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Inhomogeneity termssin the expansion of the kinetic 
energy density are included and the Euler-Lagrange equations solved. 
Shell effects may be incorporated in a simple way. The study of 
spherical shapes of large systems is given as an illustration of tne 
method proposed. 
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In recent years, the description of bulk properties of 

nuclei has met considerable success by the use of the static Hartree-Fock 

(HF) method. Recently, also dynamical calculations have been attempted. 

Although the use of schematic effective forces C4-4J drastically sim­

plifies the calculations, they still remain very involved, especially 

if one is interested in the description of heavy nuclei, or, even more, 

in the decription of fission barriers, heavy ion collisions e t c — It is 

then natural to ask, especially if one keeps in mind the schematic nature 

of the forces used, wether a procedure like HP or its time dependent ver­

sion is not actually anoverdetailed one. Surprisingly enough, the com­

plexity of the calculations using simplified effective forces is due, to 

a large extent, not to the interaction term, but to the kinetic energy 

one. It seems thus worthwhile to look for approximate treatments of 

the kinetic energy that may introduce essential simplifications in the 

whole approach. 

Tbj Thomas-Fermi (TF) approximation is a well known 

alternative procedure to the HF method. One approximates*the kinetic 

energy density , where t labels occupied states 

iK i by T T F cc p ^ , where p is the one-body density. If the TF appro­

ximation is used in conjunction with the above mentioned schematic forces, 

one is lead to an energy density formalism [5} r in which tne energy E is 

a functional of the der^ity p . Instead of dealing, as in the HF method, 

with as many functions as single-particle occupied states, one deals only 

with one function p . Among the drawbacks of the TF approximation let 

us mention its well known failure to correctly describe the nuclear sur­

face as well as its una&ility to include shell effects. 

The purpose of the present work is to go as far as we 

can from the results obtained in some improved TF (ITF) approximation 

towards static HF ones, with special emphasis on the simplicity of the 

procedure. Only interactions leading to a local energy density formalism 

shall DO treated. \t& want to stress r.he following two points ï 

i) when an ITF approximation is used (essentially by 

including the Weizsacker £6'] term) , one obtains solutions jCû that have 

the exponential fall off at large distances and the Euler equation can 

bo integrated over the whole range of values of r (from zero to infinity). 

Although in the numerical uppl.tcalions we treat pro-'feons (with the Cou­

lomb force) and neutrons, the discussion and notation will be simpler 

by lretting identical particles. 



ii) if one wishes to further improve the treatment, in 

particular by including shell e. :ects, one taKes the functions p ( T F and 

T,T F thus obtained to calculate a one-body potential and solve a Schro-

dinger equation once for each s.p. state. 

Our starting point is the semi-classical expansion (in 

powers of 1i ) of the kinetic energy density T(r) in terms of p as ex­

plained in ref.[7J (the same expansion has been recently obtained r&/93 

using the method proposed by Bhaduri and Ross^Oj). If, for a system of 

particles in a central local field, one Keeps the first two terms in 

this expansion, the resulting approximate kinetic energy density, that 

we shall denote by "C, T F, reads 

where tf= (S/s) (3n2) / (S^H/Se and V=Vs . The first term in U ) corres­

ponds to the standard TF approximation and the second one is the modified 

WeizcMcker term £~5j. 

When using the approximation T — T J T F and restricting 

to spherically symmetric systems, the Hamiltonian density H(r) we deal 

with can be written as 

Hfr)i,f(pj + |V^fa4£f) + | n

Z

2 f A p ) {1) 

where P(p) is a sum of powers V of p , with \}}l ; to P(p) ( contribute ge­

nuine interaction terms, the TF Kinetic energy term #p as well as 

terms of the form px induced by a momentum-dependent interaction, 

leading to wp by use of (1) ; similarly, to the constant d may con­

tribute genuine interaction terms as well as terras induced by Ô and "X :.n 

(1) through such momentum-dependent interactions. We look for the func­

tion p that minimizes the energy E with respect to variations of p and 

with the constraint of keeping the number A of particles constant. The 

Euler-Lagrange equation has the form 

The Lagrange multiplier A is equal todE/^A,i.e. corresponds to the one 

particle separation energy. We loolc for solutions of (3) that vanish at 

large:- distances. The asymptotic form (see also ref. £ll1)of (3) is 
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which leads to 

i.e.» there are solutions with the exponential fall-off appropriate for . 
a finite quantum-mechanical system. It is worth noticing that this asymp- I 
totic behaviour is due to the lnhomogeneity WeizsScker ttrm : without it 
(f̂ -O)» the asymptotic form of (3) would be <4p = constant, which has no 
physical acceptable solution over tne whole space. The presence in (3) 
of a Ap term, when limiting to regular solutions of p at any point, in­
sures that p'=0 at the origin. 

