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The formalism dzveloped by Ivanter and Smilgal’? to
describe the "muonium mechanism" of positive muon
depolarization is adapted and extended to include
situations involving more than one strongly depolarizing
influence (e.g., muonium and & radicai). In such

cases the Laplace transform method is inapplicable,

and the explicit time dependence of the relevant spin
systems must be solved. Calculations are shown for

a plausible situetion with the assumption of a transverse
external magnetic field; the line of reasoning is
outlined, &and should be readily extendable to other
cases, or to longitudinal field.

‘Consider an ensemble of polarized positive muons comiug to rest
in a target: without loss of generality, we may assume that they are
100% polarized, since imperfect polarization can be expressed as a
multiplicative factor in all the formulas. The target may be gas, liquid,
or solid, but we restrict this discussion to the case of liquids con-

sisting of a reagent "X" dissolved in a solvent "S" in the "dilute limit"
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{the concentration [X] of the reagent X is never high enough to significantly
affect the density [S] of solvent molecules). This restriction facilitates
treatment of muonium chemistry. All the muons capture electrons to form
atomic muonium®, which may experience any of the subsequent fates outlined
schematically in Fig., 1. This diagram 1s not intended to be all-inclusive;
certain obvious possibilities, such as epithermal reactions with the

reagent (causing a concentration-dependence of the "hot fraction”, h)

or chemical reactions with the reagent to form a second type of radical,

have been omitted for the sake of simplicity; they are easily incorporated
into the theory, if needed.

The "residual" polarization, P___, is the value obtained by ex-

res
trapolating the observed precession of the muon to zero time, and is thus
independent of such extraneous phencmena as relaxation or "beating" due to
local fields, Pres reflects only the adventures of the muons at very early
times; and will differ in magnitude and direction from the beam polarization
only if the muon spin experiences a strong influence such as the hyperfine
interaction in muonium or a radical, which lasts for a time on the order of 1
nsec and then desists. Any muons still evolving rapidly in muonium or
radicals at observation times are phenomenologically considered to be
completely depolarized. In sclutions, as we will see, this early behavior
depends strongly upon the reagent concentration [X], 2 parameter easily
varied by the experimentez.

Mathematically, the residual polarization Ptes ig obtained from the
exact time-dependence P(t) by dividing out the Larmor precession and letting
the time go to infinity. When muonium is the only depolarizing influence,

one can take advantape of this by using the Lapiace transform technique



to circumvent the solution of the equations of motion; this method of
solution for Pres depends upon the assumption that the muon spin evolves
in only oune environment until it géts into a diamagnetic compound, and
can therefore not be used in the two-stage evolution involved here.
With this in mind, we set out to obtain analytic formulas for all
contributions at all times, with the residual polarization emerging as
a special case.

Following Ivanter and Smilgal. we define the density matrix in

terms of the muon and electrom polarizations P" and P® and their

"cross-correlation” b

13’
= H, N . 1
p=1/4 (1“ + P + P c + zij 13 i j %) (1.)

and extract the Wangsness-Bloch equations of motion:

By = Byg eypls § 0y by - £ BY 6D
Fe= By Sape® d oy byy - PR - 2V B @
Byy ™ & By ey Pk ~ PR * " Zan n CansPin * Cant®ny

-2v bij . .

where mo is the hyperfine frequency in muonium, § is the ratio of ﬁ+

to électron magnetic moments, ® L] eg/mec is the Larmor precession
frequency of the electron in the external field, and v is the frequency
of electron “"spin-flips" due to magnetic interactions with the medium.

If the hyperfine interaction in ‘the radical is a pure contact interactiom,

with strength ﬁmr, then the eqqstions of motion in the radical are identical



except for the substitution of w, for w . When B is perpendicular to the
initial muon polarization, the equations of moticn decouple into "parallel"
and "transverse' sets of equations, and we can formulate the problem

in terms of a set of four complex equationslz

P ) p¥ + 1 ¥ 1
X y
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where 2 is the direction of B, % is the initial polarization direction of
the muons, and ¥ 1s the cross—product of % and Z. This complex 4-component

a ~
vector then obeys the equation of motion P = Ay P, where
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for the :I.th environment. Here x = B/Bi where Bi is the hyperfine

h

effective field in the 1t environment, and Y, = 4vi/mi, where Vv

i

and w, are the "gpin-f1ip" frequency and the hyperfine frequency,
respectively, in the ith environment., For i = m (muonimm), for example,
w, =W 2.8 x 1010 rad/sec, and Bm = Bo = 1580 Gauss. Both values are

probably less in all other environments.

