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ANSTRACT
We are studying the dynamical system described by the Ham{Itonfan

e "o + ¥, where
)
[ p? - cos k. V= - cos Ak~ at).

We have encountered this system in @ number uf problems of practical
importance, 1n addition, the system has intrinsic interest for the theory
of adiabaticity and stockesticity. The invariant action J of the unper-
turbed Hamittonian Hy is sublect to strong madification or destruction
because of the perturbation ¢V, Absence of an invariant {i.e., stochasticity)
occurs in a phase space region whose size and shape vary with the three
parameters ¢, i, K. Previous studies have varied the amplitude of a per-
turbation (our r); we emphasize here the s.."ng dependences on the space
{+} and time () scales of the perturbation. Our rosuTts show that
perturbation is most effective at causing stochastic motion if its space
and tire scales are comparable {1-1, -1} to those in the unperturbed

Hamiltonian Hye

1. INTRODUCTION

Much study has been devoted to the Hénon - Heiles Hamiltonian,

which we write in the form
0= (ﬂi )/Zm ‘i Lot 0 g2y v [(xzy - }V3) m

It is customary to climinate the constants m, k, and ¢ by using a set
of units in which

unit of mass =m

unit of length = k/c

unit of time = (m/k)1/%

unit of energy = k:‘/rz‘
A partiLie of given dimensional energy C, moving in a well with a given
k, has a large value of the dimensionless energy € = CrZ/k3 1f ¢ 1s large
The onset of stn:hnsti:ity’ a5 E {5 increpsed §5 thus caused by the
increasing amplitude « of the perturbation in (1),

More qenerally, 'ie space and thme scales of g perturbation, fn

addition to {ts amplitude, can be important in determining the onset
of stochasticity. A dynemical system which displays these properties is
given by

Hlxapat) = Ky (x40} + V(xst),

o= l- placos x Vo= oetos (M- onth,

(2)

This system vccurs 1n several problems in plasma physics, ranging 1rom

2-4 aough a modest Taboratory exnerinmm!1 to

6-8,

wurely theoietical problems
studies of intercst to the important fusion enerngy program Hamilte: ian
(2) occurs frequently because many prablems can be redyced to the motion

of a particle in a one-dimensiona) potential which vuries periodically
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in spece and time. Fourier analysis of the potential yields, in general,
a large nunber of sinusoidal terms. Sometimes all but two of these

terss can be ignored, resulting in {2). We view this dynamical system

as un elementary problem In stachasticity theury which exhibits features
seen {n many, more complicated problems. We ute the phrase "particle

motion in two waves" to describe {2).

2. PAMILTONIAN IW ACTION-ANGLE V RIABLES
In preparation for the presentation below of our numerica) results,
we introduce the varjables which are most conven’ent in theoretical work.
These ave the action und angle variables of the unperturbed Hamiltonian

Hy. Since W, describes the well-known (nonlingar) pendulum problem.

o
one expects elliptic integrals and Jacobian elliptic functions to appear,
in the notation of Ref. 9 the definftiuns of the action J and of the anqle

¢ are

amgt = S ey - 0= A kel

#lxoHg) = 0 Flo, )z k)

whert - sin g = sin L x, and where the madulus k is qiven by

2.1
S E 0 e

These definitions are valid oniv for a particle which has Wy < 1 and 45
therefore trapped in the unperturbed potential well. Our defin tions for
on untrapped particle are availabic in Ref. 10.

The action-angle varjables are convenient hecause the unperturbed

motion is described so simply in terms of them:



Ja ay/ap = 0% J = I{t=0)

P
[

= nMoan F oy {J} = conste>d ® 6o * it
In terws of J and ¢, the Hamiltonian appears

H{a,t) = H (3] + oV (6.3,8) (3a)
V= aE v (0) cos (ne - at). (3b)
[y
The Fourier coefficients are given by
v ® %;—[f de cos[ax{e.) - nel.

Expresstons for Vn(J, 1 %) are available ‘n standard references,
including Ref, 9, For half-fnteqral vatues of X (Mke 1, 7 , 2, ...}, the
coefficients Vn can be computed by contour integration. Tue cxpressions
obtained from reference works or by contour integration are valid for alt
J but only rertain A, On the uvther hand, it is very simple to find the

approximate formuta

Vo [k}, A1 =3, (@), ()

valid for any i, but accurate anly for small values of <. The Bossgl
function J; on the right-hand side of (4} should not be confused with the
action J on the left-hand side.

Our nuierical results will show the presence of certain resonances
(caYled bounce resonances) which are evident {n {3). The nth term in {3b)

has a large effect on the motion when it varies slowly in time:

ne - Re=n. =a0=0,
b



Chains of islends will be observed near the resonant values of the

action J, which are defined by

mg (J) s . (s}

3. KUMERICAL METHODS

Our study of the dynamical system (2) proceeds by numerical fntegration

of the Hamiltonian equatfons of motfon

e

= py Ho=o-sinx -~ A sin (ax - at) .

We make stroboscopic plots, analogous to Poincaré surface of scction maps,
by recarding a point whenever at = 2aN, N20,1,2,.... The recorded points
are plotted not in the xp-plane, but in the ¢J-plane. Since the unper-
turbed {» 0} motion results in points on a horizontal Vine {n the sJ-plane,

our plots are particularly usceful for seeing the effects of the perturbation.

4. DISCUSSIDN DF RESULTS

We keep the amplitude of the perturhatton fixed at « = D.2 and
study the mation for various A and .. Ay a reference case we choose
veoned,

First, we consider the results of Fig. 1, for which r is varled
while @ is %ent equal to unity. In cich part of the figure we show
trajectories commencing at several different initial poiats in the
sJ-plane,  Initial points lying in the stochastic reglon of the planc
lead to a set of trojectory points which cannot be connected by a
smooth curve. Such trajectories indicate the absence of an isolating

constant of the motion. Initial points lying in the npustochastic



parts of the ¢J-plane lead to scts of trajectory points which have been
connected by smorth curves.

