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EARLY TIME FIREBALL GROWTH FROM 
A NUCLEAR EXPLOSION 

Abstract 

The early motion of an x-ray fireball 
from a nuclear detonation in the atmos
phere is studied using the equations of 
radiation transport coupled to the equa
tions of hydrodynamics. The solutions 
are compared with observations of fire-

One of the earliest observable effects 
after the detonation of a nuclear explosive 
is the rapid growth of a radiation front 
through the surrounding atmosphere. 
For the first 20 to 30 /us this growth in
volves negligible hydrodynamic motion. 
The character of the radiation front is 
that of a supercritical or isothermal 
shock wave. The fireball continues tc 
expand until it reaches the critical tem
perature, which for air is about 25 eV. 

During this early period one can think 
of the fireball as an isothermal sphere 
of x rays with a temperature at its equi
librium value and cooling as the sphere 
expands. Since the cool air surrounding 
the fireball is opaque to the x rays, the 
edge of the fireball advances at a speed 
determined by its temperature by means 
of a diffusion process. 

The main perturbation on this model 
for times less than 30 us from detonation 
is the transfer of energy from the sphere of 
radiation to the air ingulfed by the fireball. 

It is reasonable to expect that at suf
ficiently early times the temperature of 
the air is not in equilibrium with the ra-

ball motion in a free homogeneous atmos
phere and near the ground surface. 
Comparison permits us to determine the 
amount of energy coupled to the ground 
by means of x-ray deposition from a 
surface shot. 

diation and this effect will be more no
ticeable at the radiation front than at the 
center of the fireball. Thus we would 
expect to see a gradient in the air tem
perature increasing from the edge of 
the fireball to the center. 

In the case of a device detonated on 
the surface, the above picture can be 
modified in the first cut by giving the 
fireball an energy density at a given 
radius of twice that of a free air burst 
at the same radius. This assumes that 
the surface acts as a perfect reflector 
of the radiation. This effectively doubles 
the radiant yield of the device as far as 
the motion of the fireball is concerned. 
In the next approximation, we add to the 
energy loss mechanism in the free air 
burst the radiation absorbed by the ground. 
Thus,, by comparing the early motion of 
a fireball in a uniform atmosphere A Ltii 
the motion of a fireball centered on the 
Earth's surface, we should be able to 
detect any significant absorption of x-ray 
energy by the surface. 

All this suggests a model of an im
portant type of energy coupling to the 

1. Introduction 
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surface from a nuclear explosive. 
Namely, energy is transferred through 
an area defined by the intersection of the 
fireball with the Earth's surface. This 
ground surface area is heated by the 
radiation from the fireball, which is at 
a uniform but time-dependent temperature. 

There are other mechanisms for 
transferring energy into the Earth's 
surface including neutron capture, device 
debris impact and gamma-ray deposition. 

Figure 1 shows the available data on 
early time fireball growth. Fireball 
radius as a function of time out to about 
20 ps is given for four shots. Two of the 
shots, MOHAWK and HOOD, can be con-

]<r 
o Mohawk 
A Hood 
v Zuni 
+ Apache 

0,2 
- J l 1_LJ_LU. 

1 10 20 

Fig. 1. Observations of fireball growth 
for various surface shots and 
free a i r shots. 

sidered free air shots for our purposes. 
MOHAWK was placed on a tower and 
HOOD in a balloon. ZUNI was a surface 
shot over land and APACHE was placed 
on a barge. The data a r e from streak 
camera records taken by Woodward of 
LLL, 

The radius is scaled in such a way as 
to make the energy density in each fire
ball the same assuming the ground acts 
as a perfect reflector. The a i r bursts 
are scaled to 100 kt while the surface 
bursts are scaled to 50 kt. 

The important features of these data 
are that for both air bursts the fireball 
radius grows as t * . The surface 
shots grow with a much weaker time 

0 122 dependence. Over soil t * seems to 
apply and if anything the shot over water 
has an even weaker rate of expansion. 

We would like to suggest that the dif
ferent laws of expansion of fireballs in 
a homogeneous atmosphere and along the 
Earth 's surface can be accounted for by 
the deposition of x-ray energy into the 
ground or water. It is hoped that a 
simple theoretical description of early 
time fireball growth will permit a quan
titative evaluation of the rate of energy 
transfer to the ground. 

