the whole graph of E-E pairs, including
relations that can be inferred from the reference. In the ex-
ample, it means we must provide an answer for the relation
e5 < e1, which was not annotated but can be inferred from
the annotation. The methodology followed in [Mani et al.,
2006] is to propagate constraints in the graph and evaluate
system and reference with respect to all the event pairs that
end up related with a simple TimeML relation in the refer-
ence and the system, yielding precision and recall scores. In
a global setting, a more complete methodology should also
evaluate the consistency of the graphs produced.

2.3 Previous work

Research on temporal ordering has a long history in NLP.
Early work was mainly concerned with the study of language
mechanisms and information sources (such as tense, aspect,
lexical semantics, rhetorical relations) that impact temporal
ordering. The recent availability of annotated ressources like
the TimeBank corpus, and the organization of two TempEval
campaigns, has revived interest in temporal processing and
triggered a shift to machine learning techniques. The standard
tasks include the detection of events and timex, the anchor-
ing of events to times, and the ordering of events restricted
to selected contexts (sentences/consecutive sentences) [Ver-
hagen et al., 2010] or document-wide [Mani et al., 2006].
Even when they address the task of event ordering at the doc-
ument level, researchers simplify the problem to allow for
the straightforward application of classification techniques.
Thus, most research have focused on the task of indepen-
dently predicting the correct relation for pre-selected pairs of
events, explicitly in the human annotations. Going back to
our example, this means only predicting for the unique E-E
pair (e5, e12). It is furthermore usually assumed that the E-E
pair is already ordered (i.e., (e5, e12) is a decision point, but
(e12, e5) is not), thus reducing the number of possible relation
labels from 13 to 6 [Mani et al., 2006]. Temporal reasoning
is sometimes invoked, but only during training and only to
expand the pool of pair examples. [Mani et al., 2006] use this
resampling technique and report an accuracy score of 93.1%
(62.5% without resampling) for the 6-way classification task.
The majority class (i.e., before) baseline in this case is 75.2%
(51.6% without resampling). An obvious shortcoming of this
“local” approach is that it ignores the algebraic properties of

temporal relations at prediction time, and does not guaran-
tee the coherence of the event graph at the document level.
We will see in Section 5 that most structures predicted this
way are incoherent, therefore useless for downstream applica-
tions. More recently, various attempts have been made at pre-
dicting globally coherent structures. These approaches still
rely on a locally-trained classifier but they use the algebraic
properties of relations as constraints during inference. For
example, [Tatu and Srikanth, 2008] propose a greedy search
procedure with backtracking that is applied to a graph of
events, in which the pairs are set to the reference pairs. In an-
other context, [Bramsen et al., 2006] describe various other
greedy inference schemes. Finally, [Bramsen et al., 2006;
Chambers and Jurafsky, 2008] reformulate the problem of
“decoding” a temporal graph under coherence constraints as a
global optimization problem that can solved exactly with in-
teger programming. Importantly, both papers use a small sub-
set of the TimeML relations: only strict precedence relations
(before, after). This has a clear advantage from a combinato-
rial perspective: by reducing the number of relations from 13
to 2, they manage to obtain ILP formulations that have a rea-
sonable number of variables and constraints, at the expense
of expressiveness. Chambers and Jurafsky [Chambers and
Jurafsky, 2008]’s global model provides accuracy gains over
the local classifier alone (from 66.8% to 70.4%), on the satu-
rated gold event graph. But these improvements are partly ob-
tained thanks to additional constraints derived from the gold
(namely, all the E-T and T-T relations, which they saturated
and supplemented with their automatically computed T-Ts).
So it is unclear where these improvements come from be-
tween the global optimization and the E-T/T-T oracle. We
will check this in our own experiments by directly measur-
ing the peformance of this oracle. The approach proposed by
[Bramsen et al., 2006] is similar to [Chambers and Jurafsky,
2008], but its scope is different. They consider the task of
ordering entire paragraphs (from the biomedical domain), so
that the number of entities to relate is much smaller (they re-
port 20 segments on average), but do not assume the reference
pairs and are closer to the global task. Another related work
is [Yoshikawa et al., 2009], who also adopt a global approach
that uses Markov Logic (instead of ILP) to jointly predict E-
T and E-E relations (but only between entities appearing in
consecutive sentences).
It should be clear that trying to generalize the approach of
[Chambers and Jurafsky, 2008] to the full interval algebra
is going to create an important combinatorial explosion both
in terms of the number of variables and the number of con-
straints needed to represent the problem. In order to general-
ize to all TimeML relations, one has to consider every “gen-
eralized” relation and their combinations. The composition
of any generalized relation, as we just saw, requires a specifi-
cation of the 13× 13 base compositions. The number of pos-
sible relations between two events is in general 213 = 8192,
and 82 if one only considers convex relations. This translates
into a minimum of 82 ∗ n2 LP variables (for n entities), and
822 ∗n3 constraints (for relation compositions alone); that is,
8200 variables and close to 7 million constraints for just 10
entities. Section 3 comes back in detail on these aspects, but
it is important to note that disjunctive information is crucial
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for the checking of the consistency of predictions.