It is in order here to compare the asymptotic behaviour . 
given by equation (5) to the one corresponding to a shell model wave I 
function whose least bound orbital has energy SjWhich is 
<l/r* )exp(-2-/-(2m/h;t )sTr) . As can be seen, (5) goes faster to zero than 
-the shell model wave function and the substitution /3 -s*- 9/S , that would 
correspond to the original strength of the WeizsHcker term f6_J, would 
insure precisely the shell model fall-off. In the present work, we have 
not taken |3 as a parameter, despite the above mentioned observation, but 
rather kept the terms (1) as given in the theoretical derivation f7-9J. 
We are aware that tnis discussion may be questioned because the expansion 
(l) is not valid beyond the classical turning point. However, as will be 
seen in what follows, one can take a more practical view and consider I 
O ) and (3) just as a very convenient way of getting solutions that are ( 
well behaved over the whole space. 

Let us now describe the method we have followed to solve 
equation (3). As it stands, it is a highly non-linear differential equa­
tion. In order to proceed, we write (3Î in the form 

whore A, D and C arc known functions of p and p' . Equation (6) can bo 
considered as an eigen-value equation ; it is similar to the usual HF 
equation. It can be solved by an iterative procedure : start from some 
faction f»,lr), compute A, B nnd C i-zith p and p' replaced by p o unci p0 

roi;pccl.iveiy, integrate (G) with the above mentioned boundary conditions 
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using a method similar to tne one described in ref.[l2Jj and iterate. 

In all cases studied, no problem of numerical instabilities has been 

found and the convergence is satisfactory.Provided that A is negative, 

we always obtain a single solution which happens to be positive definite. 

The solution of (6) is denoted by P, T F » from which T | T f. is constructed 

through expression (1). 

To illustrate the method described, let us now present 

some results. We leave the neutron p^ and proton p_ distributions free, 

apart from the normalisation to the correct number of particles, and 

include self-consistently the direct Coulomb term (the small exchange one 

is neglected as in ref.f^j). The spin-orbit force, for simplicity, has 

also been neglected, although it can be included also in T{r) in the 

same semi-classical way [9J- Instead of solving, as described before, 

an equation ofYrorm (6), we solve two coupled equations of essentially 

the same type, producing two eigen-values A nand Apand two functions 

Pnr-n » PiTïyb » T n e interaction SVI of the Skyrmc type has been used 

fl3j . It has been prefered tc others because, having an effective mass 

m (r) which is practically constant, it gives rise to an almost local 

potential, and the conditions under which expansion (1) has been derived 

are fulfilled. Otherwise, correction terjns ĵ 9j depending on rn^Cr) and 

its derivatives should te included in (1). 

Results for *Ca, zr and "^Pb are presented in Tabla 

1 and Fig. 1 ; the ones corresponding to the solution of eq. (6) are 

labelled ITP and for comparison HF results obtained under the same con­

ditions (only direct Coulomb term included, spin-ort>it term omitted) 

are also shown. Concerning the total energy E (sec Table 1) the ITF 

approximation can be seen to be good to within 0.5Mev/particle. Both 

kinetic and potential energies are overestimated(in absolute value), the 

net result beeing an overbJr-ding. Consequently,the r.m.s. radii (r n and r-») 

are sligî^.ly underestimated. The ITF proton and neutron densities [f>,yF p 

and|^r ) compare rather well with the HF ones, except that the former 

have a sharper surface and no «hell effects. The absence of shell effects 

is, of course inherent to the semi-classical approach ; the sharpness 

of the surface is directly connected to the value of the constant (i in 

(1). The ITF curve corresponding to the kinetic energy density shows 

some structure beyond the mean radius ; this is essentially due to the 

tarmâp in (l). Consequently, attention should not be payed to it, because 

it docs not contribute, after integration, to the kinetic energy and its 

contribution to tlia potential energy is negligible. 