2. Self-Similar Solutions of Hydrodynamic and Radiative 
Transfer Equations 

For spherical symmetry, the equations 
we would like to solve are 

SIMILARITY CONDITIONS IN 
REDUCED FORM 

We shall proceed in a manner suggested 
by Elliott in treating a spherically expand- ap do , a 3 . 2 . _ „ 

1 'a* + U7J7 9 'a^' * r u ' ' u 

ing Marshak-type radiation front, o l l r ° r 

1. L. A. Elliott, Proc. Roy. Soc. London 
258 A, 827 (ISGUT. (continuity), <1> 



S3. + ui>>»+I1E - o 
at 3r p 8r 

(conservation of momentum), (2) 

2 ^ ^ 

=W (energy balance), (3) 

F= - ^ 4 - (aT4) 3 Sr 
(radiative t ransfer ) , (4) 

E = E U + E R i P = P M + P R - <5) 

Here W represents an arbitrary energy 
sink and F is the radiation flux. If T is 
the local equilibrium radiation tempera
ture, then 

p E R -- a T 4 = 3 p R . (6) 

We define a specific heat ratio for the 
system as 

pE. . p M 
M " 7-1 ' (?) 

Equations (1) through (4) can be r e 
duced to four ordinary differential equa
tions in the dlmensionless independent 
variable x. 

R ' 

by the folic ving substitutions: 

u(r , t ) -- Ru(x), 

p(r, t) = p np(x) 

p(r, t) •- p n R 2 p U ) , 

E(r, t) = R2E<x) 

F(r, t) = p n R 3 F ( x ) , 

W = H 3 R" l W(x) . 

<8> 

Here R(t) is some characteristic length 
that depends only upon time. R is 
required to satisfy the following differ
ential equation 

R* - A^R 2 D - a (9) 

and p 0 rr-fers to the ambient density out
side the shock. 

The substitution of Eqs. (8) and (9) 
into Eqs. (1) through (4) yield the follow
ing reduced equations: 

< U - K , £ + ( f + U . ) . 0 . 

u'(u-x) - I u = £ 1 , 

-«E+(H-x)E ' +E1 ( ^ - u ) 

(I ') 

<2') 

P 
_ J 
p 2dx • H E A I - * . <3'> 

and 

PR' = A _ I F (4*) 

The primes ref&r to derivative wif-h r e 
spect to x. Equation (4') is for constant 
A provided we restrict \, the radiation 
mean free path, as follows: 

c\ = ARR = AAR , O0> 

In our problem this restriction means 
that X is constant over the whole sphere 
and dependent upon the size or the tem
perature of the sphere. 

From Eqs. (6 J, (8) and <9), we find 

which together with Eq. (10) gives 

v(l /»Kl-a/2) 
c ^ A A ^ A 2 ^ ) 

x T(-4/Q)(l-o/2)_ ( U ) 



E q u a t i o n s (1) t h r o u g h (7) g ive us e ight 
e q u a t i o n s in t he n ine independent v a r i a 
b l e s p , u, F , E, F M , E R , p , p M , and 
p* R . We h a v e not inc luded in o u r ca t a logue 
of e q u a t i o n s an e q u a t i o n of s t a t e in t e r m s 
of t e m p e r a t u r e . 

If we a r e to a s s u m e tha t t he l o c a l 
m a t e r i a l t e m p e r a t u r e T«- and the r a d i a 
t ion t e m p e r a t u r e w e r e equa l , an equa t ion 
of s t a t e of t he type 

P M = P M ( ' , ' T M > < T I U = T -

would g ive u s an add i t iona l r e l a t i o n s h i p 
b e t w e e n p ^ and p „ . Unfor tuna te ly , a t 
v e r y e a r l y s t a g e s in the g r o w t h of t he 
f i r e b a l l we m a y find that the r a d i a t i o n 
and m a t t e r a r e f a r f rom be ing in e q u i 
l i b r i u m . 

We feel it i s bes t , t h e r e f o r e , to m a k e 
the a s s u m p t i o n tha t E«- and E R a r e con
nec t ed by 

E M ( r , t ) = < M x ) E R ( r , t ) "M R 1 (12) 

The p r a c t i c a l advan tage t o t h i s f o r m u l a 
t i on of the p r o b l e m is tha t the r a d i a t i o n 
and m a t t e r need not be in e q u i l i b r i u m . 
Equa t ion (12) does not p r o v i d e t he n e c e s 
s a r y add i t iona l condi t ion s i n c e it i n t r o 
d u c e s the new v a r i a b l e <t>(x). 