3 A global model over endpoints

Section 2 indicated that the global inference strategy used by
[Bramsen et al., 2006] and [Chambers and Jurafsky, 2008] is
not likely to scale up when considering the full set of tempo-
ral relations in the TimeBank. This section proposes a simple
solution to control this combinatorial complexity: to reformu-
late the optimization problem into a simpler yet semantically
equivalent form by using the conversion between interval and
interval endpoints.

3.1 Events and event endpoints

As for intervals, one can define an algebra on interval end-
points or Point Algebra (PA) [Vilain et al., 1990]. By relying
on a smaller relation set (and also fewer possible composi-
tions), this algebra is better suited for inference purposes in
our context. While there are 13 possible base relations on
intervals, there are only 3 base relations (and only 7 when
considering all the possible disjunctions). The basic relations
are noted ≺, �, and =. The disjunctions are noted �, �, ≺�,
and the general disjunction {≺,=,�}, meaning no informa-
tion is known (“vague”). We will use only 5 of these, since
the vague relation is implied in absence of a more specific
information, and ≺� is impossible when we start with only
basic (precise) relations on points. Translations from or into
PA indeed preserve the convex property, and path-consistency
is thus complete for the translation of a convex graph into PA.
The resulting compositions are listed in Table 2; a blank indi-
cates the result is the vague relation so this composition needs
not be expressed. There are now only 17 constraints resulting
from compositions for each event pair. Once the composition

◦ ≺ � � � =
≺ ≺ ≺ ≺
� ≺ � �
� � � �
� � � �
= ≺ � � � =

Allen order/endpoints
b (≺,≺,≺,≺)
m (≺,=,≺,≺)
o (≺,�,≺,≺)
s (=,�,≺,≺)
d (�,�,≺,≺)
f (�,�,≺,=)

Table 2: Composition of point relations (left) and correspon-
dence events/points (right).

constraints are taken into account, we can translate back to a
set of constraints on events. For each event pair (e1, e2), we
consider the four relations between their endpoints , (e−1 , e

−
2 ),

(e+1 , e
−
2 ), (e

−
1 , e

+
2 ), (e

+
1 , e

+
2 ) shown Table 2. If these rela-

tions are all specified and non disjunctive, it translates as a
unique Allen base relation. If the point relations are dis-
junctive, the translation is the disjunction of all the transla-
tions obtained by distributing the point disjunctions: e.g. the
four relations (�,�,≺,≺) correspond to the two possibilities
(≺,�,≺,≺), (=,�,≺,≺), translated as overlaps or starts.