&y can be diagonalized (this is facilitated when v » 0, as w~

balieve to be the case for all liquids of interest, because then Ai is

i
just 1 times a real symmetric matrix.) to form the matrix D, as follows:



Let M be the matrix which diagonalizes Am (muonium), and R be the matrix

- -]
which diagonalizes Ar (radical); then M 1133.m M=1D" end R ‘Ar R = Dr,

so that DT, = & . AT and DY, =&,. AL, 1In terms of these matrices

13 1j "1 13 ij .i'
we can define the finite time evolution operators in muonium or radical,
respectively: Um(t,t') =M exp[Dm(t -t")] M’l and Ur(t,t') =
R exp[Dr(t - t"] R-l which operate upon ;(t) in the appropriate
environment: ;(t) = Ui(t’f') ;(t'). The time evolution operator for
"hot" muonium is just unity (nothing happens on such a short time scale
anyway), and that for muons in a diamagnetic compound is Ud(t,t’),

defined by Uij(t,t') = 6§ exp[iwu(t - t")], where w, 1s the

13 6:Ll ]
free muon Larmor frequency [here we neglect the effects of chemical
shielding].

Returning now to Fig. 1, we must construct a time evolution
operator for every possible sequence of environmemts that a muon may
pass through. This will in general just be a time-ordered product; for
example, 1f we label the completely specified fate of a given muon
(including times of transition from one environment to . .the next) as "q",
consider "q7" : "hot" muonium ¢ thermalized muonium -+ radical (at time tl)
[via normal chemistry)] -+ diamagnetic compound (at time tz). The overall

time evolution operator for this process will be Uq (t,0) =

7
vle,ey) U7 (e, tp) 07E;,0).

The muon polarization which emergss at the end of process "q"
(of which the real part is the polarization in the initial direction and
the imaginary part is the component in the direction perpendicular to it
and the fielé) 18 just '{Uq(t.o) ;(Ojlh, where udenotes the first component

[see (3)]. When we multiply this by the fraction of the ensemble which



experiences fate "q'" [which we denmote p(q)l, we obtain the contribution
to the total complex muon polarization at time t, P(t), from the muons

experiencing fate "q", which we denote P(q,t). That is,
P(t) = };q P(q,t), P(q,t) = plq) {Uq(t,O) P(0) }u (5

The sum over q may of course iavolve integrations (e.g., over the
ungp2cified internal times tl and tz).

We now define some empirical quantities directly related to
liquids: kmd is the chemical rate constant for the reaction Mu + X
-+ Diamagnetic compound (Mu demotes muonium); kmr is.the chemical rate
constant for the reaction Mu + Solvent -+ Radical; and krd is the
chemical rate constant for the reaction Radical + X - Diamagumetic compound.
In terms of these we define I/Tﬁd = kmd[X] = the rate at which muon-

ifum reacts chemically into a diamagnetic compound, l/Tmr = kmr[S]

= the rate at which muonium reacts chemically into a radical, and

1/t . = krd[x] = the rate at which the radical reacts into a diamagnetic

rd

compound. We also define 1/‘rm = 1/‘rmd + 1/Tmr. The T, are typically

in seconds.‘fhe ki in liters/mole-sec, and the concentrations in moles/liter.
We now list gll the contributions to P(t) from processes shown

in Fig. 1l; note that we include contribdtions which become negligible at

large times and thus do not enter the residual pdlarization, Pres; if

one is interested solely in Pres’ these contributions need not be calculated.

1) STILL-FREE MUONIUM: "ql": evolution in free Mu from t = 0 to t.

{Uq1<t,0) PO )= By expl} tl

where F, = Ej Hlk[M-llkj ;j<0) = Mlk[M-llkl, (6



p(ql) =(l-h-1) exp[-t/Tm]

thus P(ql,t) (1 ~h -1 Zk Fk exp[(A: - l/Tm)t]

or P(qy,t) exp[iwut] (@ -h-1) I F explf t] (7

m .
where we define Sk - N - 1/1.'m -io. (8)

[The arrangement of terms to place the Larmor precession factor outside

all the rest will be convenient later.]

2) HOT DIAMAGNETIC: "qz": evolution in d.c. (diamagnetic compound)
since combining epithermally at t ~ 0.
{u R ; = expliw t
qz(t 0) 2(0) }u expliw t]
p(qz) = h, so P(qz,t) = h exp[imu t] (9)
3) MUONIUM -+ D,C. GHEMICALLY: "q3": evolution in Mu until time tys
followed by evolution in d.d. from t, to t.
I m
{uqs(:,o) P(0) }u = exp[imu(t - t)] I F explh £l
= (l-h- ) St -
P(q3) =(1-h-1) Tmi expl-t, /T ]
- 4t "
so P(q3,t) = exp[:lwu t] 1 -h-1) Ek Fk Tm; exp[ektl]
We integrate over ty from 0 to t to obtaln P3(t), the contribution from

the generic class of 4 with all possible tl values:

' . - 1 : _
P3(t) = eL,[iwut] (L~h=~-1x Ek T8 Ek(exp[ekt] 1) (10)
md "k
4) STILL-FREE HOT RADICAL: “q4": evolution in radical gince

combining epithermally at t = O.