T h r e e n e c e s s a r y b o u n d a r y cond i t ions 
tha t m u s t be sa t i s f i ed for t he above dif
f e r e n t i a l equa t i ons a r e p rov ided by the 
Hugonlot ana logues at the pos i t ion r = R: 

(13) 

Pi * P 0

 = p 0 R u l • 

Pi • 2 
- ± + l / 2 ( R - a.r 
pl l 

(14) 

Pfl 2 
E o + 4 + 1 / 2 H • 

The s u b s c r i p t s 0 and 1 r e f e r to a m b i e n t 
and shock cond i t ions , r e s p e c t i v e l y . We 
h a v e a s s u m e d s t a t i o n a r y a m b i e n t c o n d i 
t i o n s in t he fluid wi th no r a d i a t i o n f lux. 
T h e s e equa t i ons can be e x p r e s s e d in 
r e d u c e d f o r m . 

ENERGY BUDGET 

The to ta l amoun t of e n e r g y in s ide t he 
f i r eba l l a t any t i m e i s the s u m of t he 
k ine t i c and i n t e r n a l e n e r g i e s inc luding 
the r a d i a t i o n e n e r g y . 

E T ^ 4 i r | (E + 1/2 u 2 ) p r 2 d r (16) 

•• 4 i p „ R 3 R 2 B , 

w h e r e 

^1 
B = (E + l / 2 u )px dx = cons t . 

(17) 

(18) 

It i s c l e a r f r o m E q s . (9) and (17) that if 
E™ is a c o n s t a n t , tha t i s , if the to ta l 
energy i s c o n s e r v e d i n s i d e o u r d i s t u r b 
ance at r a d i u s R(t) , t hen 

a = 3 . 

Solving Eq . (8), 

r 2 + i .* 
R = | A ( f + l ) ( t - t 0 > + R 0

2 

(19) 

(20) 

(15) 

G 4 

T h u s , R b e h a v e s l i ke t in a self-
s i m i l a r d i s t u r b a n c e in which the to t a l 
e n e r g y i s c o n s e r v e d . C o n v e r s e l y , if t he 
e n e r g y in the d i s t u r b a n c e i s not cons tan t , 

0 4 R cannot behave l ike t ' . An e x a m p l e of 
a s e l f - s i m i l a r d i s t u r b a n c e in which the 
to t a l e n e r g y is cons t an t i s the T a y l o r 
so lu t i on fo r a b l a s t w a v e . 



If the disturbance is associated with a 
source or sink of energy, that is, if W is 
not identically equal to zero, then we can 
write 

Wpr dr 

= i7!pQB3R2C , 

(21) 

(22) 

/ C = I Wpx'ox = const. (23) 
0 

By dividing Eq. (22) by Eq. (17) and 
integrating, we get 

R 2 o A 2 R C ' B - 3 

(24) 

with the result 

a = 3 - C/B . 

Thus, we show that the motion of the 
front of the disturbance is closely con
nected with the rate at which energy is 
added to or depleted from the wave. 

This leads us to some pretty definite 
conclusions about what we are observing 
in the streak camera records: 

• The time dependence of fronts in 
the interval 1 MS <t< 20 us are of 
the form of Eq. (20). This 
suggests that the motion is self-
similar to a good approximation. 

• We are not observing a disturbance 
in which the energy is conserved. 
The time dependences indicate that 
C is negative and 

-5.81; a = 8.81 for air shots 
(MOHAWK, HOOD) 

-11.4; a = 14,4 for surface 
shots (ZUNI) 

C/B =< (25) 

• Because of the very low mean free 
path of the x-rays in cold air we 
can assume that energy is not 
escaping through the visible front. 
Hence, the energy sink for the free 
air shot must be caused by the ab
sorption of radiant energy by the 
engulfed air. The fact that C/B 
is smaller for free air shots than 
for surface shots indicates +he 
presence of an additional energy 
sink, namely, the ground surface. 

We must still examine the quostion of 
whether or not the restriction of the tem
perature dependence of X by Eq. (11) is 
a reasonable one. Substituting for oet 

r T i . 55 

72 

for air shots 

forsurface shots , 
(26) 

Comparing this temperature' depend
ence with that of the Rosseland mean 
free path in air at standard density as 
shown in Fig, 2, we find acceptably 
close agreement in the temperature 
range 0.1 keV < T < 1 keV for both the 
free air and surface shots. This adds 
strength to the assumption that the ob
served wave is nearly self-similar. 

