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Abstract

One of the main research problems in Structural
Bioinformatics is the analysis and prediction of
three-dimensional structures (3-D) of polypeptides
or proteins. The 1990’s Genome projects resulted
in a large increase in the number of protein se-
quences. However, the number of identified 3-D
protein structures has not followed the same trend.
The determination of protein structure is exper-
imentally expensive and time consuming. This
makes scientists largely dependent on computa-
tional methods that can predict correct 3-D protein
structures only from extended and full amino acid
sequences. Several computational methodologies
and algorithms have been proposed as a solution
to the Protein Structure Prediction (PSP) problem.
We briefly describe the Al techniques we have been
used to tackle this problem.

1 Introduction

Currently, one of the main research problems in Structural
Bioinformatics is related to the analysis prediction of three-
dimensional structures (3-D) of polypeptides or proteins [8].
The recent Genome projects resulted in a large increase in the
number of protein sequences. However, the number of iden-
tified 3-D protein structures has not followed the same trend.
Currently, the number of protein sequences is far higher than
the number of known 3-D structures. If we compare the num-
ber of non-redundant sequences of protein sequences (~10.6
million non-redundant on January 2011) stored in the Gen-
Bank [2] with the number of 3-D protein structures with dis-
tinct folds (1,198, SCOP 1.5 on January 2011) stored in the
Protein Data Bank (PDB) [1] we observe that only ~0.01% of
protein sequences are represented in the PDB. Clearly, there
is a large gap between the number of protein sequences we
can generate and the number of new protein folds we can de-
termine by experimental methods such as X-ray diffraction
and NMR. The determination of protein structure is experi-
mentally expensive and time consuming [4]. Therefore, the
use of computational techniques that can predict the correct
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3-D protein structure from only extended and full amino acid
sequences is unavoidable.

Proteins are long sequences of 20 different amino acid
residues that in physiological conditions adopt a unique 3-D
structure. This structure determines the function of the pro-
tein in the cell (structural functions, catalysts in chemical
reactions, transport and storage, regulation, and recognition
control) [9]. A peptide is a molecule composed of two or
more amino acid residues chained by a chemical bond called
the peptide bond. This peptide bond is formed when the car-
boxyl group of one residue reacts with the amino group of
the other residue, thereby releasing a water molecule. Two
or more linked amino acid residues are referred to as a pep-
tide, and larger peptides are generally referred to as polypep-
tides or proteins. A peptide has three main chain torsion
angles, namely ¢, 1 and w. In the peptide the bonds be-
tween N — C,, (¢), and between C,, — C () are free to ro-
tate. This freedom is mostly responsible for the conformation
adopted by the main chain. The rotational freedom around
the ¢ (N-C,,) and ¥ (C,-C') angles is limited by steric hin-
drance between the side chain of the amino acid residue and
the peptide backbone [3]. As a consequence, the possible
conformation of a given polypeptide is quite limited and de-
pends on the amino acid chemical properties.

2 Computing Techniques for the PSP Problem

Several computational techniques have been proposed as a
solution to the PSP problem. They are divided into four
classes [8]: (a) First principle methods without database in-
formation; (b) First principle methods with database infor-
mation; (c) Fold recognition methods; and (d) Comparative
modeling methods. However, these methodologies have limi-
tations. Group (d) above can only predict structures of protein
sequences, which are similar or nearly identical to protein se-
quences of known structure. Group (c) is limited to the fold
library derived from PDB. Group (a) can obtain novel struc-
tures with new folds; unfortunately, the complexity and high
dimensionality of the search space even for a small protein
molecule renders the problem intractable. Predicting the cor-
rect 3-D structure of a protein molecule is an intricate and
often arduous task. The PSP problem is classified in com-
putational complexity theory as a NP-complete problem [4].
This complexity is due to the folding process of a protein be-
ing highly selective. A long amino acid chain ends up in one



out of a huge number of 3-D conformations. In contrast, the
conformational preferences of single amino acid residues is
weak. Thus, the high selectivity of protein folding is only
possible through the interaction of many residues. Therefore,
non-local interactions play an import role in protein three-
dimensional structure, as local sequence-structure relation-
ships are not absolute. The prediction of 3-D protein struc-
ture can be seen as an optimization problem, where, the goal
is to determine the position of each atom in the 3-D space, the
bond lengths, the bond angles and the dihedral angles formed
between the atoms of the polypeptide.

