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ABSTRACT

This paper deals with static spherically symmetric elastic matter in
its own gravitational field. It is shown that in the case of a certain type
of homogeneity the field equations can be reduced to an ordinary non-linear
differential equation. This equation has solutions corresponding to finite

bodies.
AHHOTALNA
B paMkax obtmef TeOpHH OTHOCHTEJILHOCTH OOCYXOaeTCA CTaTHYeckas
ynpyras marenua cdepHuecKOo! CHMMeTPHH, HAXOQAMAA B CBOEeM IpaBHTAaLHOHHOM r\

none, lpennosnoras roMoOreHHOCTh HEKOTOPOrO COpTa ypaBHEHHR MOJIS CPOOATCA

X HECBA3aHHOMY HEeJHHEeAHOMY OUHKHOBEeHHOMYy RHOPEpPEeHURATBHOMY ypPaBHEeHHn, KO-~
TOpOe HMeeT PelWeHHS Of . TkBabhiMe KOHeuYHOe TeJlo.

P

KIVONAT

E cikk az altaldnos relativitiselmélet keretelben sajat gravitacioés
terében lévd sztatikus, gémbszimmetrikus rugalmas anyaggal foglalkozik. Meg-
mutatjuk, hogy bizonyos homogenitast feltéve a téregyenletek egyetlen nemli-

nearis kdzénséges differenciilegyenletre vezethetdk vissza, és ennek vannak
véges testet leird megoldasal.




1. INTRODUCTION

The problem of elasticity in generzl relativity has not been studied
extensively. For example, the general elastic Schwarzschild interior solution
is unknown, in contrast to the analogous fluid problem, which is reduced tc
the Tolman-Oppenheimer-Volkov integro-differetial equation [1]. Though an
elastic interior solution would have much less physical importance than the
fluid solutions, which are necessary for the description of the final states
of stellar evolution, however this problem is of certain theoretical interest
independently of its immediate utility.

In 1973, S. R. Roy and P. N. Singh found a 3eries of solutions
describing spherical symmetcic elastic matter of constant density [2].
However their solutions are very special and can fulfil the boundary condi-
tion Ti/r/=0 only with dust on the surface, and have no classical limit.

- /In Sect. 2 we shall elaborate these statements./ For this reason a more
rigorous treatment is necessery. In this paper we will deal with the simplest
case: elastic Schwarzschild interior solution with a certain type of homoge-
neity will be treated. Ve shall show that this problem can be reduced to an

ordinary non-linear differential equation, whose certain solutions describe
finite spheres.

In the following Rayner’s formalism will be used [3] with Carter

and Quintana’s modification [4]. In this formalism the eneryy-momentum tensor
for the Hookean limit has the form:

- _1 rs 1,0

T = Puju = 5C., (hrs h rs), /1.1/
- b S

Pik = 94k * Uylgr uup = - 1,

where h°ik is a symmetric tensor of rank 3 orthogonal to the velocity

with vanishing Lie derivative along u,. It describes a fictitious undeformed
/strainless/ state. The quantity C1k1 is a matrix of rank 6 in the pairs
/ik/ and /&m/. It stands for the elastic coefficients of the matter. Both

cik1m nd o can be expressed by material constants [5] as




_ 1 Aiklm _ 4,0 . _ 0
p=nr, * 3 ¢ (hik hik)(hlm dlm)'
/1.2/
Ciklm - nKiklml - Cik;m - Ck11m - Clmik’
. ik1lm i
and the Lie derivatives of mo and K vanish along u”. The particle number

density is denoted by n, which can be expressed by hik’ hfk and material
constant n_, however the relation has a complicated form, unless we introduce

comoving coordinates, when

//&’o

=Y. .h

7T n /1.3/
1

[o]

whore 3h denotes the determinant of the 3-tersor hIK' I=1,2,3. The material
constants may depend on certain coordinates, but must have vanishing Lie

derivatives along u.