3.2 ILP formulation

We detail here the encoding of global constraints on events
in Integer Linear Programming. ILP solves constraints while
optimizing an objective function, a linear combination of a

set of weighted variables. In our case, these variables cor-
respond to triples (r, p, q), where p and q are endpoints, and
r a possible relation over them. The weights on those vari-
ables, noted c(r,p,q), are derived from the classifier scores (on
event pairs) by summing over the relevant interval relations
on intervals containing those points. For instance, the score
for {≺, p, q} is obtained by summing the scores for relations
before, meet, duringi, and finishi for the event pairs that in-
cludes p and q as endpoints.
Formally, let P be the set of points resulting from the transla-
tion of events. Let R = {≺,�,=}, and R+ = R ∪ {�,�}.
Let also Inv: R → R be the inverse operator, and Comp:
(R×R) → R the composition operator.
The objective function is defined as:

max
∑

(p,q)∈C

∑

r∈R

c(r,p,q) · x(r,p,q) (1)

x(r,p,q) ∈ {0, 1} ∀〈p, q〉 ∈ P × P, p �= q, ∀r ∈ R+ (2)

Note that for n initial events, there are 2n points, so we end
up with 5 ∗ (2n)2 = 20n2 variables (i.e., 4 times less than
for the equivalent event-based formulation).
We now put the following additional constraints on these inte-
ger variables. For all pairs of points e−i , e

+
i defining the event

ei , we set x(≺,e−i ,e+
i ) = 1 and x(=,e−i ,e+

i ) = x(�,e−i ,e+
i ) = 0.

At most one base relation can hold between 2 points:
∑

r∈R
x(r,p,q) ≤ 1 ∀〈p, q〉 ∈ P × P, p �= q (3)

Disjunctive relations are related to simple relations:

x(≺,p,q) + x(=,p,q) ≤ x(�,p,q) (4)

x(�,p,q) + x(=,p,q) ≤ x(�,p,q) (5)

In case compatible relations x(�,p,q) and x(�,p,q) are sepa-
rately inferred, we must ensure the most specific informa-
tion and incompatible relations cannot be inferred at the same
time, which is achieved with:

x(�,p,q) + x(�,p,q) ≤ x(=,p,q) + 1 (6)

x(�,p,q) + x(�,p,q) ≤ 1 (7)

x(≺,p,q) + x(�,p,q) ≤ 1 (8)

These correspond to the ”intersections” of relations in the al-
gebra. Also, we add symmetry constraints:

x(r,p,q) ≤ x(Inv(r),q,p) ∀r ∈ R+ (9)

x(r,p,q) ≥ x(Inv(r),q,p) ∀r ∈ R+ (10)

Finally, the triangular constraints from Table 2 are,
∀〈p, q, t〉 ∈ P × P × P, p �= q �= t, ∀r1, r2 ∈ R+:

x(r1,p,q) + x(r2,q,t) ≤ x(Comp(r1,r2),p,t) + 1 (11)

These represent the bulk of our constraints: they are in the
order of |P |3×|R+|2, ie 8∗17n3 if n is the number of events
(|P | = 2n). The equivalent generalized (convex) event based
version has 82 ∗ 82n3 constraints, about 50 times more, and
would need a huge additional set of intersective constraints
per edge (vs. 3 in PA).
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4 Graph decomposition