Currently, we are applying Machine Learning (ML) tech-
niques in order to build computational models to reduce the
conformational search space presented in ab initio methods
that can predict new protein folds. In order to induce polypep-
tide models we process huge amounts of data obtained from
experimental proteins from the PDB. Structural information
from protein templates are used in order to build the struc-
ture of unknown proteins. Examining structural protein mo-
tifs in detail is highly difficult since the mapping from a lo-
cal sequence of amino acid residues to a local 3-D protein
structure is very complex. In this context, we use statisti-
cal fragment-based methods to acquire structural information
from small protein template samples and use this informa-
tion in order to train an artificial neural network model and
predict approximative 3-D polypeptides structures [7]. The
secondary structure of the templates is combined with the in-
formation of the torsion angles from the templates obtained
from the PDB [6]. It provides a more efficient form to ma-
nipulate and obtain structural information from protein tem-
plates. Neural networks are used in order to predicting the
conformational state of an amino acid residue. This enables
new folds to be predicted even when we utilize principles
of knowledge-based methods. We are not limited to Protein
Data Bank. These structures are built through the use of a
sequence-to-structure mapping function. The search space is
expected to be greatly reduced and the ab initio methods can
demand a reduced computational time to achieve a more ac-
curate polypeptide structure. As observed in the experiments
the developed method can produce accurate predictions, and
the secondary and tertiary structures are close to their exper-
imental structures. These approximate structures can reduce
the total time demanded by ab initio methods to fold a se-
quence of unknown structures [5]. The main contributions so
far are in: (1) proposing a novel approach for the generation
of an approximate 3-D conformation for polypeptides; (2) us-
ing secondary structure information combined with ¢, v tor-
sion angles about the central residue in contiguous fragments
of a target sequence; (3) using this information, through a
neural network, to predict new polypeptides structures.

3 Current Results and Directions

Recently we have developed an heuristic search strategy to re-
fine the approximate structures obtained with ML techniques.
We developed a hybrid genetic algorithm (HGA) to optimize
the approximated structures. In our proposal, a genetic al-
gorithm is combined with a structured population, and it is
hybridized with a path-relinking procedure that helps the al-

2795

gorithm to scape from local minima [10]. The solution struc-
ture is a set of n genes, where each gene corresponds to a set
of angles of the protein. Each set of angles are comprised of
two dihedral angles (¢, 1)) from the protein backbone and a
number of y angles that varies according to the type of amino
acid residue. The crossover operator is a random key scheme
that prioritizes (given 70% of chances) genes originated from
individuals selected from an elite set of solutions. The pop-
ulation is structured in “castes”. Initial solutions are gener-
ated at random, with angles selected in a special range gener-
ated by the neural network strategy that we developed before.
The developed method allows efficient mechanisms for pro-
tein structure prediction. This is achieved by the use of effi-
cient genetic operators and a path-relinking procedure which
helps the HGA to improve the solutions over the generations.

As corroborated by our experiments, the developed method
can produce accurate predictions where the 3D protein struc-
tures are similar to their experimental structures. At this stage
we identify the following contributions: First, the use of Al
techniques to develop a new, effective algorithm for the 3D
PSP problem, showing that such techniques are useful in an
important knowledge domain. Second, the use of genetic al-
gorithms with path-relinking shows that these combined tech-
niques lead to efficient applications. We expect this research
opens several interesting research avenues, with a range of
applications in bioinformatics.
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