This case is strictly analogous to case 1, and gives



P(qA,t) = exp[iwut] r Zk Gk exp[¢k t] (11)

-1 _ 4T .
where G =R [R 7], and ¢ = X 1/‘rrd - imu. (12)
5) HOT RADICAL - D.C. CHEMICALLY: '"qs": eplthermal entry into
radical at t = 0, evolution in the radieal until time ts
subsequent evolution in D.C.

This case is strictly analogous to case 3, and gives

_ 1
P5(t) = exp[iwut] r Ek = ¢k G, (exp[¢kt] 1) (13)
rd
6) STILL-FREE CHEMICAL RADICAL: "qﬁ": evelition until time t

in muonium, combination with S to form R' at time tes
subsequent evolution in R' (radical).
. . n ~
{Uq6(t.0) P(0) h = {u (t,tl) u (tl,O) P(O)}M
T -1 m -1
Zijk Rli exp[kist - tl)][R ]ij MjkexP[Akftl][M ]kl

r n r
Ly Wy expldy t] exp[(kk - A gl

_ -1 -1

where W, = Zj le[R ]ij Mjk[M ha (14)
. d
plag) = (1 - h - r) expl-(t - t))/7 ] ;‘t:{ exp[-t; /7]
&

Thus P( t) = expl[iw t] d-h-1) L, W, expld,t] exp[¥, t,] dt

96’ PLI, Tor 1k “kEFPLYy 1kf1! 95

_ I - r -
where wik = Ak Ai + 1/‘crd lle. (15)

We integrate over ty from 0 to t to get Pﬁ(t)’ the contribution from

all such types of ¢ with all possible £ values:

W
Pg(t) = expli ] <-1—'?h—:-i)- T, 7 expl, t] (expl¥, t] - 1)
mr ik (16)
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n MUONIUM -+ RADICAL + D.C.: "q7": evolution until time ty-in
muonium, followed by evolution from t) to t, in R®,

followed by evolution in d.8. from t, until t.

2
tw, (.0 PO, = 0,6 Uyt Ue0 PO Y,
= exp[imu(t - t)] Iy wikexP[AI t,] eXP[(A: - A;)tll

p(q;) = (L -h -1 g—t2 exp[-(t,~t,) /T ] %1 exp{~t, /7 ]
rd nr
giving P(q7,t) = evp[iw t] A ~-h -1 zik 1k T, 2 exp[¢i 2] 1 exp[W 1]

The overall contribution from muons experiencing fates of the type "q7"

with all possible t, and t2 is then

1
2

. ¥ t, d P(q7,t)

Pl(t = jﬁ dtz fo dtl —EE;_EEI—_
' {1--h - 1) k _
= exp[iwut] —T;:?r-d—- fu {-———¢ v [GXP[(¢1 + Wik)t] 1 }
1
- $; [exp[¢it] - 1] } 17

Assuming that Fig., 1 does not leave out any statistically
significant processes, we now have the formula for the muon polarization
at time t:

B(t) = P(q3,t) + P(qy,t) + Polt) + P(q,,t) + Pg(t) + Pg(t) + Po(t).
Note that this is the actuval exact time dependence of the muon polarizacion,
involving no approximations other than that Fig, 1 is complete.

Each term is conveniently of the form exp[imucj P', mak;ns it

easy to get Pres’ the value obtained in precession experiments by
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extrapolating tc t = 0: keeping only those terms which are not still
oscillating at a frequency beyong our practical resolution at large

times, ~hoosing a value for t which 1s >> Tn + Trd’ and dividing out
the Larmor precession term exp[imut], we get

Pres = exp[—imut] (P(qz,t) + Pa(t) + P7(t)]

t>w™

F,
= h+ (1 -h-=-r) Zk ?—EE- (exp[ﬁkt] -1 ]
md k

t > >

W
(1-h-1x) 1k { 1 ( 1
e —— exp[($,+¥. )t] - 1
Tor Tra Zik Yo Lo+, 1 Mk

£ >

- L ( expid, t] -~ 1 1 } (18)
¢j_ i t > oo

Setting t = 10(Tm + Trd) seems to be an adequate approximation for t -+ o,

These equations have been used to fit curves of Ptes versus [X]
in several types of solutions. In most aqueous solutions, and in methanol®,
the evidence does not suggest significant radical formation, and fits are
made with the assumption of ¢ = kmr = krd = 0, In benzene, however, the
experimental results flatly contradict the assumption of a pure muonium

mechanism, and adequate fits are obtained only when we assume that con-

siderable radical formation takes place.7
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