It can be seen that Ciklm has 21 independent components, as in the

classicial mechanics for crystals of minimal symmetry. For isotropic bodies
le.g. for macroscopic bodies without macroscopic crystalllc structure/ two
characteristic terms remain:

K1k1m - n-1[}h°*ikh°x1m + U(hox;.lhoxxm + hoximhoxkli] 1.4/

where hoxﬂ<1s a matrix of vanishing Lie derivative along ui, for which

oxirho - 61 5

i
h rk k o)

8 /1.5]/

[¢]
K’

These conditions do not determine it unambiguously, but the quantity
Kik]‘m(h1m - h?m) will be unique. The quantities p and v are the usual elastic
coefficients [the Lamé factors/ and B % = & % = O |where B denotes the Lie

derivative along ui/.

2. REMARKS ON HOMOGENEITY
In general case the spherically symmetric static solutions for
elastic bodies contain seven functions of the radial coordinate r, which in
and h® There are five equations for

o
911’ Y00’ °r P1 22°
them, namely three of the Einstein equaticns and two material equations for

our case are u, \J,

the elastic coefficients. Thus the general solution will contain two arbitrary
functions of r. The procedure of obtaining the general solution is not knaown.

-
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Thus, if one looks for special solutions, two of these functions may be

specially chosen.

Roy and Singh t&e p to be a constant, there is no material equation

assumed, and the metric tensor of the undeformed state is given by

2 2 f2.14

because it is connected to the undeformed state. However, there is no
fundamental reason for such a choice, and if h?k has this form, the boundary
condition Ti = O is fulfilled only where 21u+v=0. It is clear that the condi-
tion that 2u+v vanish somewhere is very crtificial even though u and v are
arbitrary functions. The quantities 2p/3+v fthe compressibility/ and u [the
shear modulus/ must be non-negative because of fundamental thermodynamical
principles [6], and 2u+v is a combination of them with positive coefficients,
Thus it can vanish only where both . both v vanish, i.e. where there is dust.
Consequently their solutions describe very special bodies, whose matter

becomes continuously dust going outward to the surface. This behaviour is the
o

consequence of the unnecessarily special form of hik'

Another difficulty about these solutions is that they have no

classical limit. The deformation tensor [S]
(. =% (n,. - nS) 2.2/
ik 2 ik ik’
has only one nonvarishing component, Fapr in contrast to the cjassical case
i

I

€k (si;k + St/ /2.37

wheresiisthedeformation vector; €,y has three diagonal component

for radial deformation:

= H = in =l re c = 3/
£11 Si i £qy £345in 9 sr: € s/r/. /12.4/

Thus also the energy-momentum tensor cannot have ciassical limit.

An alternative way 1s to require a certain type of homogenelity. Of
course, we must not require homogeneity for the metric tensor, because in




this case the solution could not describe a finite body. In this paper we
will use a weaker type of the homogeneity /"material homogeneity™/, for

which the definition will be the following:

a./ There be N space-like vectors Ki, A=1,...N, with rank 3 for the matrix
i

KA in the indices [iA/, and they be independent in the fcllowing sense:

if )A are constants, AAK; = 0 if and only if L O for every A. JIf the

vectors K. are reg~rdeu as Killing vectors of a thrce-dimensional

A
space, this condition means that the space ‘s homogeneous/.

b./ These vectors be orthogonal to the veliocity.

c./ The Lie derivatives of the "material" quantities u, v, p and h?k vanish
along every vector K;.