Considering all possible relations on the graph of events puts
a considerable burden on the decoding phase, and the transla-
tion into PA partially addresses this problem. But considering
all possible E-E pairs has also a strong (potentially negative)
impact on the precision of the predictions. As it stands, our
ILP formulation is biased toward predicting simple relations.
This is due to the fact that disjunctive relations are not part
of the objective function (the classifier does not assign them
any score), so disjunctions are only going to be predicted in
cases where none of the base relations produce a coherent
structure. One possible way within ILP to avoid this “over-
zealous” behavior of the system is to add a ”vague” class to
all unrelated event pairs and add them to the training phase,
as in [Chambers and Jurafsky, 2008], but this leads to an over-
representation of the vague relations. Another solution is to
find a decomposition of the temporal graph so as to limit the
decisions to relevant subgroups of events, and predict rela-
tions only within these subgroups. This assumes it is possi-
ble to structure temporal situations into so-called time-frames
that help mental representations. This is in a way the mirror
image of the idea proposed in [Bramsen et al., 2006], where
consecutive events are grouped within large segments, and
relations are predicted between these segments. The decom-
position must be meaningful for that strategy to succeed, and
we must find a way of adding between-groups relation after-
wards. We tried two different decompositions. The first is
based on an observation: human annotations are often scat-
tered, and events appear in separate, smaller, self-connected
components. Using the structural knowledge encoded in the
gold as an oracle, we restrict our constrained prediction strat-
egy to these connected components. No other knowledge
from the gold was considered (in particular, no knowledge
as to which events were related in the gold).
The second decomposition groups events with dates appear-
ing in the same sentence, exploiting the fact that most dates
in TimeBank have determined values. Events located in sen-
tences without dates were arbitrarily attached to the most re-
cently introduced date. We then predict relations within each
subgroup with a consistent prediction; finding relations be-
tween subgroups boils down to finding relations between the
dates they are centered on, and that information is already
available from the extraction phase we assumed, as in the pre-
vious experiments.

5 Experiments

We carried out two main sets of experiments to evaluate our
global ILP model on endpoints. First, we evaluated the bare
model presented in Section 3 on the fully closed reference
event graph, i.e. the graph resulting from saturating all E-E,
E-T, and T-T annotations (including the extra relations from
Bethard, and those obtained by date calculations). Secondly,
we combine the ILP point model with the graph decomposi-
tions described above. All our experiments were performed
using 5-fold cross-validation on the TimeBank 1.2 corpus.
The ILP-based system (ILP) is compared with a number of
other systems: the base classifier without consistency check-
ing, a baseline ordering events in the order of the text (BE-

FORE), a greedy natural reading ordering taking the most
probable relations in sequence (NRO), and an oracle (ZERO-
EE) that provides E-E relations predicted only by saturation
over the E-T and T-T relations we start with. As our base
model, we used a log-linear (aka Maxent) 11-way classifier
trained on the fully closed TimeBank (each E-E pair of the
graph was used as training instance). The feature set relies on
the attributes provided in the TimeBank (event class, tense,
aspect) as in [Mani et al., 2006; Chambers and Jurafsky,
2008]. Parameters were estimated using the Megam package2

under the default settings. For training, the data was sampled
from the TimeBank in a way that mirrors the decompositions;
no resampling was performed for the first experiment. The LP
solver we used is SCIP3, which is currently the fastest non-
commercial mixed integer programming solver. The solver
was timed out after 1 hour or stopped when it reached 2×106

triangular constraints. These cases are reported as inconsis-
tent output in the results. The evaluation is always made w.r.t.
to all simple relations inferrable from the reference annota-
tions. This only makes sense if the resulting reference graph
is consistent, and we thus restricted this evaluation to the 139
texts where this is true (out of 186). We use micro-average to
balance the contributions made by short and long texts.
Results for the first experiment are shown in Table 3. We
report scores in terms of accuracy, since we assume the refer-
ence event graph, to match experiments in [Chambers and Ju-
rafsky, 2008]. The systems also generate different inferences
and produce simple relations on pairs not in the reference,
and this will be evaluated with recall/precision in the context
of the more complete second experiment.
Making zero E-E predictions and assuming only E-T re-
lations (before saturation of the graph) yields an accuracy
of 26%; this is to be considered as the minimum infor-
mation provided before predicting E-E relations. The rela-
tively high accuracy of this oracle method should however
be taken with caution, as it assumes perfect knowledge of
E-T relations, while the best dedicated systems in simpler
settings reach accuracies of 80-90% [Verhagen et al., 2010;
Mani et al., 2006]. We tested that by changing at random 10%
of these assumed relations, a lot of inconsistencies arise and
accuracy drops to 5%. Accuracy here is actually a recall mea-
sure: [Chambers and Jurafsky, 2008] don’t consider predic-
tions made by their system (even if it’s a precise precedence
relation) when the reference does not imply a before/after re-
lation. The importance of this can be seen from the fact that
a simple consistent baseline as BEFORE reaches about 38%
of recall while generating 94% of erroneous predictions. The
consistent NRO fares better on precision (60%), at the ex-
pense of a drop in accuracy on the reference. The base classi-
fier has an accuracy on separate decisions of 60.1% (trained
and tested on saturated data), but 82% of the graph it predicts
are inconsistent. When ILP is used to constrain these pre-
dictions we reach a recall of almost 50%. This is the score
reached by [Tatu and Srikanth, 2008] on the reference predic-
tions where they actually managed to preserve consistency,
and we use the whole set of relations while they have only six.