Several ways of improving tne procedure described above 



can be explored. One would be to keep further terms in the expansion of 

X [£>.)• 'i'his would presumably lead to a better description of the mean 

or liquid drop properties, but shell effects would still be missing. We 

use a different method which, still preserving simplicity, incorporates 

shell effects (and also effective mass ones). It consists in solving 

the HF equation [2J , 

where the HF effective mass m and the one-body potential U are given 

functions of p and X (see eqs. (21) and (22a) of ref.[2}), not as a non­

linear equation(requiring iterations) as it is, but as an ordinary Schrô-

dinger equation (no iteration) , with m and 13 computed using the functions 

PirF a n <3 riTF determined before. This way of proceeding can be viewed 

essentially as treating ( T - T, T F ) as a perturbation ana allows to regain 

the single-particle features lost in the semi-classical treatment. 

Results obtained in this way and denoted "Improved 

Thomas-Fermi plus shell corrections" (ITF+SC) are given in Table 1 and 

Fig. l. When compared to the HF results, one can see that the agreement 

is very good : the energies are very similar, the surface of the densities 

are almost identical and the shell effects corresponding to the approxi­

mate treatment are at the correct place," although small discrepancies 

in tJic-'ir amplitudes are present. 

Having checked its accuracy, let us illustrate the ITF 

approximation by studying the geometrical conf icruration of systems having 

very many nucléons. We restrict ourselves to configurations having sphe­

rical symmetry. From arguments based essentially on the Bethe-Weizsacker 

mass formula fl4J, when the mass number increases sufficiently, the sphe­

rical configuration having the lowest energy is expected to be a shell 

(or bubble), because the gain in the Coulo:nb repulsion will compensate 

the lost duo to the increase of the surface energy. We have solved eq. (fc) 

for systems having A~1000. Ne give in Fig.2 results corresponding to 

A^j which in our approximation is staole against particle-emission as 

well as /l-stable. As can be seen, the lowest spherical solution is a"bub-

blc", with a density close to the nuclear matter saturation density and 

with one interior and ona exterior surfaces that are quite similar. The 

energy per particle (-3.b Mev) is of the same order of magnitude as the 

estimate given by Be. the and Siemens [l4_]. Shell corrections as described 

before have also been included and drawn on the figure ; they reduce the 

binding by 0.2 Mev per particle. Of course, the main question is the sta­

bility oil this configuration against deformations. Work in this direction 

is .in jjrotjress. 
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7. 

The results presented in this letter are illustrative 
and serve mainly to check the accuracy of the method proposed. We think 
that, when applied to more complex problems, the simplification It will 
introduce may be essential. 

We are especially grateful to C. Schmit for his constant 
interest in this work and for much advise in solving the Euler-Lagrange 
equations.Thanks arc also due to R.K. Bhaduri, B. Jennings, M. Brack and 
Nguyen van Giai for interesting discussions, 
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Table Caption 

Table 1 Comparison of the results for the total and kinetic 
energies per particle and r.m.s. neutron and proton 
radii obtained using different approximations 

l 
Figure Captions 

Figure 1 Comparison of the particle and kinetic energy densities 
for neutrons and protons in Pb, using different i 
approximations. 

Figure 2 Neutron and proton densities for a system of A=980 nucléons, 
using different approximations. 
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4 0 c a »°«r 2 0 8 P b 

ITF ITF+SC HP ITF ITF+SC HF ITF IÏT+SC HP 

E/fi (KeV) -8.17 - 7.86 -7.91 -8.46 - 7.S5 -7.93 -7.64 - 7.25 -7.24 

E k i n / A (Mev) 17.03 16.59 16.24 17.80 17.63 17.43 18.50 18.36 18.20 

r n (fm> 3.32 3.35 3.38 4.29 4.35 4.37 5.63 'S.67 5.69 

r p (fm) 3.35 3.40 3.43 4.26 4.27 4.31 5.56 5.56 5.59 

Table 1 
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