3. THE SYMMETRIES OF THE SOLUTIONS

We impose the conditions that the interior solutionz and the material

quantities be static and spherically symmetric, and that the timelike Killing

vector be orthogoral to every Ki. This
2 A 2 2
as? = o' (Dgp? & r? (d9%+ sin”8do°) —e¥(r) g2
1
i Y
u = e 8
s}
- .
e O O O
O r2 o (0]
Py = 2 . 2 /3.1/
0 0 r'sin“® O
(0] 0 (0] (0]

The number N of the vectors K, must be 3, 4 or 6 because they are
Killing vectors in a three~-dimensional positive-definite Riemann space whose
metric tensor is the space-1like part of h?k' On the other hand, the spherical
symmetry is required for hik i.e. the symmetry group must contain the S0/3/
group with two-dimensional transitivity as a subgroup. Clearly there are four
possibilities: SO/3/ @E/1/ [/N=4/ and SO/4/, E/3/, SO/3,1/ /N=6/, and the form

of hfk is:
“¥(x} o o o
5 0 R o0 o
hik = o o stinze o for N=4, and
0 o o o]




-~
~
~

; N
3} :
hi. = |
1K i
: () /' :
}
1
8] i

where 2/rf is an arbitrary tunction, R a
if the group is s50/4 513/
then 8 (o4 = 0

The transformation r’=r’ witich

fvi,

r for N=6 is nnot compatible with

arbitrary.

The scalars 1, v and ©

and have vanishing derivatives along the

the material equations for iy and . The

with values dependineg on the type of

4. THE FIELD EQUATIOMS

The Finstein equation has three nontrivial
cides can be obtained from f1./, [/1.2/, [3.11 and 3.2/
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equal

form of g,

matter considered.

for N=e,

are corstant,

and

13.2/

to 1 for N=4 and to

v

thus ¢

/r]/ remains

are constant pecause they are time-independent

need not deal with

and v

componients.

are constants

Their left

f4.1/

/14.2/




-6 -

1 R? A
sv -0+~ (p- ¥ g_) for N=4,
2 2 2,2

T2 - r ¢

2 1 ¢2 A 2 eA
sV -e+ ;E (¢ - 35 (1-8¢°) ;77) for =6, ]4.2/
3
(] ||+-5\),

and

¢, v, P, s, and R are constant.

There are three equations for the three unknown functions A/r/,
v/r/ and ¢/r/. In addition to this they have to fulfil certain initial and
boundary conditions.

Since p=const., the matter does not vanish continuously. Thus the
interior solution has to be matched to the exterior Schwarzschild solution
at a certain boundary surface r=r . This !s equivalent to two conditions [7].
First, there 9k must be continuous. This condition is trivially fulfilled

for 944 because | does not occur in the equations.

The only remaining condition for the metric tensor is:

e-A(ro) =1 -

/14.3/

5

o]

We shall see that this is simply the definition of m.

The second condition is that Ti vanish at r,. There are two possibili-
ties: either Ti vanishes nowhere and the solution does not describe a finite
body or Ti vanishes at certain values of r and one of them will be r, /i.e. in

the second case the condition does not restrict the solution/.

The initial conditions have to guarantee that there is no singularity
at the center. The [/11/ component of the Einstein equation can be immediately

integrated:
-1 c _ 8¢ 2
et =2 + 1 ;} or®. /4.4/

It can be seen that for C#0 there is singularity at the center, thus we
must deal with th: case C=0 only. [/4.4/ shows that condition /4.3/ is sinply
a definition for m:

m=§?prg=-cxzn. 14.5/




The second equation of [4.1/ gives §’ in terms of Ti and known
functions of r, and substituting It into the third equation of /4.1/, we get
a differential equation for ¢4/r/. It is convenient to express this equation
in terms of T1 and T2 defined by [/4.2/:

1 2
¢, 8"y 2 .2 1 31,1 2., 21 gry 2.1
c = 2(1 . erc) (2t rTl,l 5 Ty * 3°C )-(pc +T1)(1+ X r Tl) /4.6/

Eq. /4.6/ is the fundamental equaiion. After integratton Ti andATg can be
determined, and