MOTION OF THE RADIATION WAVE 

Let us restrict our considerations to 
the case where there is no hydrodynamic 
motion. The state of affairs during the 
first 20 to 30 jiis of fireball growth is 
shown in machine calculations with the 
MEG code. Assuming u = 0 and p = 1, 
Eq. (31) becomes 

- £ <**?„•> - *VR, - 3«5R. 2 dx 

•= W + 3x(6p B , + +'P H) + 3«<t.pR (27) 
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Fig. 2. Temperature dependence of 
Rosseland mean free path in air 
at standard density. 

using Eqs. (8), (4'), and (12). All the 
terms involving the Internal energy of 
the medium have been placed on the right 
hand side of the equation together with 
the sink-source term W. Let 

5B..*(Mt^+afc**-? !28> 

In the absence of a specific functional 
dependence at *(x), we have simply put 
all te rms on the right side of Eq. (28) in 
some generalized sink W. This equation 
has a regular singular point at x = 0, so 
that for reasonable behavior in W(x) we 
can find a solution. 

We must require of the solution that 
the radiation flux at the origin vanish so 
that 

pR,(x> « -A" 1 -F<X) - 0 . as x - 0 . (29) 

Returning to Eq, <3*) and the condi" 
tion p~ = 1, we find 

x 2 F = / (W) 

We can reasonably assume that W&).. 
E{x) and Ts'(x) are regular at the origin. 
Hence we can write 

£ M - Irof, 
x-0" 

(W(o) + <E(0)) • E' x 3 dx , 

The last term vanishes and from Eq, (29) 

(30) - / w V-'W) 
p R 1 (x ) /x ^ - ^ A - iA ' 

Returning to Eq. (2') we get, wit,J the 
restrictions of no fluid motion, 

p" = 0 , (3D 

which has the solution 

p = |l + 3(?- 1) 4>(x)]pR(x) = p Q • const-
L J (32) 

In the neighborhood of the radiation 
front (x-1), Eq. (21) is not strictly cor
rect since terms involving the momentum 
transfer of the radiation flux have not 
been included in Eq. (2). This approxi
mation should he extremely good near 

• f i -



the center of the fireball. Using Eqs. 
<12) and (32) in Eq. (30) we find 

| t : „ 4 W ( 0 , + ^ ^ w + ^ p ° } -
(33) 

Now let us introduce an assumption 
regarding the sink term W: 

V.' = R 3 R " 1 6 p R ( x ) . (34) 

where 6 is a constant determining the 
strength of the sink, p~p is proportional to 
T 4 . Thus we can allow the sink to vary 
as the local radiation energy density. 
Physically this is reasonable. 

Letting E = EL in Eq. (18) and <;ing 
(34) in (23), we get 

fl 
PR* 
— 2 

6p R x dx 

r 1 - 2 
I 3p R x dx 

(35) 

Thus, we determine the strength of the 
absorption of radiation in the fireball from 
the motion of the front. 

The constant p 0 can be divided out of 
the abo\*3 equations by introducing the 
variable 

p n (x> = PR 
P0 

(x) 
(36) 

Equation (28) becomes 

p ° - ( ! + ! * ) p i + s P D = o- <37> 

The interesting thing about Eq. (37) is that 
it is independent ol a 

Seditions if Eq, (37) are shown in 
Fig. 3 for representative values of A. It 
if, clearly shown that for longer mean free 
paths the fireball is more nearly isother
mal. The values of A can be determined 
from the data in Fig. 1 through the use of 
Eqs. (10) and (20): 

A = c \ (§ + 1 ) ^ (38) 
R 

Typical values of A range .'rom 50 to 1 50 
assumirg A = 250 cm. Clearly such values 
of A give a fireball that is very nearly 
isothermal. 

' 1 ' 1 ' i 1 1 ' 

^ 
° 0.9 A = 100 -f ^ ] 

0.8 
" 

A = 10 - / 

1 l. 1 i 1 

1 . 

I 1 I 
0.2 0.4 0.6 0.8 1.0 

Fig. 3, Reduced radiation pressure as a 
function of x for different 
radiation mean free paths. 

3. Eneigy Deposit in the Ground 

We can now compaz-e the energy in a 
r spherical fireball from a surface 
shot with the energy in or^ half the 
spherical fireball of a free air burst a.id 

thereby calculate the energy depositee' in 
the ground. 

Modifying Eq. (22) for a hemisphere, 
the total energy in a r Jiation wave is 

- 7 -



determined by the differential equation 

d E T = ?.jrpQC A 3 R 2 R _ 1 dR 

•• 2ltpnC A 2 R 2 " C dR 

Integrating from R. where E T = Y, 

E T = Y + 2 ^ P 0 B A 2 ( R C / B - R „ C / B ) (40) 

where we have used Eq. (24). The 
difference between E_. as calculated for 
the a i r burst and equivalent surface shot 
should be the energy transferred into the 
surface: 

E G = 2 , p 0 B { A

2 ( R C / S - R ^ ) 

-A' 2 ( R ' C ' / B - Rf/B)}, < 4 1 ) 

where the primes refer to quantities de
rived from surface shots. Since p^ is 
independent of a, the value of B, which 
depends only upon p~R, should be the same 
for both cases . As a result B appears as 
a common factor in Eq. (41). 