2http://www.cs.utah.edu/˜hal/megam/
3http://scip.zib.de/
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In a comparable setting but with only two relations, [Cham-
bers and Jurafsky, 2008] reach 70% accuracy.

System ZERO-EE BEFORE NRO ILP

Accuracy 26.01 37.93 20.08 49.80

Table 3: Results on TB, assuming reference event pairs

We now turn to the much harder task of predicting the tempo-
ral structure without pre-selecting event pairs; performance
scores with a decomposition in self-connected maximal com-
ponents are given in Table 4. We repeat BEFORE scores for
clarity, although it is by construction insensitive to the differ-
ent setting (as ZERO-EE).
On the connected component oracle, we can see that NRO
holds its ground even without selecting event pairs, and ILP
benefits the most of the context, even though it times out on a
few texts. We estimated that ILP was practical up to 25 nodes
in a sub-graph. The base classifier predicts 88% inconsistent
graphs here. Results on decomposition around dates are of

System Precision Recall F1-score Inco.

ILP 33.02 54.07 41.00 5.93
NRO 49.98 17.02 25.40 0.00
BEFORE 6.22 37.93 10.69 0.00

Table 4: Decomposition on connected components

course lower since no knowledge of E-E relations is provided.
NRO and ILP are close (respectively 16.3% and 15.0% in F1),
and again ILP has a better recall while NRO has a better pre-
cision. The percentage of inconsistent predictions by ILP is
now up to 8.6%, due to the absence of consistency constraints
between subgroups. This is less than 3% more than the num-
ber of time-outs, an indication that this decomposition is not
too damaging for consistency. Assuming this decomposition
the base classifier produces now 96% of inconsistent graphs.
Our decomposition method is clearly too crude, and can only
serve as a starting point for more elaborate approaches. We
can nonetheless claim that the problem of temporal structure
prediction is doable within this framework, without assuming
anything about E-E relations, or resampling the test environ-
ment. For each experiment, we tested the differences between
ILP and the other methods with a Wilcoxon signed-rank test
over the measures for each text and found high significance
levels (p <10−5 at worst).

6 Conclusion

We have generalized proven strategies for temporal prediction
from a few simple relations to the complete set of relations
used in existing temporally annotated corpora like TimeBank.
We also provide the definition of intermediate steps in the
direction of predicting temporal structures without assuming
too much of the target representation, mainly without assum-
ing the small subset of event pairs to relate among the n2 pos-
sible pairs. This is done by looking at decompositions of the
temporal structure, either using some knowledge about the

gold annotation, or using a basic heuristics, and to the best of
our knowledge the latter is the first attempt at the unrestricted
global task on a significative corpus of texts. It has room for
improvement, since we did not use any linguistic knowledge
about global attachment of temporal entities. Event grouping
could be a relevant subtask for temporal extraction.
The use of point based representations could be pushed fur-
ther in future work to check whether it can also help the learn-
ing phase, by translating the corpus before training. We have
not devoted too much attention to the learning phase here, but
in the context of a global prediction, we could test on the util-
ity of learning to predict not only simple relations (since this
forces a lot of decisions to be made) but also vaguer ones (in
a manner similar to the final experiment of [Chambers and
Jurafsky, 2008]).
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