- 1 A RIS
R T J [“; (e 1) Kre Ti] dr. /14.7/
As it was mentioned, we can only accept those solutions which
give vanishing Ti at a finite positive value of r. On the other hand, we
also require that Ti and Tg be finite at the center. This condition restricts
the behaviour of ¢ for small r, so that there are the following three

possibilities:

H

if N=4: ¢/c/ * /[ L +.r2y/rl; y/O/ is finite,

2
d v
. ' 2.11/2 5PV 2 3
if N=6: #%/r/ = To + [;; (1-s¢o)] r- 4o T *r ylr/l:
®0,y/0/ and
Table 1.
y'/O/ are finite
or é/r/ = rylxr/; y/O/ is finite, y’/O/ = O.

The values of y/O/ and y’'/0/ are the initial values for the differen-
tial equation /4.6/. There may be singularity at certain points, i.e. at
the zeroes of ¢, ®' and 1-5@2, but these are physically extreme values of r.
Every regular solution of /4.6/, which fulfils the initial conditions listed
in Table 1 and has Ti = 0 at a finite positive value of r, generates the
field quantities of a regular finite elastic sphere.

Eq. /4.6/ is an ordinary but inhomogeneous non-linear differential
equation for y/r/, for =4 of first order, for N=6 of second order, and it
seems to be hopeless tr obtain the solution in analytic form. Of course,
the numerical solution is always possi-le, but it is not the subject of the
present paper. Here we want only to demonstrate that certain solutions of
/4.6/ describe finite interpretable objects.




5. A HOMOGENEOUS MODEL OF THE EARTH

Now we are going to show that 4.6/ has a solution describing a
sphere with the average parameters of the Farth., I'n order to see this, 1t

is necessary to list the following parameters:

! N
a.f Rading: r,, 6.4.10° om:
. P 3
b./ Denstty: ¢ = 5.5 ajem
. L 1z . 2 iy
c./ Elastic coefficients: ;= 3.0,.107° gjems®, o = 4.].1012 g/rm:'

These are characteristic values calculated from the veloclities of
the longitudinal and transversal waves about the polnt, where p has its

; the fluid behaviour of the core is idnored.

average values |8

These are the parameters which have immediate physical meaning.
We choose the third pessibility from Table 1, thus we have to take values for
s and y/O/ too. The gquantity s has the dimenstion YuC_2,and, 1f 1ts order of
magnitude is also equal to tnat of y p c_z, it does not have remarkable

influence on the final result, since srz would be about 10—9

at the boundary
surface. Thus s=0 may be chosen. The free parameter which guarantees that

1 .
Tl/rO/fO is y/0/.

Since eq. /4.6] qives little hope for analytical solutlions, let
us introduce the power series expansion:
y = y(n)[1 + CPA aqr3 + a1r4 + ...] /5.1
The equation is too complicated to find : handy formula for a s thus we
cannot provz the converqence, but we shall see that the last calculated
term /the fourth-order one/ gives sufficiently small contributions to y/r/

and T%/r/ /whose vanishing is necessary/.

The values of az, a., and a, are:

3 4
L2 -8 .

A, = ~ ——lXE (1 + a(10”%)]
4 15(my3 -v) ’

(0)
(‘]3 = 0,

2 13417 | P

(14 (r.lz) 13 H W —
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where the ignored corrections are less than 10.8 part of the given value

1f the parameters have the mentioned order of magnitude.

Having calculated Ti and Tg we get:

2.2 4 2
2 4
Ti = (Y(O)z—l)w - -2%} P (w+3)r2 _rTye (2"‘35“"’17“ ) r

1575(W(0)2"\’)
/5.3/
2 2 2ny 2 2 w2y%pt (6+105wa51W°) 4
T; = (¥7(0)-1)e - L o (142W)r” - 5 r
1575 {wy (0)“-v)

¢+ M, v and p we get:

Using the above-mentioned values for L

y/o/? = 1.12
and the ratio of the r4 and r2 term of Ti at the boundary surface /where it
is maximal/ is 0.017, which shows that we may rely on the convergence. The
function ¢y can be calculated by means of this form of Ti, kbut the second
term of the integrand in /4.7/ /containing Ti/ can be ignored because the

ratio of the second and first terms is about 10-9, thus ?‘
\
8 2,.3/2 2,-1/2 - —
v o= (1 -8 o p2yW2 _ Bmy p2yml/2 /5.4/
302 ° 3c2

The quantity ) is given by /4.4/.