Using the data on ZUMI and MOHAWK in 
Eqs. (41) and (20), we find that E G has the 
time dependence shown in Fig. 4. The 
peak value of the energy deposited in the 
ground is reached at t about 1 us. Until 
this time the fireball has been depositing 

Fig. 4. Fraction of radiant yield depos
ited in ground as a function of 
t ime. 

energy in the ground. After 1 ,us the 
ground begins to reradiate into the fire
ball. The ratio of the peak energy in the 
ground to the energy at 10 ys is 1.81. 

The percentage of the radiant yield in 
the ground can be calculated if we express 
Y in the following way: 

1 2?rp. • o B A ' R g * (42) 

We can factor out ihe term 2TTPQB from 
Eq. 41 and only calculate A R Q

C / B : 

^r 8.97 X 10 MOHAWK R Q in cm 

10.6 X 10 9 ZUNI t in sh. (43) 

Thus, at 19 MS the percentage of radiant 
yield deposited in the ground is between 
18 and 21%. 

4. Conclusion 

In the preceding section we showed how 
to calculate the amount of energy deposited 
in the ground caused by the surface burst 
of o nuclear explosive by comparing the 

motion of the fireball with the motion of a 
fireball for a free air burst. The assump
tions behind the formulas just derived are 
essentially: 



• Equations U) through (4). 
• No hydrodynamic motion for times 

less than 20 ^ s . 
• Solutions of the equations are self-

similar. 
• W is proportional to the radiant 

energy density. 
With regard to the first assumption, 

the well-known solution to the Milne 
problem shows that the radiant flux 
near a temperature discontinuity is 
reasonably well described by the diffusion 
approximation \o the radiant transSe? 
equation. The momentum transfer 
equation has no term representing 
the radiant flux but it can be shown that 

* 2 tftei'e corrections in the order of <R/C) 
are at most about one percent. 

The second assumption is valid as long 
as the radiation front is advancing more 
rapidly than a sound signal in the heated 
air. Machine calculations confirm that 
there is virtually no motion of the heated 
air for up to 30 /is. 

"Whether or not the sell- similar 
solutions are the correct ones has to be 
answered in the same way that one answers 
the question for any other solution; 
namely, does the solution satisfy all of 
the boundary conditions. 

In addition, we had the restriction on 
the temperature dependence of A. We 
found this lat ter restriction presented no 
special problems for air . 

We found that Efl. (42), along with the 
condition that F = 0 at the origin, 
completely determine the solution of Eq, 
(37) if we also make use of the data in 
Fig. 1. 

The ossumption that the sink of r&diant 
energy, W, is proportional to T ia 
plusible but open to some question. The 

problem here is that to solve Eq. (27) we 
need tf (x). Equation (2') provides a 
sr tution for <£(x) valid in some region 
around the origin but which breaks down 
near the edge of the front for reasons dis
cussed above. 

This solution, which is Eq. (32), 
represents a source to the radiation field 
not a sink. We may ask, under what con
ditions do the terms in Eq. (27), which 
contain tj>, actually represent an energy 
sink for the radiation? 

That is, when does the following con
dition obtain: 

< -— dx. 

A possibility is to require that 

d ( * P R ' dx 

(44) 

with the solution 

tfPr, = Kx -ff(l+e) (45) 

A sink strength corresponding to Eq. (45) 

3Kaex - a ( l + € ) (46) 

Thus, if we wish to improve on our 
assumption of Eq. (34), we could repre
sent the rate of energy absorption in Eq. 
(27) by using Eq, (32) within some radius 
x-, and for x > x_ use Eq. (46). This 
could be done in a self-similar manner 



but we would have to fix three new param- however, suggest an interesting aspect 
e ters K, e and x 0 in our solution for of the physics in the expanding fireball. 
p*R(x). Two necessary conditions would Jn (he interior regions the heated a i r acts 
be the continuity of $>„ and of p „ . as a source and adds to the energy being 

For the purposes of this paper, such propagated towards the front. Only in a 
added complication is unnecessary and Eq. relatively cold region near the front does 
(34) is adequate. This analysis does, the a i r absorb energy. 
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