The four plots in Fig, 1 dramatically show the growth of the
stochastic region as » is increased from much less than unity to the
referonce case of 1 = 1, The promincat isiand in cach plot {s due to the
bounce resonanc {5) with n = ). Notice how the features on the plots
change size and shape as A varies but do not move around much.

In Fig. 2 we keep A equal to unity and choose four different values
of 4, The four plots im Fig. 2, together with the reference case {i=qel}
in Fig. 1, demonstrate that the Jargest stochastic region occurs for pel,
In contrast to Fig. 1, the features on the plots af Fig, 2 move around
rapidly as o is varied. As a result, differcnt fentyres are seen in
aach part of Fig. 2. As indicated in the figurc caption, we attribute
the chains of islands to particular resonances of the form iy, @ ma,
where n and m ave pasitive integers. The appearance of such prominent
islands with m # 1 was unexpected. Description of these islands wil)
require 3 different theoretical formulation than that given 1n (3).

To graphisally display the varfaticns fn size of the stochastic port
of phase space we have devised a quantitative measur « of the size. Our
weasure 18 definita, but admittedly arbitrery. For Figs. 1 and 2 we
ottempted to Jocate nonstochastic trajecteries as close as passivle ta
the seporatrix, the horizental line at J = B8/» = 2.55, The arca of
the ¢Jd-plane between the separatrix and the “closost" trajectory is
divided by the arca of the plane bounded by J = 0 and 8/n and by ¢ < @
and ? . We refer to the ratip as the “stuchastie fraction”. In Figs, 3 and
4 we plot our measurcnents of the stochastic fraction as a function of
2 and . The curves connecting the measured points are merely aids 10 the
wyei a theoretical eapression for the stochasitc fraction as a function

-6~



of ¢, », and u is not available.

Bosides being visually pleasing, the plots in Figs. 1 and 2 suggest
that the simple dynanical system (2) hos mony intriauing properties.
Interesting results should be obtoined by theorctical and numerical work

extending that begun he: ..

Work perforned under the auspices of the U.S. Cnergy Research and Develo,
ment Administration under contract No. W-7405-Eng-48.

NOTICH
“ThIs tepnrt wap Frepaed as an wcuownt af work
v tin e ot

thr Uit n

Mesearch & Developnrnt . dinn any

o ‘thell emplayecr, ot wny ol tats,
o

subcontuaston, o employres, qukes any
WAL, TamIn o dmphed, O s s el
fusbility " ar enpomsthiicy  fur che aerutdir,

wefulnes ol anp mlsrmation
gredueh o procen - dive
sepieeniv thel would out
privaiely swprd vghts.®

“Reference t a vampany s praduet
name does st unply approval o
tecommendation of the product by
'!“’ Uniersity of Califaeriy or the 1S,
Faergy  Research & Pevelopuscat
Adminstiation 1o the exchasion of
athers shat may be sunahle.”



1.
2,

REFERENCES

M. Henon and C. feiles, Astran. J. 69, 73 (1964).

G. M. Zaslavskii ang N. N, Filonenko, Zh. Eksp, Teor. Fiz. 54,
1590 (1968) [Sov. Phys. - JETP 27, 851 (1968)]. Particle fn two
waves.,

P. K, Kaw and W. L. Kruer, Phys. Flufds 14, 190 (1971). Particle
in two waves.

G. R. Smith and A. N. Koufman, Phys. Rev. Lett. 34, 1613 (1975},
Particie in a uniform magnetic field and a single, oblique wave.

G. Dimonte and J. H, Malmberg, Phys. Rov. tett. 38, 401 (1977).
Electron in two waves propagating on a traveling wave tube,

A. B, Rechester and 7. H, Stix, Phys. Rev, Lett. 36, 567 {1976).
Magnetic brajding in a tckamak.

M. Oobrowolny, A. Orefice, and R. Pozzoli, Plasma Phys. 16, 479
(1974}, Particle in 2 tokamak magnetic field and a singie wave,

G. R, Smith, Phys, Rev. Lett. 38, 970 {1977). Particle in a tokamak
magnetic field ond 3 single wave.

P. F. Byrd and M. D, friedman, Handbook of E11iptic Integrals for
Engineers and Scientists (Springer-Verlag, New York, 1971).

G. R, Smith, Ph.D. Thesis, University of California, Berkeley, Sopt.
1577, LGL-6824 (unpubiished).



Fig. 1.

Fig, 2.

Fig, 3.
f'ig. 4.

FIGURE CAPTIONS

Stroboscopic plots of particle trajectories, illustrating changes
in the motion as A is varied. The paramete's ¢ = 0.2 and

a2 =1 are kept fixed, The initial points for the trajectories are
marked by X's, ond cach fnitial point represents a particle troppud
in the unperturbed potentia) at t = 0. The horizontal line at

J = 2,55 §s the scparatrix which divides trapped particles from
untrapped ones.

Stroboscopic p ots illustrating changes in the particle motion as
2 {s varied. The fixed parameters are ¢ = 0.2 and A = 1. The
chains of islands seem to ke due to the folowing resonances: the
plot for g = 0.25 shows wy = ¥Meaw 0.5 shows J"b =5p, 02
shows ?‘h = qand 7-b = 3n, and @ = 4 shaws Smb s .

The stochastic fraction as a function of » for ¢ = 0,2 and n = 1.

The stochastic fraction as a function of & for + = .2 and A » 1
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