The maximal degree of compression at the center <an be obtained as

% (horr - hrr) = 0.17, which means 5 % linear deformation. Of course, for
such a great deformation the Hookean behaviour is generally not valid. /E.gq.,
for steel, the critical dilatation, at which the matter breaks, is 0.2-1 %/.

Our result agrees with the classical solution up to the quadratic
terms /except the factor yg v 1 in @ yz = v; the classical formalism is
well-defined only for the case €4k < 1/. The r4 terms are not relativistic
corrections; they are caused by the change of y/r/ because of which the
constants u and v correspond to classical coefficients slightly depending

on r. Thus we have shown that our procedure can give solutions with classical
limit,

1
We note that the series of Tl, Tg and ¢ seem to converge faster for

smaller objects, e.g. for moons and asteroids because their densities are
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approximately equal to that of the Earth, and their radit are less, thus

the r4 torms cannot grcw -ip to such an extent as for the Farth.

6. REMARKS ABOUT THE ELASTIC COEFFICIENTS

We have seen that the field equations have solutions describing
finite homogeneous elastic spheres. In this paper we did not want to inves- -
tigate, which sets of the parameters admit finite soiuticuns, because that
would reguire a large amount of numerical calculations. However the guestions
of the possible value of the parameters and the equation of state have to be

investigated.

If the elastic conefficients were too great, the velocity of sound
would be greater than velocity of light. For small deformations 2u+v:czp -
must be required [3], for great deformations the formuia of the sound
velocity can be found in Ref. 3, but it should be completed by a term
appearing because of Carter and Quintana’s modification of Ciklm. On the
other hand, 1 and v+2u/3 must be non-negative, and, for the known types of

matter, v is non-neqative too [6].

r‘
A further question is whether the adopted assumptlons for the material
homogeneity are compatible with a reasorable equation of state or not. Namely, tL

it is known, that if the matter were fluid of constant density, either the - —
pressure would bhe constant and the body would ke infinitely large or the

pressure would depend on r, but this is impossible for cold, one-component

fluid of constant density [11. We show that the present case differs from the

mentioned one.

Consider a cold elastic matter with the equation of state given
in eq. /1.2/, regarding the values of hik and h?k as known from the solution.
Since p, ¥ and v are constants, n/r/ can be obtained from the equation of

state. Now we write:

v o= el (n /r/) /16.1]
njr/ © ©
e}
where the "v.strained density” no/r/ can be calculated by means of n/r/

and the determinants of the space-like parts of h anad hfk. Thus the condi-

tion that v do not depend on r is an equation forito/no/, which is a material
equation. /Since n, depends only on a slingle variable, generally such an
equation is solvable./ The procedure is similar for u. Conseqguently the ho-
mogeneity conditions can be fulfilled for special type of the dependence

of the "unstratined" elastic coefficients on the "unstrained" density, but
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the denstiy must not be homogenrous. Such a case seems to be slightly
unnatural, but the homogeneity of a finite body is alvays a sliightly unnatural
approximate assumption.

7. CONCLUSION

We have shown that there are materially homogeneous solutions of the
Einstein equations describing finite elastic spheres. These solutions are
generated by a non-linear ordinary differential equation, whose solutions
have to fulfil certain initial and boundary conditions. These solutions are
not generalizations of Roy and Singh’s ones [2] because of the constancy of
the elastic coefficients.
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